
• Two scales: 1) the downsampled fisheye image; 2) the cropped central area of the

fisheye image (close-to-pinhole camera).

• Use the plane-sweeping stereo algorithm [2] for the depth map estimation.

• Reduce the running time by about 28% compared to processing original images.

Contributions

• Adapt the depth map fusion pipeline [3] to support the fisheye camera model.

• Maintain a local map with a size of 60m × 60m × 3m centered at the current

vehicle position for online mapping.

• Consider voxel blocks with at least 3 observations only.

• Filter Step 1: Filter with the matching cost value of the best depth candidate for a

pixel.

• Filter Step 2: Filter with the ratio between the first and second best cost values.

• Filter Step 3: Filter with the local depth continuity checking.

• Step 1: Compute the depth map given multiple images captured at the same time.

• Step 2: Detect dynamic objects using YOLOv3 [1] with the finetuned model.

• Step 3: Integrate depth maps over time into a truncated signed distance function

volume using camera poses provided by a localization system.

• A practical system for real-time dense mapping purely using fisheye cameras.

• A new multi-scale strategy for fisheye depth map estimation to maintain both

accuracy and efficiency.

• Evaluation of multiple depth filtering and local map pruning techniques with LiDAR

data.

Motivation
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System Overview

Depth Map Filtering

Experimental Evaluation

TSDF-based Depth Map Fusion

• Real-time 3D mapping required to perceive and thus navigate in complex

environments.

• Higher-resolution 3D maps obtained from images compared to LiDAR.

• More well-developed scene understanding techniques for images than those for

LiDAR point clouds.
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Experimental Setup

Depth Map Estimation at Multiple Scales
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Evaluation of the 3D Mapping Stage

Evaluation of the Depth Estimation Stage

Evaluation of Object Detection

Reference image Ground truth depth map

Error map for half resolution Error map for multi-scale strategy

Fused Depth Map

Computed Depth
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Recovered 3D points (left) without and (right) with moving object detection.

Evaluation of mapping results with and without unreliable voxels removal.

Impact of the filtering stages on the depth error (in meter).

Performance with different camera configurations.
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AutoVision [4] vehicle platform. Average runtime.
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