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Abstract— In order to handle the challenges of autonomous
driving, deep learning has proven to be crucial in tackling
increasingly complex tasks, such as 3D detection or instance
segmentation. State-of-the-art approaches for image-based de-
tection tasks tackle this complexity by operating in a cascaded
fashion: they first extract a 2D bounding box based on which
additional attributes, e.g. instance masks, are inferred. While
these methods perform well, a key challenge remains the lack of
accurate and cheap annotations for the growing variety of tasks.
Synthetic data presents a promising solution but, despite the
effort in domain adaptation research, the gap between synthetic
and real data remains an open problem. In this work, we
propose a weakly supervised domain adaptation setting which
exploits the structure of cascaded detection tasks. In particular,
we learn to infer the attributes solely from the source domain
while leveraging 2D bounding boxes as weak labels in both
domains to explain the domain shift. We further encourage
domain-invariant features through class-wise feature alignment
using ground-truth class information, which is not available
in the unsupervised setting. As our experiments demonstrate,
the approach is competitive with fully supervised settings while
outperforming unsupervised adaptation approaches by a large
margin.

I. INTRODUCTION

Modern deep learning-based vision systems have made
remarkable strides in recent years, enabled in no small
part by leveraging large amounts of labeled training data.
Unfortunately, acquiring annotated data is often expensive,
time consuming and, for some tasks, also inaccurate or nearly
impossible. To alleviate this problem, synthetic data obtained
from game-engines or purpose-built simulation environments
might be an alternative, promising a large amount of training
data with highly accurate, inexpensive annotations. However,
despite ever-improving photorealism, current state-of-the-art
synthetic datasets still fail to resemble actual real world
sensor data. Subsequently, machine learning models which
are trained on a synthetic dataset typically perform poorly if
applied to real world data. In order to bridge this domain gap,
several works on domain adaptation have been proposed.
Most commonly, they assume an unsupervised regime, in
which we have access to fully-labeled data in a source do-
main and only unlabeled data in a target domain. This setting
is particularly difficult and while the community continues to
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Fig. 1: Proposed Setting. We propose a weakly-supervised
domain-adaptation setting that enables learning cascaded
detection tasks at a reduced annotation effort while still
achieving competitive performance by utilizing weak 2D
bounding box labels in both domains.

make progress in tackling the open problems in unsupervised
domain adaptation, the gap in performance when compared
to target domain supervision remains significant, limiting the
utility of these models for practical applications, such as
autonomous driving. Is there an alternative which allows for
accurate results without the need of expensive labeling in the
target domain?

In this paper, we propose a setting which exploits the
decomposability of complex detection tasks into a cascaded
structure. This concept is central to many image-based
detection approaches where objects are first detected and,
based on the detection, additional attributes such as instance
masks [1] or 2D/3D poses [2] are inferred. Likewise, labeling
can now also be decomposed into 2D bounding box labels,
which are inexpensive to annotate and for which annotated
datasets already exist in many domains, and additional,
more complex attribute labels, which are often expensive
or difficult to obtain with sufficient accuracy. Motivated
by this, we investigate the use of weak supervision in the
form of 2D bounding box annotations in the target domain
in conjunction with full supervision in the source domain.
Our key hypothesis is that a large part of the domain shift
might already be explained in the detection stage, while
the following cascaded stage transfers more readily given
accurate detections. To test this hypothesis, we consider two
common cascaded detection tasks in this paper: Instance
segmentation and monocular 3D detection.

Although we find that a strategy of jointly training on both
domains with the available weak supervision can already
work surprisingly well, there is no guarantee that the learned



feature representation will always be useful for the cascaded
stage in the target domain. As evidenced by our experiments
in Sec. IV, joint training can in fact lead to domain-specific
features, rendering the cascaded stage less transferable. Bor-
rowing from the unsupervised domain adaptation literature,
we address this problem by encouraging domain-invariant
representations. A typical approach is to align marginal
feature distributions across domains. However, this does not
guarantee a low target domain error for the specific task
and can even be detrimental if the label distributions differ
across domains [3]. Recent work has addressed this problem
by considering class information during feature alignment
[4], [5], aiming at invariance of the conditional feature
distributions given the corresponding labels. However, doing
so in the absence of ground-truth target domain labels is
challenging due to error accumulation [6]. Our setting allows
us to sidestep this issue as it enables us to accurately
condition the feature distribution alignment on the ground-
truth class at instance-level.

