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Abstract. In this supplementary document, we present a visualization of the
sampling error made by regular convolutional filters on omnidirectional images.
Next, we provide details on the Spherical Transformer Network, which is able
to transform inputs to a canonical orientation in support of a recognition model.
Furthermore, we present additional experiments on the impact of varying object
scale, object elevation and choice of interpolation on the Omni-MNIST classifi-
cation task. Finally, we give a qualitative comparison of the CNN and SphereNet
transfer learning models on the omnidirectional parked cars (OmPaCa) datasets.

1 Sampling Error

When applying a regular convolutional neural network to omnidirectional images, the
normalized average absolute geodesic error is relatively small close to the equator re-
gion but grows large towards the poles when compared to the optimal sampling loca-
tions used by SphereNet (see Fig. 1).
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Fig. 1: Average Geodesic Error of the sampling locations of a regular convolution
kernel applied to the equirectangular image representation. Note how the error increases
towards the poles φ ∈ {−π2 ,+π

2 }.
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Fig. 2: Spherical Transformer Network. A transformation encoder network outputs
the rotation parameters r specifying the axis v and angle β of rotation. The input Iin is
warped to the output Iout via bilinear interpolation according to r.

2 Spherical Transformer Network

As a baseline for the classification and detection tasks, we investigate the use of a Spher-
ical Transformer Network (SphereTN), which aims to undistort objects by performing
a global rotation of the spherical image conditioned on the input image. Compared to
SphereNet, the Spherical Transformer needs to learn how to undistort an object. Addi-
tionally, it only performs a single global transformation of the input and may therefore
be unable to undistort multiple objects at once.

Similar to a Spatial Transformer Network (STN) [2], the Spherical Transformer
Network uses a localization network to predict a set of transformation parameters which
are used to resample the input image. However, unlike a Spatial Transformer which
typically outputs an affine transformation, the Spherical Transformer Network predicts
and applies a 3D rotation of the spherical image representation.

In order to avoid the gimbal lock problem, we do not represent the axial rotations
using Euler angles but instead leverage the axis-angle representation. More formally,
we rotate 3D points y ∈ R3 located on the surface of the unit sphere S by applying a
rotation y′ = Ry where the rotation matrix R ∈ SO(3) is given as follows:

R = I+ (sinβ)[v]× + (1− cosβ)[v]2× (1)

Here, v ∈ R3 is a unit vector defining the rotation axis and β denotes the rotation angle.
[v]× denotes the cross-product matrix and is an element of the Lie algebra so(3).

As v is a unit vector with two degrees of freedom, we are able to encode the rota-
tional component β as its length. More specifically, we parameterize the rotation axis
v and rotation angle β with a 3-dimensional vector r = β · v which is the output of
the localization network conditioned on the input image. Note that after prediction, r
can be easily decomposed into β = ‖r‖2 and v = r/β. The predicted transformation
is applied to the omnidirectional image via differentiable image sampling with bilinear
interpolation [2]. See Fig. 2 for an illustration.
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Table 1: Digit Scale Evaluation on Omni-MNIST. Performance comparison on the
omnidirectional MNIST dataset for varying digit sizes.

Method Large Medium Small

GCNN [3] 17.21 20.35 28.54
S2CNN [1] 11.86 19.90 38.80
CubeMapCNN 10.03 11.37 24.46
EquirectCNN 9.61 9.10 8.60
EquirectCNN+SphereTN 8.22 8.69 8.46

SphereNet (Uniform) 7.16 6.91 8.77
SphereNet (NN) 7.03 6.32 7.51
SphereNet (BI) 5.59 5.03 5.89

Table 2: Digit Elevation Evaluation on Omni-MNIST. Performance comparison on
the omnidirectional MNIST dataset for varying digit elevation.

Method |φd| ∈ [0, π
8
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, π
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]

GCNN [3] 17.48 19.48 18.39 20.63
S2CNN [1] 11.63 11.45 11.41 11.49
CubeMapCNN 8.70 8.70 9.10 13.80
EquirectCNN 7.02 8.64 9.17 11.34
EquirectCNN+SphereTN 6.46 7.76 7.74 11.08

SphereNet (Uniform) 6.25 6.87 7.18 9.14
SphereNet (NN) 6.15 6.36 6.23 8.67
SphereNet (BI) 4.50 4.87 4.89 6.84

Table 3: Interpolation Evaluation for SphereNet on Omni-MNIST. Performance
comparison of SphereNet when varying the location of the bilinear interpolation (BI)
layers.

Bi-layers none conv1 conv2 pool1 pool2 conv1,2 pool1,2 all

Test error 7.03 6.31 6.25 6.47 6.25 6.18 6.17 5.59

3 Omni-MNIST Analysis

In order to analyze the image classification results on the Omni-MNIST dataset more
closely, we conduct further studies. First, we test the effect of varying the digit scale
on the performance of the different models. To do so, we generate the Omni-MNIST
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dataset at three different scales (small, medium, large). We then train and evaluate each
model on each of the three variants. The results are shown in Table 1 and demonstrate
that the performance of the nearest neighbor (NN) and bilinear interpolation (BI) vari-
ants of SphereNet are not significantly impacted by changes in digit scale. On the other
hand, the uniformly sampled variant (Uniform) of SphereNet drops in performance for
smaller digits, as in this case important information is lost at a smaller object scale. In
contract, the EquirectCNN baseline performs slightly better for small digit scales, as
smaller digits minimize the amount of object distortion in the equirectangular image.
The CubeMapCNN, S2CNN and GCNN baselines all show significantly degraded per-
formance for smaller digit sizes, with the S2CNN model particularly struggling with
the classification of digits of smaller size.

Second, we evaluate the performance of all models for different ranges of digit
elevation φd (see Table 2). While CubeMapCNN and EquirectCNN models perform
gradually worse with increasing elevation and object distortion, the SphereNet variants
offer near constant performance for elevations |φd| ≤ 3π

8 . When further investigating
the decrease in SphereNet’s performance for elevations |φd| ∈ [ 3π8 ,

π
2 ], we find it to be

caused by a sudden drop in performance to nearly 20% test error at the poles (|φd| = π
2 ).

The reason for SphereNet’s loss in performance at this elevation is that its assumption
of an upright object orientation no longer holds at the poles. Unlike SphereNet, S2CNN
encodes full rotation equivariance and therefore is the only baseline with near-constant
performance over all digits elevations.

Finally, we evaluate which network layers in the SphereNet model benefit most
from the use of bilinear interpolation (BI) over a nearest neighbor interpolation (NN).
Table 3 indicates that all layers benefit from bilinear interpolation with the benefit being
slightly larger in the second layers and increasing further when both convolutional or
pooling layers utilize bilinear interpolation.

4 OmPaCa Detection Comparison

In order to visualize the performance benefit of a SphereNet model compared to the
EquirectCNN baseline on the omnidirectional parked cars (OmPaCa) detection task,
we provide a qualitative comparison of the detection results in Fig. 3.
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(a) EquirectCNN (b) SphereNet (NN)

Fig. 3: Qualitative Performance Comparison between EquirectCNN and SphereNet
(NN) model on the OmPaCa dataset. The ground truth is shown in green, detections are
shown in red. Unlike SphereNet, the baseline EquirectCNN model struggles to detect
objects in the polar regions of omnidirectional images (row 1 − 3) and, in general,
outputs less tight bounding boxes (row 4− 5).


