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Abstract

In this supplementary document, we first give a detailed overview of our network architecture, sampling strategy, evalua-
tion metrics, and training and inference procedure in Section 1. Next, we describe our data preparation process in Section 2,
including the stereo depth maps for supervision, and depth maps and semantic labels for evaluation. Finally, we provide
additional experiments in Section 3. The supplementary video shows our label transfer results on consecutive video frames
as well as novel view label renderings.

1. Implementation Details
1.1. Network Architecture

Fig. 1 shows the trainable part of our Panoptic NeRF model. We adopt the same network architecture in all experiments.
The network takes as input the 3D location x (each element normalized to [−1, 1]) and the viewing direction d. Following
NeRF [5], both x and d are mapped to a higher dimensional space using a positional encoding (PE):

γ(p) = (sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp)) (1)

To learn high frequency components in unbounded outdoor environments, we set L = 15 for γ(x) and L = 4 for γ(d).
Our learned semantic field is conditioned only on the 3D location x rather than the viewing direction d in order to predict
view-independent semantic distributions.

1.2. Sampling Strategy

We sample points within the bounding primitives to skip empty space. As our bounding primitives are convex1, each
ray intersects a bounding primitive exactly twice which determines the sampling interval. For each camera ray, we sort all
bounding primitives that the ray hits from near to far and save the intersections offline. To save storage and to speed up
training, we keep the first 10 sorted bounding primitives as the rest are highly likely to be occluded. If a camera ray intersects
less than 10 bounding primitives, we additionally sample a set of points to model the sky in [tmax, tmax + tint], where tmax

denotes the distance from the origin to the furthest bounding primitive in the scene and tint is a constant distance interval.

1.3. Evaluation Metric

We evaluate mIoU and pixel accuracy following standard practice [1, 4]. Here, we provide more details of the multi-view
consistency and panoptic quality metrics.

Multi-view Consistency: To evaluate multi-view consistency, we use depth maps obtained from LiDAR points to retrieve
matching pixels across two consecutive frames. A similar multi-view consistency metric is considered in [6] where optical
flow is used to find corresponding pixel pairs. We instead use LiDAR depth maps as they are more accurate compared to
optical flow estimations. The details of generating the LiDAR depth maps will be introduced in Section 2.2. Given LiDAR

1The cuboids and ellipsoid are both convex. The extruded 3D plane is convex in a local region.
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Figure 1: Trainable Part of Panoptic NeRF. For the radiance field, we follow the original implementation of NeRF except
for setting L = 15 for γ(x). The learned semantic field predicts semantic logits independent of the viewing direction. The
logits are then transformed into categorical distributions through a softmax layer.

depth maps at two consecutive test frames, we first unproject them into 3D space and find matching points. Two LiDAR
points are considered matched if their distance in 3D is smaller than 0.1 meters. For each pair of matched points, we retrieve
the corresponding 2D semantic labels and evaluate their consistency. The MC metric is evaluated as the number of consistent
pairs over all matched pairs. Despite being not 100% accurate as the 3D points may not match exactly in 3D space, we find
this metric meaningful in reflecting multi-view consistency.

Panoptic Quality: Following [3], we use the PQ metric to evaluate the performance of panoptic segmentation. As the
ground truth panoptic labels are not precise in distant areas and have a lot of small noises of things, we set ground truth
labels of areas less than 100 pixels to “void”. Correspondingly, segment matching will not be performed in void regions. In
addition, Panoptic maps of the 3D-2D CRF and our method are obtained by 3D primitives, thus containing very far objects.
In fact, these far objects may only occupy very small areas, usually less than 100 pixels, on 2d images. To avoid being biased
by those extremely far objects in the segment matching, we omit them by setting the predicted labels of the areas less than
100 pixels to the “sky” class. To ensure a fair comparison across all methods, we adopt the same evaluation protocol for all
baselines and our method.

1.4. Training and Inference

As mentioned in Section 4.2 of the main paper, our total loss function comprises five terms, including three semantic
losses L2D

Ŝ
, L2D

S , L3D
s , the photometric loss Lc and the depth loss Ld. During per-scene optimization, the photometric loss

Lc is defined on the posed stereo images. The 2D semantic losses L2D
Ŝ

, L2D
S are applied to the left images only. While our

method allows for using noisy 2D semantic predictions on the right images, this ensures fair comparison to the 3D-2D CRF
which is not capable of using predictions on other viewpoints for inference. We apply the 3D semantic loss L3D

s directly
on 3D points sampled along the camera rays of the left images. The depth loss Ld is also defined on the left images as the
information gain is marginal on the right views.

For inference, we compare our method to the baselines on the left views of which the manually labeled 2D Ground Truth
is defined. Note that our method is not constrained to the left views during inference. We show label transfer results on the
right camera views in Section 3.3 and novel view label synthesis in Section 3.4.



Figure 2: Depth Maps for Weak Depth Supervision. Each group shows the RGB image (top) and the corresponding depth
maps (bottom) used for supervision.

Figure 3: Examples of Modified Ground Truth. We correct some GT pixels that were incorrectly labeled in the KITTI-360
dataset. Top: Input RGB images. Middle: Original ground truth. Bottom: Modified ground truth. In the first column, we add
the “box” class. In the second column, we correct the “parking” area.