In summary, we make the following contributions:
• We propose and systematically analyze a weakly super-

vised domain adaptation setting for cascaded detection
tasks, where 2D bounding box annotations are available
in both domains.

• We show that in this setting, models adapted using
existing techniques can now be competitive with mod-
els that are fully supervised in the target domain at
a significantly reduced annotation effort. Furthermore,
they outperform unsupervised adaptation approaches by
a large margin, justifying the additional supervision.

• We analyze the role of weak supervision in bridging the
domain shift both in isolation and in conjunction with
feature distribution alignment.

With this work we hope to both inspire and provide a
baseline for future research on domain adaptation leveraging
weak labels. Supplementary material is available at: https:
//lasnik.github.io/wsda/.

II. RELATED WORK

The domain adaptation problem has received great interest
in recent years, especially in the unsupervised setting, with
several studies in the context of diverse tasks such as
classification [7], [4], semantic segmentation [8], [9], [10]
and more recently object detection [11], [12], [13]. In the
following, we review the most related work on unsupervised
domain adaptation in general and in the context of object
detection specifically, as well as cross-domain learning with
weak supervision.

Unsupervised Domain Adaptation: Underpinned by the
theory proposed in [14], the majority of approaches in the
unsupervised regime tackle domain adaptation by attempting
to mitigate the discrepancy between data distributions across
domains. Building on the progress in generative modeling
and image-to-image translation [15], [16], one line of work
seeks to achieve this directly in image space [17], [8], [9],
aiming at distributional alignment at pixel-level. A popular

alternative has been to instead focus on alignment at feature-
level. Methods in this category typically attempt to match the
marginal distributions of source and target domain features.
This is done either explicitly by minimizing a divergence
measure [18], [19] or implicitly through domain-adversarial
training [7], [4]. Orthogonal to these approaches, another line
of work leverages unlabeled auxiliary tasks and utilizes them
in a self-training scheme alongside the main task [17], [20],
[21]. Many of these works introduced concepts that are now
central to the domain adaptation literature, but focus mostly
on image classification and semantic segmentation, while we
are interested in detection-based tasks.

Cross-Domain Object Detection: In [11], Chen et al. follow
the domain-adversarial training paradigm in a first study of
unsupervised domain-adversarial adaptation in the context
of object detection: They propose to align features at both
image- and instance-level by means of domain-adversarial
training. Motivated by the hypothesis that transferability
of features might decrease towards deeper layers, Saito
et al. [12] employ strong and weak alignment strategies
at image-level for shallow and deep features, respectively.
Several works follow a similar notion by proposing different
hierarchical alignment schemes [22], [23], [24], [25], while
others focus on mining descriptive region- [26] or instance-
level [13] features for alignment. To ensure discriminativity
of the learned representation, recent work [24], [13] proposes
aligning category prototype embeddings by relying on the de-
tection model’s class estimates in the target domain. In [27],
a few-shot adaptive cross-domain detection setting is studied,
where a small number of annotated target domain images are
available, for which the per-class feature distributions are
aligned with ground-truth class labels. In a slight departure
from the prevalent paradigm of learning domain-invariant
representations, [28], [29] view the cross-domain detection
problem as one of robust learning from self-generated noisy
pseudo-labels. Although this body of work marks extensive
progress, current unsupervised domain adaptation methods
still fail to close the domain gap - often by a large margin -
rendering them of limited use for practical applications.

