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Abstract—How should we integrate representations from complementary sensors for autonomous driving? Geometry-based fusion
has shown promise for perception (e.g. object detection, motion forecasting). However, in the context of end-to-end driving, we find that
imitation learning based on existing sensor fusion methods underperforms in complex driving scenarios with a high density of dynamic
agents. Therefore, we propose TransFuser, a mechanism to integrate image and LiDAR representations using self-attention. Our
approach uses transformer modules at multiple resolutions to fuse perspective view and bird’s eye view feature maps. We experimentally
validate its efficacy on a challenging new benchmark with long routes and dense traffic, as well as the official leaderboard of the CARLA
urban driving simulator. At the time of submission, TransFuser outperforms all prior work on the CARLA leaderboard in terms of driving
score by a large margin. Compared to geometry-based fusion, TransFuser reduces the average collisions per kilometer by 48%.

Index Terms—Autonomous Driving, Imitation Learning, Sensor Fusion, Transformers, Attention.

1 INTRODUCTION

IDAR sensors provide accurate 3D information for au-
L tonomous vehicles. While LiDAR-based methods have
recently shown impressive results for end-to-end driv-
ing [1]-[4], they are evaluated in settings that assume access
to privileged information not available through the LiDAR.
This includes test-time access to HD maps and ground truth
traffic light states. In practice, the information missing in the
LiDAR must be recovered from other sensors on the vehicle,
such as RGB cameras [5]-[13].

This raises important questions: Can we integrate represen-
tations from these two modalities to exploit their complementary
advantages for autonomous driving? To what extent should we
process the different modalities independently, and what kind of
fusion mechanism should we employ for maximum performance
gain? Prior works in the field of sensor fusion have mostly
focused on the perception aspect of driving, e.g. 2D and
3D object detection [14]-[23], motion forecasting [14], [17],
[24]-[31], and depth estimation [21], [22], [32], [33]. These
methods focus on learning a state representation that cap-
tures the geometric and semantic information of the 3D
scene. They operate primarily based on geometric feature
projections between the image space and different LiDAR
projection spaces, e.g. Bird’s Eye View (BEV) [14]-[22] and
Range View (RV) [14], [17], [23], [30], [34], [35]. Information
is typically aggregated from a local neighborhood around
each feature in the projected 2D or 3D space.

We observe that the locality assumption in these ar-
chitecture designs hampers performance in complex urban
scenarios (Table 1). For example, when handling traffic at
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Situation "

Fig. 1: Illustration. Consider an intersection with oncoming
traffic from the left. To safely navigate the intersection, the
agent (green) must capture the global context of the scene
involving the interaction between the traffic light ( )
and the crossing traffic (red). Our TransFuser model inte-
grates geometric and semantic information across multiple
modalities via attention mechanisms to capture global con-
text, leading to safe driving behavior in CARLA.

intersections with multiple lanes, the ego-vehicle needs to
account for interactions between nearby dynamic agents
and traffic lights that are farther away. While deep con-
volutional networks can be used to capture global context
within a single modality, it is non-trivial to extend them to
multiple modalities or model interactions between pairs of
features. To overcome these limitations, we use the attention
mechanism of transformers [36], [37] to tightly integrate
global contextual reasoning about the 3D scene directly into
the feature extraction layers of different modalities. We con-



sider image and LiDAR inputs since they are complemen-
tary to each other, and focus on integrating representations
between these modalities (Fig. 1). The inputs are processed
by two independent convolutional encoder branches, which
are interconnected using transformers (Fig. 2). We call the
resulting model TransFuser and integrate it into an auto-
regressive waypoint prediction framework designed for
end-to-end driving.

