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Problem Gaussian Process LVM Experiment 1: Sparse 3D swiss roll Experiment 2: Discover latent dimensionality

Latent Variable models (LVMs) assume that the observed This experiment compares our method to the Gaussian In this experiment we demonstrate the ability of our method to
data Y is generated by some latent variables X: Process Latent Variable Model (GPLVM) initialized with estimate the correct underlying latent dimensionality. Five artificial

v D = f(x) +1 with 0~ N(0, 05) different methods (PCA, ISOMAP, Laplacian, LLE, LTSA, MVU) examples have been created and reduced using our method. The

and parameters on the task of finding a 2D manifold on a latent dimensionality Q has been picked according to the number of
The GPLVM places a GP prior over the space of mapping sparsely sampled swiss roll, embedded in 3D. non-zero singular values of X after the optimization procedure.

functions f. Assuming conditional independence and N

High dimensional datasets are challenging to analyze

It Is desirable to reduce the dimensionality of the data

Manifold embedded in 3D, perspective view Manifold embedded in 3D, side view
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This allows for more efficient learning and inference marginalizing over f yields (e = rining pants, clored = est peint)
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Linear dimensionality reduction techniques (e.qg., PCA, PPCA) Reduce the problem of local minima by Rl R e B e
+ Simple - Can not deal with complex datasets A : 1o

+ Closed form solution - Bad results in non-linear cases (human motion) performlng continuous dlmenSIOna“ty
+ Computationally efficient reduction

Graph-based methods (e.g., LLE, Isomap) No distortion is introduced since we

+ Often convex - Suffer in presence of noisy or sparse data Inltlallze the Iatent Coordlnates to the
+ Computationally efficient - Data must be sampled homogeneously

+ Can handle non-linearities - Correct neighborhood size k is crucial observations

learned latent space

2D manifold

Experiment 4: Tracking running and walking

Non-Linear probabilistic models (e.g., GPLVM) By introducing a prior over the
+ Can handle non-linearities - Local minima due to non-convexity dimensionality estimate simultaneously

+ Probabilistic solution - Bad initialization leads to bad results

- Only applied to small databases of single activities the latent Space and itS dimenSiona“ty-

3D reconstruction 2D reconstruction

This figure depicts the latent spaces of running (top) and walking
(bottom) motions from 2D mocap data. The right column compares
tracking errors (a particle filter was used) averaged over 10 splits. We
compare tracking a short sequence in full parameter space (red) to
the GPLVM initialized with PCA (blue) and our method (green).

Continuous Dimensionality Reduction Algorithm overview Experiment 3: Upper body tracking
Walking Motion
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Observations (e.g. angular positions) Covariance matrix .
@ (bottom-left). We used this model for
tracking human body motion in a
S Eren e Optimize dimensionality and latent variables kitchen scenario with a particle filter.
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. _ GPLVM+LLE Tracking rolling motions Classifying rolling motions : : : Number of partices
Rank Prior . |Ith S|ngU|ar ) Tracking rolling sequences Classifying rolling sequences . .
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This figure depicts lea rning of o — GPLVM model, initialized with PCA Our method Tracking Errors
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11111 L s.t. \V/Z S; Z O, AE — O u“Oer:w‘;?eic:s’ > In our experiments we used motion data from: http://mocap.cs.cmu.edu
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