Cross-Domain Learning with Weak Supervision: While
the unsupervised regime has been extensively studied, do-
main adaptation with access to weak annotations from an
auxiliary task in the target domain has received compara-
tively less attention. Previous works utilize depth images as
weak supervision to aid in transferring a semantic segmenta-
tion model. As the relationship between depth and semantics
is not trivial, these works focus mainly on strategies to
transfer knowledge both across domains as well as between
the auxiliary task and the task of interest, either by learning
direct mapping functions [30] or through knowledge distilla-
tion [31]. Although an intriguing direction, like unsupervised
approaches, these early works are unsuccessful in closing
the domain gap. In [32], Wang et al. also consider the
task of semantic segmentation, but leverage 2D bounding
boxes as weak supervision in both domains. They consider a
multitask detection and semantic segmentation architecture,
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where both tasks share a single backbone network and
apply class-agnostic image-level and class-wise instance-
level adversarial feature alignment. Here again, the exact
relationship between detection and semantic segmentation
is not immediately obvious, yielding results comparable to
unsupervised domain adaptation methods. In contrast to these
works, we specifically consider a cascaded setting where the
auxiliary task is subsumed by the task of interest and its
potential benefit is more readily apparent. Similarly to ours,
another line of work follows this same notion, for example by
leveraging attribute annotations for fine-grained recognition
[33], image-level class annotations for object detection [34]
or 2D pose annotations for 3D human pose estimation [35].
These works consider a specific task and rely on explicit
constraints induced by its relationship to the auxiliary task,
such as consistency between attribute-level and fine-grained
predictions, the ability to generate pseudo-labels from weak
annotations or geometric correspondences between poses in
2D and 3D. In contrast, we are interested in leveraging
2D bounding box annotations for an entire class of related
problems, namely multiple cascaded detection tasks, without
focusing on explicit, task-specific regularization.

III. METHOD

In this section, we present our weakly-supervised domain
adaptation approach. First, we formally describe the learning
problem resulting from our novel setting in Sec. III-A. In
order to solve this problem, we use the cascaded framework
described in Sec. III-B, which allows to leverage weak
annotations in the target domain. Finally, in Sec. III-C
and III-D, we describe strategies to optimize the cascaded
detection model in our setting with the aim of robust and
accurate target domain performance.

A. Learning Problem

Image-based object detection aims to extract the image
location, typically in the form of 2D bounding box coor-
dinates b ∈ B ⊂ Rk×4 , and semantic class information
c ∈ C = {c0, c1, ..., cL−1}k of all k objects in the image,
where L is the number of classes under consideration. There
exist various extensions to the task that additionally estimate
more complex attributes a for each object, such as precise
shape or 3D information. However, these additional attributes
are often expensive or difficult to label and may therefore not
be available in the target domain T . A natural solution is to
use training data from another domain S, which contains the
missing labels.

Let Ds and Dt denote the source and target domain
datasets respectively, with Ds = {(xsi ,bsi , csi ,asi )}

Ns

i=1,
where xsi is the input image and Ns is the number of
samples in the dataset. The notation follows analogously for
the target domain Dt = {(xti,bti, cti)}

Nt

i=1 , where we have
access to weak supervision in the form of 2D bounding box
coordinates b and class information c, but no supervision for
the additional attributes. We assume that both domains share
a common label space, but follow different data distributions.
Given Ds and Dt, our goal is then to learn a cascaded

detection model with source domain supervision on the
attributes a that will transfer well to the target domain, while
utilizing the supervision on b and c that is available in both
domains.

While the approach is applicable to any cascaded detection
task, we focus on the problems of instance segmentation
and monocular 3D detection as examples in this work.
Consequently, the additional attributes a represent pixel-
wise instance masks and 3D shape and pose for instance
segmentation and 3D detection, respectively.

B. Cascaded Detection Model
For the cascaded detection framework, we follow the state

of the art [1], [36] and choose a multi-stage architecture, a
design choice that also follows naturally from our setting,
as it explicitly encodes the decomposition of the cascaded
detection task. We hence have two main components, (1)
a base network responsible for 2D detection and (2) an
attribute network that builds on the detection network’s pre-
dictions to estimate additional attributes for each detection.
In the following we use the hat operator to denote model
predictions.

Detection network: The detection network Gθ is a convolu-
tional neural network with parameters θ, that maps the input
image x ∈ X to estimates of the per-object 2D bounding
boxes b̂ ∈ B and semantic class labels ĉ ∈ C:

Gθ(x) : X → B × C × Z (1)

It consists of a backbone, which extracts an image-level
feature representation from the input, and a detection module,
that predicts b̂ and ĉ from that representation. In addition to
2D detections, this network also provides a per-object feature
representation ẑ ∈ Z for the attribute network by applying
ROIAlign [1] on the image-level representation using the
estimated bounding box coordinates b̂.