To show the advantages of our approach, we conduct
a comprehensive study using the CARLA driving simu-
lator [5]. We consider a more challenging evaluation set-
ting than existing closed-loop driving benchmarks (e.g.
NoCrash benchmark [38], NEAT routes [39]) based on the
new CARLA version 0.9.10 leaderboard [40]. Our proposed
Longest6 benchmark involves ~1.5km long routes, increased
traffic density, and challenging pre-crash traffic scenarios.
To tackle these challenges, we incorporate auxiliary super-
vision signals in a multi-task learning setup to train Trans-
Fuser and several strong baselines. On both the proposed
benchmark and the secret routes of the official CARLA
leaderboard, TransFuser achieves a significantly higher driv-
ing score than prior work.

Our contributions can be summarized as follows:

e We design a new evaluation setting in CARLA which
demonstrates that imitation learning policies based
on existing sensor fusion approaches are unable to
handle challenging scenarios with dense traffic.

e We propose a novel multi-modal fusion transformer
(TransFuser) to incorporate global context and pair-
wise interactions into the feature extraction layers of
different input modalities.

e We conduct a detailed empirical analysis demon-
strating state-of-the-art driving performance with
TransFuser on both the proposed evaluation setting
and the official CARLA leaderboard. Our analysis
provides insights and explores the current limitations
of end-to-end driving models.

This journal paper is an extension of a conference paper
published at CVPR 2021 [41]: we enhance the TransFuser
model from [41] to obtain state-of-the-art performance by
incorporating (1) an improved expert demonstrator for data
collection, (2) a new sensor configuration with an increased
field of view through multiple cameras, (3) an improved
vision backbone architecture, and (4) an updated training
procedure involving multi-task learning. We also provide
a new image-only baseline, Latent TransFuser, which signif-
icantly outperforms prevalent baselines used for CARLA.
Our updated code, dataset, and trained models are available
at https://github.com/autonomousvision/ transfuser.

2 RELATED WORK

Multi-Modal Autonomous Driving: Recent multi-modal
methods for end-to-end driving [35], [42]-[45] have shown
that complementing RGB images with depth and semantics
has the potential to improve driving performance. Xiao et
al. [42] explore RGBD input from the perspective of early,
mid and late fusion of camera and depth modalities and
observe significant gains. Behl et al. [43] and Zhou et al. [44]
demonstrate the effectiveness of semantics and depth as
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explicit intermediate representations for driving. Natan et
al. [45] combine 2D semantics and depth into a semantic
point cloud for end-to-end driving. In this work, we focus
on image and LiDAR inputs since they are complementary
to each other in terms of representing the scene and are
readily available in autonomous driving systems. In this
respect, Sobh et al. [35] exploit a late fusion architecture for
LiDAR and image modalities where each input is encoded
in a separate stream from which the final feature vectors
are concatenated together. The concurrent work of Chen
et al. [46] performs sensor fusion via PointPainting, which
concatenates semantic class information extracted from the
RGB image to the LiDAR point cloud [47]. We observe that
the late fusion mechanism of Sobh et al. [35] suffers from
high infraction rates and the PointPainting-based system
has a reduced route completion percentage in comparison
to several baselines (Table 1). To mitigate these limitations,
we propose a multi-modal fusion transformer (TransFuser)
that is effective in integrating information from different
modalities at multiple stages during feature encoding using
attention. TransFuser helps to capture the global context
of the 3D scene which requires fusing information from
distinct spatial locations across sensors.

