Feature Learning Using Dilated Convolutions

Results and Remaining Problems

<table>
<thead>
<tr>
<th>Arch</th>
<th>Layers</th>
<th>Feature Maps</th>
<th>RFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>64 64 64 64</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>64 64 64 64</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>64 64 128 128</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>64 64 64 64</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>32 32 32 64</td>
<td>9</td>
</tr>
</tbody>
</table>

For $i = 1$ to #dilations do
- Dilated Convolution with dilations[i]
- if $i < #dilations$ then
 - Batch Normalization, ReLU
- else
 - stride = dilations[i + 1]

Dilated Convolution

Siamese Networks

Similarity Score

Dot Product

Normalization

Convolution

Convolution, ReLU

First Patch

Second Patch

Deep Discrete Flow

Fatma Güney, Andreas Geiger

1 Autonomous Vision Group, MPI for Intelligent Systems, Tübingen
2 Computer Vision and Geometry Group, ETH Zurich

Fatma.guney@tue.mpg.de