Attribute network: The attribute network Aω is a neural
network with parameters ω that, given detections described
by b̂ and ĉ, estimates the additional attributes â ∈ A from
their object-level feature representation ẑ:

Aω(ẑ, b̂, ĉ) : B × C × Z → A (2)

The specific instantiation of both a and consequently Aω
depends on the cascaded detection task under consideration.

C. Joint Training with Weak Supervision
Given this framework, how do we best utilize Ds and

Dt to learn the optimal model parameters θ∗ and ω∗, such
that the resulting model will be robust and accurate in the
target domain? Let us begin by considering the unsupervised
domain adaptation setting, where we have to rely solely on
source domain supervision, resulting in the following com-
bined loss function for both the detection and the attribute
network:

Lsource =
1

Ns

Ns∑
i=1

Ldet(Gθ(xsi ),bsi , csi )+

Latt (Aω (Gθ (xsi )) ,asi )
(3)
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Fig. 2: Overview of the presented approach. The goal of our approach is to detect objects in a target domain image by
describing them in terms of their location b and class c as well as additional, more complex attributes a, such as precise
shape or 3D information. We consider a weakly supervised domain adaptation setting, where labels for the attributes are
only available in the source domain (e.g. synthetic data), while easier-to-obtain 2D bounding boxes are available in both
domains. We utilize a cascaded detection framework where first a detection network Gθ, trained with supervision on both
domains, extracts b̂ and ĉ as well as per-object feature representations ẑ. Based on the detection network’s outputs the
attribute network Aω , supervised on the source domain only, then infers â. To encourage representations that are meaningful
in both domains, the distributions over features ẑ are aligned via a class-conditional domain classifer Dδ .

The exact formulation of Ldet and Latt depends on the
specific instantiations of Gθ and Aω , which are described
in Sec. IV-A. In our setting, we also assume access to target
domain supervision for the detection network:

Ltarget =
1

Nt

Nt∑
i=1

Ldet
(
Gθ
(
xti
)
,bti, c

t
i

)
(4)

We denote the sum of both loss terms as Ljoint, yielding the
following combined objective:

(θ∗, ω∗) = argmin
θ,ω

Ljoint (5)

where the detection network is trained jointly with super-
vision from both domains. A key hypothesis in this work
is that such a joint training strategy can potentially aid
the transferability of the cascaded detection model across
domains in two main aspects: Firstly, since any prediction
of the attributes â implicitly assumes a valid and accurate
2D detection, the performance of the detection network is
crucial. Training it jointly on both domains ensures that
this assumption is less likely to be broken, decoupling the
adaptation efforts for the attribute network from the 2D
detection task. Secondly, the detection network might learn
shared representations across domains when trained jointly,
rendering any attribute network making predictions based on
those representations more readily transferable.

D. Class-Wise Feature Alignment

Although we find that this joint training strategy works
well in some scenarios, it may not always be optimal.
Firstly, its success depends highly on the degree to which
the attribute network reuses the feature representations that
emerge by training the detection network jointly. If both

networks build on distinct, task-specific features in the back-
bone such a strategy cannot hope to improve cross domain
performance beyond increased accuracy of the detection
network. Secondly, there is no guarantee that joint training
always results in a shared representation across domains.
Should the representations indeed be domain-specific, the
attribute network might not yield the desired results in the
target domain.

To counteract this, we follow the same paradigm of
regularizing the learned representation to be domain-invariant
that is central to many state-of-the-art unsupervised cross-
domain detection methods. Since in our setting ground-truth
information on the object coordinates and semantic class
is available in the target domain, we can perform accurate
object-level class-wise feature alignment (CWFA) without
error accumulation. To this end, we utilize a class-conditional
domain classifier Dδ , which tries to separate the features
according to their domain given their ground-truth class. At
the same time the detection network Gθ is optimized to
output features that maximally confuse the domain classifier
in an adversarial fashion. More concretely, Dδ maps the
object-level features ẑ to a probability of belonging to the
target domain for each class and then outputs the probability
associated with the current ground-truth class c:

