Real-Time Dense Mapping for Self-Driving Vehicles using Fisheye Cameras

Zhaopeng Cui¹, Lionel Heng², Ye Chuan Yeo², Andreas Geiger³, Marc Pollefeys^{1,4}, Torsten Sattler⁵

¹Department of Computer Science, ETH Zürich ²DSO National Laboratories ³MPI-IS and University of Tübingen ⁴Microsoft, Switzerland ⁵Chalmers University of Technology

	Motivation		Contributions
•	Real-time 3D mapping required to perceive and thus navigate in complex environments.	•	A practical system for real-time dense mapping purely using fisheye cameras.
•	Higher-resolution 3D maps obtained from images compared to LiDAR.	•	A new multi-scale strategy for fisheye depth map estimation to maintain both accuracy and efficiency.
•	More well-developed scene understanding techniques for images than those for LiDAR point clouds.	•	Evaluation of multiple depth filtering and local map pruning techniques with LiDAR data.

Depth Map Estimation at Multiple Scales

- Step 1: Compute the depth map given multiple images captured at the same time.
- Step 2: Detect dynamic objects using YOLOv3 [1] with the finetuned model.
- Step 3: Integrate depth maps over time into a truncated signed distance function volume using camera poses provided by a localization system.
- Two scales: 1) the downsampled fisheye image; 2) the cropped central area of the fisheye image (close-to-pinhole camera).
- Use the plane-sweeping stereo algorithm [2] for the depth map estimation.
- Reduce the running time by about 28% compared to processing original images.

Depth Map Filtering

TSDF-based Depth Map Fusion

(a) Step 1

(b) Step 2

(c) Step 3

- Filter Step 1: Filter with the matching cost value of the best depth candidate for a pixel.
- Filter Step 2: Filter with the ratio between the first and second best cost values.
- Filter Step 3: Filter with the local depth continuity checking.

- Adapt the depth map fusion pipeline [3] to support the fisheye camera model.
- Maintain a local map with a size of $60m \times 60m \times 3m$ centered at the current vehicle position for online mapping.
- Consider voxel blocks with at least 3 observations only.

Experimental Evaluation

Experimental Setup

Component	Runtime
Depth map estim- ation (5 cameras)	60 ms
Dynamic object detection	40 ms
Depth fusion	20 ms

AutoVision [4] vehicle platform.

Evaluation of the Depth Estimation Stage

Impact of the filtering stages on the depth error (in meter).

Evaluation of mapping results with and without unreliable voxels removal.

Evaluation of Object Detection

-Raw

Raw

Filter Step 1

Filter Step 2

Filter Step

-ilter Step 2

ilter Step 3

Recovered 3D points (left) without and (right) with moving object detection.

References

[1] J. Redmon and A. Farhadi. YOLOv3: An incremental improvement. *CoRR*, abs/1804.02767, 2018.

[2] C. Häne, L. Heng, G. H. Lee, A. Sizov, and M. Pollefeys. Real-time direct dense matching on fisheye images using plane-sweeping stereo. In International Conference on 3D Vision (3DV), 2014.

[3] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr, and D. Murray. Very high frame rate volumetric integration of depth images on mobile devices. IEEE Transactions on Visualization and Computer Graphics (TVCG), 21(11):1241–1250, 2015.

[4] L. Heng, B. Choi, Z. Cui, M. Geppert, S. Hu, B. Kuan, P. Liu, R. Nguyen, Y. C. Yeo, A. Geiger, G. H. Lee, M. Pollefeys, and T. Sattler. Project autovision: Localization and 3d scene perception for an autonomous vehicle with a multi-camera system. In IEEE International Conference on Robotics and Automation (ICRA), 2019.