Sensor Fusion Methods for Object Detection and Motion
Forecasting: Most sensor fusion works consider perception
tasks, e.g. object detection [14]-[16], [18]-[23], [47]-[60] and
motion forecasting [24]-[30], [49], [61], [62]. They operate on
multi-view LiDAR, e.g. Bird’s Eye View (BEV) and Range
View (RV), or complement the camera input with depth in-
formation from LiDAR. This is typically achieved by project-
ing LiDAR features into the image space or projecting image
features into the BEV or RV space. The closest approach
to ours is ContFuse [20] which performs multi-scale dense
feature fusion between image and LiDAR BEV features. For
each pixel in the LiDAR BEV representation, it computes
the nearest neighbors in a local neighborhood in 3D space,
projects these neighboring points into the image space to
obtain the corresponding image features, aggregates these
features using continuous convolutions, and combines them
with the LiDAR BEV features. Concurrent to our work,
EPNET++ [63] and CAT-Det [64] also employ multi-scale
bidirectional fusion between image and LiDAR point clouds
using attention to learn enhanced feature representations for
3D object detection. Other projection-based fusion methods
follow a similar trend and aggregate information from a
local neighborhood in 2D or 3D space. However, the state
representation learned by these methods is insufficient since
they do not capture the global context of the 3D scene,
which is important for safe maneuvers in dense traffic. To
demonstrate this, we implement a multi-scale geometry-
based fusion mechanism, inspired by [20], [22], involving
both image-to-LiDAR and LiDAR-to-image feature fusion
for end-to-end driving and observe high infraction rates in
the dense urban setting (Table 1).

Attention for Autonomous Driving: Attention has been
explored in the context of driving for lane changing [65],
object detection [31], [66]-[68], motion forecasting [31], [69]-
[77], driver attention prediction [78], [79] and recently also
for end-to-end driving [39], [41]. Chen et al. [66] employ a
recurrent attention mechanism over a learned semantic map
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for predicting vehicle controls. Li et al. [31] utilize attention
to capture temporal and spatial dependencies between ac-
tors by incorporating a transformer module into a recurrent
neural network. SA-NMP [75] learns an attention mask over
features extracted from a 2D CNN, operating on LiDAR
BEV projections and HD maps, to focus on dynamic agents
for safe motion planning. Chen et al. [65] utilize spatial
and temporal attention in a hierarchical deep reinforcement
learning framework to focus on the surrounding vehicles
for lane changing in the TORCS simulator. PYVA [80] uses
attention to perform image translation from the perspective
view to the BEV. This idea has also been adopted by several
concurrent papers on BEV semantic segmentation from im-
age inputs [61]-[85]. NEAT [39] uses intermediate attention
maps to iteratively compress high dimensional 2D image
features into a compact BEV representation for driving.
Compared to NEAT, our attention mechanism is simpler
since it does not require iterative refinement of the attention
at test-time. Unlike NEAT, we also apply our attention
mechanism at multiple feature resolutions, enabling sensor
fusion for both shallow and deep features in the network.
Furthermore, none of the existing attention-based driving
approaches consider multiple sensor modalities. Our work
uses the self-attention mechanism of transformers for dense
fusion of image and LiDAR features.

3 TRANSFUSER

In this work, we propose a novel architecture for end-to-
end driving (Fig. 2). It has two main components: (1) a
multi-modal fusion transformer for integrating information
from multiple sensor modalities (image and LiDAR), and
(2) an auto-regressive waypoint prediction network. The
following sections detail our problem setting, input and
output parameterization, and each component of the model.

3.1 Problem Setting

We consider the task of point-to-point navigation in an
urban setting [1], [2], [38], [86], [87] where the goal is
to complete a given route while safely reacting to other
dynamic agents and following traffic rules.

Imitation Learning (IL): The goal of IL is to learn a pol-
icy m that imitates the behavior of an expert 7*. In our
setup, a policy is a mapping from inputs to waypoints that
are provided to a separate low-level controller to output
actions. We consider the Behavior Cloning (BC) approach
of IL which is a supervised learning method. An expert
policy is first rolled out in the environment to collect a
dataset, D = {(X*,W")}Z, of size Z, which consists of
high-dimensional observations of the environment, X, and
the corresponding expert trajectory, defined by a set of 2D
waypoints in BEV space, i.e, W = {w; = (z,y:)}._;. This
BEV space uses the coordinate frame of the ego-vehicle.
The policy, 7, is trained in a supervised manner using the
collected data, D, with the loss function, L.

argmin E(x wy~p [V, T(X))] (1)
The high-dimensional observation, X, includes a front cam-

era image input and a LiDAR point cloud from a single time-
step. We use a single time-step input since prior works on IL
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for autonomous driving have shown that using observation
histories may not lead to performance gain [85]-[92]. For
L, we use the L; distance between the predicted trajectory,
m(X), and the expert trajectory, W, as the primary loss
function. Furthermore, we use several auxiliary losses used
to boost performance, which are detailed in Section 3.6. We
assume access to an inverse dynamics model [93], imple-
mented as a PID Controller I, which performs the low-level
control, i.e., steer, throttle, and brake, provided the future
trajectory W. The actions are determined as a = I(W).