Dδ(ẑ, c) : Z × C → [0, 1] (6)

This approach of considering class information is similar
to previous work in the context of few-shot cross-domain
detection [27] and is particularly effective in our proposed
setting, as we have the ground-truth class available for every
example. Following [12], we use a focal loss [37] with



weighting parameter γ to optimize the domain classifier:

Ladv =

− 1

Ns

Ns∑
i=1

(1−Dδ (Gθ (x
s
i ) , c

s
i ))

γ
logDδ (Gθ (x

s
i ) , c

s
i )

− 1

Nt

Nt∑
i=1

Dδ

(
Gθ
(
xti
)
, cti
)γ

log
(
1−Dδ

(
Gθ
(
xti
)
, cti
))
(7)

We thus obtain the following overall objective:

(θ∗, ω∗, δ∗) = argmin
θ,ω

argmax
δ

Ljoint − λadvLadv (8)

where Gθ and Aω are optimized to minimize both the
2D- and attribute detection losses according to the joint
training strategy while simultaneously maximally confusing
the domain classifier Dδ , which is optimized for low domain
classification error, and λadv is a trade-off parameter. As
in previous works [11], [12], [24], the adversarial min-max
game is realized through the use of a Gradient Reversal Layer
(GRL) [7] at the input of the domain classifier, which flips
the sign of the gradients and scales them by a weighting
parameter λgrl during the backward pass.

IV. EXPERIMENTS

In the following, we present our experimental results on
various synthetic and real datasets. To this end, we first de-
scribe our experimental setup in Sec. IV-A and subsequently
compare our method to several baseline approaches on the
tasks of instance segmentation and monocular 3D detection
in Sec. IV-B. Finally, we provide an ablation study in Sec. IV-
C.

A. Experiment Setup

Datasets: We perform experiments on four datasets: (1)
Cityscapes (CS) [38] is a scene understanding benchmark
containing 5k diverse real-world urban driving scenes. (2)
Foggy Cityscapes (FCS) [39] is an extension to CS, that adds
synthetic fog to the original scenes. As a result, both have
exactly the same label distribution. (3) Synscapes (SYN) [40]
is a collection of 25k photorealistic synthetic urban traffic
scenes from a custom rendering enginge. (4) VIPER (VIP)
[41] contains over 100k synthetic images obtained from the
video game Grand Theft Auto V.
With these datasets we build three adaptation scenarios: SYN
→ CS, VIP → CS and CS → FCS. For each scenario, we
create a common label space between both domains. Where
possible, we correct differences in labeling policies dur-
ing preprocessing, otherwise removing incompatible classes
from consideration.

Evaluation Protocol: We report the performance on the
validation split of the target domain dataset using the official
evaluation protocols [38], [42]. We use the mean average
precision (mAP) and mean detection score (mDS) as met-
rics for instance segmentation and monocular 3D detection,
respectively. We run each experiment three times using

Method Target Supervision SYN → CS→ VIP →
2D Mask CS FCS CS

Source Only 17.0 13.9 6.9
DAFRCNN [11] 17.5 23.3 9.1
SWDA [12] 17.5 22.1 6.7

WSJT (Ours) X 32.1 30.3 30.3
+ CWFA X 31.3 30.3 30.2

Oracle X X 33.6 30.2 36.1

TABLE I: Results on instance segmentation. We report the
mean average precision.

Method Target Supervision SYN → CS →
2D 3D CS FCS

Source Only 14.2 13.7
DAFRCNN [11] 15.4 19.5
SWDA [12] 14.8 17.8

WSJT (Ours) X 20.4 22.6
+ CAFA X 21.1 24.1
+ CWFA X 23.4 24.2

Oracle X X 25.0 24.7

TABLE II: Results on monocular 3D detection. Values are
mean Detection Scores [42].

different random seeds and report the performance of the
best run at the last training iteration.