2. Data Preparation
2.1. Stereo Depth for Weak Depth Supervision

To provide weak depth supervision to Panoptic NeRF, we use Semi-Global Matching (SGM) [2] to estimate depth given
a stereo image pair. We perform a left-right consistency check and a multi-frame consistency check in a window of 5
consecutive frames to filter inconsistent predictions. We further omit depth predictions further than 15 meters for each frame
as disparity is better estimated in nearby regions, see Fig. 2.

2.2. LiDAR Depth for Evaluation

We evaluate the rendered depth maps against the LiDAR measurements. We refrain from using LiDAR as input as 1) this
allows us to evaluate our depth prediction against LiDAR and 2) it makes our method more flexible to work with settings
without any LiDAR observations. As LiDAR observations at each frame are sparse, we accumulate multiple frames of
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Figure 4: Qualitative Comparison of Ablation Study. We visualize the semantic map and depth map of the complete model
(top) and the model without fixed semantic field (bottom).

LiDAR observations and project the visible points to each frame similar to [7].

2.3. Manually Annotated 2D GT

The manually annotated 2D ground truth of KITTI-360 [4] is inferior at some regions. For a fair comparison, we improve
the label quality by manually relabeling ambiguous classes, see Fig. 3 for illustrations.

3. Additional Experimental Results
3.1. Weak Depth Supervision

We show that using the depth loss Ld alone is not able to recover accurate object boundaries in Fig. 4. In contrast, adding
the semantic loss L2D

Ŝ
to the fixed semantic field further improves the object boundary. These improvements can be explained

as follows: Firstly, the weak stereo depth supervision is not fully accurate, especially at far regions. Furthermore, even with
perfect depth supervision, the model receives very small penalty if the predicted depth is close to the GT depth. In contrast,
the cross entropy loss L2D

Ŝ
defined on the fixed semantic field provides a strong penalty as small errors in depth lead to wrong

semantics.

3.2. Qualitative Comparison of Label Transfer

Fig. 5 shows additional qualitative comparisons corresponding to the Table 1 of the main paper. Consistent with the
quantitative results, our method outperforms all baselines qualitatively. We further show qualitative comparisons to 3D-2D
CRF on a set of unlabeled 2D frames, including semantic label transfer in Fig. 6 and panoptic label transfer in Fig. 7.

3.3. Stereo Label Transfer

In Fig. 8, we illustrate our stereo label transfer results. Despite that we only utilize pseudo ground truth on the left views
for supervision, our model achieves consistent results on both left and right views.

3.4. Novel View Label Synthesis

Here, we evaluate our performance on novel view label synthesis by applying the photometric loss Lc to the left images
only. This allows us to evaluate novel view appearance and label synthesis on the right view images. As shown in Fig. 9,



our method achieves promising results on novel view appearance and label synthesis. More results of appearance and label
synthesis on unseen viewpoints can be found in the supplementary video.

3.5. Analysis of 3D-2D CRF

The 3D-2D CRF performs inference based on a multi-field CRF which reasons jointly about the labels of the 3D points
and all pixels in the image. To obtain dense 3D points, it accumulates LiDAR observations over multiple frames and project
visible 3D points to the image based on a reconstructed mesh. Fig. 10 shows depth maps of the reconstructed mesh cor-
responding to Fig. 5 of the main paper. As can be seen, the side of the building can hardly be scanned by the LiDAR,
leading to incomplete mesh reconstruction. Consequently, 3D-2D CRF lacks 3D information in these regions and needs to
distinguish building instances mainly based on 2D image cues. It is not surprising that the 3D-2D CRF fails at overexposed
image regions in this case.

3.6. Failure Cases

Our method leverages a deterministic instance field defined by the 3D bounding primitives to render instance labels. Thus,
our method struggles to recover accurate instance boundaries where two instance bounding primitives overlap in 3D space.
This sometimes occurs on the building class where two buildings are spatially connected to each other as shown in Fig. 11.
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Figure 5: Qualitative Comparison of Semantic Label Transfer on frames with manually labeled ground truth.



Figure 6: Qualitative Comparison of Semantic Label Transfer on frames without manually labeled ground truth. Each
group shows the prediction of 3D-2D CRF [4] (top) and ours (bottom).

Figure 7: Qualitative Comparison of Panoptic Label Transfer on frames without manually labeled ground truth. Each
group shows the prediction of 3D-2D CRF [4] (top) and ours (bottom). The colors of the instances do not match due to
missing 2D ground truth.

Figure 8: Qualitative Results for Stereo Label Transfer. Top: Blended semantic results of left views. Bottom: Blended
semantic results of right views.



Figure 9: Qualitative Results for Novel View Label Synthesis. Top: GT RGB images. Middle: Rendered RGB images.
Bottom: Rendered semantic maps.

Figure 10: Qualitative Results of 3D-2D CRF. Top: Input RGB images. Middle: 3D-2D CRF mesh depth. Bottom: Panoptic
label transfer results of the 3D-2D CRF method.

Figure 11: Failure Cases. Although our semantic map (left) is correct, the boundary of two adjacent buildings is not well
segmented in the panoptic map (right).
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