Global Planner: We follow the standard protocol of CARLA
0.9.10 and assume that high-level goal locations G are pro-
vided as GPS coordinates. Note that these goal locations are
sparse and can be hundreds of meters apart, as opposed to
the local waypoints predicted by the policy 7.

3.2 Input and Output Parameterization

Input Representation: Following previous LiDAR-based
driving approaches [2], [86], we convert the LiDAR point
cloud into a 2-bin histogram over a 2D BEV grid with a fixed
resolution. We consider the points within 32m in front of the
ego-vehicle and 16m to each of the sides, thereby encom-
passing a BEV grid of 32m x 32m. We divide the grid into
blocks of 0.125m x 0.125m which results in a resolution of
256 x 256 pixels. For the histogram, we discretize the height
dimension into 2 bins representing the points on/below
and above the ground plane. We also rasterize the 2D goal
location in the same 256 x 256 BEV space as the LiDAR
point cloud and concatenate this channel to the 2 histogram
bins. This results in a three-channel pseudo-image of size
256 x 256 pixels. We represent the goal location in the
BEV as this correlates better with the waypoint predictions
compared to the perspective image domain [87].

For the RGB input, we use three cameras (facing for-
ward, 60° left and 60° right). Each camera has a horizontal
FOV of 120°. We extract the images at a resolution of 960
x 480 pixels, which we crop to 320 x 160 to remove radial
distortion at the edges. These three undistorted images are
composed into a single image input to the encoder, which
has a resolution of 704 x 160 pixels and 132° FOV. We find
that this FOV is sufficient to observe both near and far traffic
lights in all public towns of CARLA.

Output Representation: We predict the future trajectory W
of the ego-vehicle in BEV space, centered at the current coor-
dinate frame of the ego-vehicle. The trajectory is represented
by a sequence of 2D waypoints, {w; = (z¢, ;) }1_;. We use
T = 4, which is the default number of waypoints required
by our inverse dynamics model.

3.3 Multi-Modal Fusion Transformer

Our key idea is to exploit the self-attention mechanism of
transformers [36] to incorporate the global context for image
and LiDAR modalities, given their complementary nature.
The transformer architecture takes as input a sequence
consisting of discrete tokens, each represented by a feature
vector. The feature vector is supplemented by a positional
encoding to incorporate spatial inductive biases.

Formally, we denote the input sequence as F €
RN*Ps where N is the number of tokens in the sequence,
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Fig. 2: Architecture. We consider RGB image and LiDAR BEV representations (Section 3.2) as inputs to our multi-modal
fusion transformer (TransFuser) which uses several transformer modules for the fusion of intermediate feature maps
between both modalities. This fusion is applied at multiple resolutions throughout the feature extractor, resulting in a
512-dimensional feature vector output from both the image and LiDAR BEV stream, which are combined via element-wise
summation. This 512-dimensional feature vector constitutes a compact representation of the environment that encodes the
global context of the 3D scene. It is then processed with an MLP before passing it to an auto-regressive waypoint prediction
network. We use a single layer GRU followed by a linear layer that takes in the hidden state and predicts the differential
ego-vehicle waypoints {dw; }7_,, represented in the ego-vehicle’s current coordinate frame.

and each token is represented by a feature vector of di-
mensionality D . The transformer uses linear projections for
computing a set of queries, keys, and values (Q, K, and V),

Q=F"M‘ K=F"M', V=F"M" ©)

where M? € RPr*DPa, MF € RPr*Dr and MY € RPsr*Dv
are weight matrices. It uses the scaled dot products between
Q and K to compute the attention weights and then aggre-
gates the values for each query,

KT

A = softmax ( Q ) Vv 3)
V Dy

Finally, the transformer uses a non-linear transformation to

calculate the output features, F“* which are of the same

shape as the input features, F*".