Baselines & Comparison: As a lower bound we train
a model on the source domain only and apply it on the
target domain during testing. As an upper bound, we train
an oracle model with full target domain supervision. In
addition, we also consider the unsupervised cross-domain
detection approaches of Chen et al. [11] and Saito et al.
[12]. We re-implemented their work in order to extend it
to our datasets and setting. We compare these baselines
against models adapted in our proposed setting using both
just the weakly-supervised joint training strategy in isolation
(WSJT) and in conjunction with class-wise feature alignment
(WSJT + CWFA). On the task of monocular 3D detection,
we additionaly report results of the latter configuration with
class-agnostic feature alignment (WSJT + CAFA), for which
we use the instance-level alignment module in [11], to
evaluate the benefit of considering class information. To the
best of our knowledge, there is no prior work on leveraging
2D bounding box annotations for domain adaptation in
the context of instance segmentation and monocular 3D
detection, thus we provide an additional ablation study of
the proposed weakly supervised setting in Sec. IV-C.

Implementation and Training Details: As the multi-stage
cascaded detection framework we use a standard implemen-
tation1 of Mask-RCNN [1] with a Resnet-50 [43] backbone
in conjunction with a Feature Pyramid Network (FPN) [44].
For monocular 3D detection, we replace the mask head
with a reimplementation of the 3D bounding box regressor
proposed in [36], where we omit the confidence rescoring

1https://github.com/facebookresearch/detectron2



(a) GT (b) Source only (c) DAFRCNN [11] (d) WSJT + CWFA (Ours)

Fig. 3: Instance segmentation results (SYN → CS). In contrast to our approach, both baselines exhibit a higher false
positive rate. Besides improved detection performance, also the contours of our segmentations are typically more accurate.

(a) GT (b) Source only (c) DAFRCNN [11] (d) WSJT + CWFA (Ours)

Fig. 4: Monocular 3D detection results (SYN → CS). Besides less false positive detections, our approach also yields
favorable orientation estimates in comparison to the baseline methods.

Method Instance Segmentation 3D Detection
(mAP) (mDS)

Source Only 27.7 22.8
DARCNN [11] 27.4 23.7
SWDA [12] 27.2 24.5

WSJT (Ours) 36.2 23.9
+ CWFA 34.1 31.6

Oracle 45.5 34.5

TABLE III: Ablation Study. To evaluate the transferability
of the learned feature representations, we decouple the final
performance from that of the 2D detection network, by using
ground-truth 2D bounding boxes at test-time (SYN → CS).

branch. This regressor works on amodal 2D bounding boxes
which, in contrast to other datasets [45], [46], are currently
not available in Cityscapes. We therefore compute them
as projections of the 3D bounding boxes onto the image
plane. For the class-conditional domain classifier we reuse
the instance-level architecture of Chen et al. [11] and extend
the last fully-connected layer to output L per-class domain

probabilities. We adapt the methods of Chen et al. [11]
and Saito et al. [12] to the FPN configuration for a fair
comparison by applying the corresponding domain classifier
to each FPN-level. Experiments using dedicated domain
classifiers for each FPN-level showed no benefit over this
strategy. For instance segmentation, we use the same loss
functions for Ldet and Latt as well as the same optimizer,
learning rate, training schedule and batch size as in [1]. For
monocular 3D detection, we again adopt the hyperparameters
and loss functios for Ldet and Latt from [36]. However, we
use a reduced batch size of 8 due to memory constraints and
a longer schedule, training for a total of 120k iterations and
decaying the learning rate by a factor of 0.1 at 72k and 90k
iterations.

B. Main Results

Instance Segmentation: For instance segmentation we con-
sider the adaptation scenarios SYN→ CS, VIP→ CS and CS
→ FCS. As shown in Tab. I, models trained in our setting
outperform the unsupervised baselines by a large margin.
This is also mirrored in the qualitative results shown in



(a) (b) (c) (d)

Fig. 5: Failure cases. We show failure cases for 3D detection (SYN → CS) and instance segmentation (VIP → CS) in
(a)-(c) and (d), respectively. (a): Due to the absence of one-ways in Synscapes, the orientations of all vehicles on the left
hand side are flipped. (b): The lack of steep roads in the source domain results in a pitch bias. (c): Some vehicle types, e.g.
vans, are underrepresented in the source domain, causing spurious predictions. (d): Contrary to Cityscapes, vehicle windows
are not included in the segmentation masks in VIPER, leading to false negatives.

Fig. 3, where our approach yields more defined and accurate
segmentations. While our approach is competitive with the
fully supervised oracle for SYN→ CS and CS→ FCS, there
remains a performance gap of 5.8 percentage points for VIP
→ CS, despite substantial gains over the baselines. Here,
the largest discrepancy (13.1 percentage points) is observed
in the car class, which we attribute to an incompatibility in
labeling policies: contrary to Cityscapes, vehicle segmenta-
tion masks in VIPER do not include windows, leading to
false negatives in the target domain, which is illustrated in
Fig. 5. Furthermore, we find that class-wise feature alignment
does not improve the results for instance segmentation.
This suggests that joint training of the base network does
indeed promote a domain-invariant representation, which the
instance segmentation module in turn reuses. Moreover, we
observe that the unsupervised baseline methods only achieve
a performance gain over the source only baseline in the CS
→ FCS scenario, where the distribution of classes and scene
layouts is identical. In both remaining scenarios they do
not significantly improve the performance. We attribute this
to negative transfer effects resulting from the class-agnostic
alignment of features for domains with distinct distributions
over scene layouts and relative frequencies of classes.

Monocular 3D detection: For monocular 3D detection
we consider the adaptation scenarios SYN → CS and CS
→ FCS. From Tab. II we see that, compared to instance
segmentation, monocular 3D detection is significantly more
difficult: in this case, the simple joint training strategy still
outperforms the source only and unsupervised baselines, but
is unsuccessful in fully closing the gap towards the oracle.
This suggests that for this task, the attribute network does not
rely as strongly on the features learned via joint training. We
observe that here, additionally performing feature alignment
does improve performance, which supports this hypothesis. A
possible explanation is that instance segmentation inherently
synergizes more strongly with the detection task, as both esti-
mate object representations in image space (i.e. 2D bounding
boxes and instance masks), while monocular 3D detection
estimates object representations in 3D space (i.e. 3D bound-
ing boxes). Furthermore, class-wise feature alignment does
indeed outperform its class-agnostic counterpart, verifying
the benefit of utilizing the ground-truth class information
available in our setting. As indicated by the qualitative results
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Fig. 6: Ablation Study. Instance segmentation performance
(mAP) over label time (SYN → CS).

in Fig. 4, our approach yields more accurate pose estimations
compared to the baselines, but fails for scenes which have
a layout that differs from those found in the source domain,
e.g. one-way streets (Fig. 5).

C. Ablation Study

Performance over amount of weak target domain annota-
tions: In Fig. 6, we compare the mAP over annotation time
when using our setting compared to full supervision with
annotated instance masks in the target domain. In internal
experiments we observe that annotating the full task takes
six times longer than annotating 2D bounding boxes for both
3D detection and instance segmentation, which for the latter
matches previous reports [47]. The results show that up to
a critical amount of labeled images, our approach is more
efficient compared to fully supervised methods.

Ground-truth 2D boxes at test-time: One of the main
questions in this work is if the network is able to learn
transferable features for the cascaded detection module or if
any observed performance gain is simply due to improved 2D
detections. In Tab. III, we therefore analyze the performance
of the instance segmentation and 3D box estimation modules
when decoupled from the performance of the 2D detector by
using ground-truth 2D bounding boxes as input during test-
ing. While for instance segmentation joint training already
yields good results, the 3D bounding box detector strongly
benefits from the class-wise feature alignment. This supports



our hypothesis that for instance segmentation, joint training
already learns transferable features, while for monocular 3D
detection further improvements can be made by explicitly
aligning the feature distributions.

V. CONCLUSION

In this work, we have presented a novel weakly-supervised
domain adaptation setting, which exploits the structure of
cascaded detection tasks. In our experiments, we have
demonstrated that models adapted in our setting outperform
unsupervised adaptation approaches by a large margin and
can be competitive with their fully supervised counterparts.
Although we considered instance segmentation and monoc-
ular 3D detection as examples, we are convinced this setting
can be applied to other cascaded detection tasks such as
human pose estimation, object tracking or trajectory fore-
casting.
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