Fo'! = MLP(A) + F™" @)

The transformer applies the attention mechanism multiple
times throughout the architecture, resulting in L attention
layers. Each layer in a standard transformer has multiple
parallel attention ‘heads’, which involve generating several
Q, K and V values per F'" for Eq. (2) and concatenating
the resulting values of A from Eq. (3).

Unlike the token input structures in NLP, we operate
on grid structured feature maps. Similar to prior works
on the application of transformers to images [94]-[97], we
consider the intermediate feature maps of each modality to
be a set rather than a spatial grid and treat each element of
the set as a token. The convolutional feature extractors for
the image and LiDAR BEV inputs encode different aspects
of the scene at different layers. Therefore, we fuse these
features at multiple scales (Fig. 2) throughout the encoder.

Let the intermediate grid structured feature map of a
single modality indexed by s be a 3D tensor of dimen-
sion Hy x Wy x C. For S different modalities, these fea-

tures are stacked together to form a sequence of dimen-
sion Y9 (H, * W,) x C. We add a learnable positional
embedding, which is a trainable parameter of the same
dimension as the stacked sequence, so that the network can
infer spatial dependencies between different tokens at train
time. The input sequence and positional embedding are
combined using element-wise summation to form a tensor
of dimension Y5, (H, * W,) x C. As shown in Fig. 2, this
tensor is fed as input to the transformer, which produces
an output of the same dimension. We have omitted the
positional embedding and velocity embedding inputs in
Fig. 2 for clarity. The output is then reshaped into .S feature
maps of dimension Hy x W, x C each and fed back into each
of the individual modality branches using an element-wise
summation with the existing feature maps. The mechanism
described above constitutes feature fusion at a single scale.
This fusion is applied multiple times throughout the feature
extractors of the image and BEV branches at different res-
olutions (Fig. 2). However, processing feature maps at high
spatial resolutions is computationally expensive. Therefore,
we downsample higher resolution feature maps from the
early encoder blocks using average pooling to the same
resolution as the final feature map before passing them
as inputs to the transformer. We upsample the output to
the original resolution using bilinear interpolation before
element-wise summation with the existing feature maps.
After carrying out dense feature fusion at multiple res-
olutions (Fig. 2), we obtain a feature map of dimensions
22 x 5 x C from the feature extractors of the image branch,
and 8 x 8 x C from the BEV branch. Where C' is the number
of channels at the current resolution in the feature extractor
and lies in {72,216,576,1512}. These feature maps are
reduced to a dimension of 512 by average pooling, followed
by a fully-connected layer of 512 units. The feature vector of
dimension 512 from both the image and the LiDAR BEV
streams are then combined via element-wise summation.



This 512-dimensional feature vector constitutes a compact
representation of the environment that encodes the global
context of the 3D scene. This is then fed to the waypoint
prediction network, which we describe next.

3.4 Waypoint Prediction Network

As shown in Fig. 2, we pass the 512-dimensional feature
vector through an MLP (comprising 2 hidden layers with
256 and 128 units) to reduce its dimensionality to 64 for com-
putational efficiency before passing it to the auto-regressive
waypoint network implemented using GRUs [95]. We ini-
tialize the hidden state of the GRU with the 64-dimensional
feature vector. The update gate of the GRU controls the
flow of information encoded in the hidden state to the
output and the next time-step. It also takes in the current
position and the goal location (Section 3.1) as input, which
allows the network to focus on the relevant context in the
hidden state for predicting the next waypoint. We provide
the GPS coordinates of the goal location (registered to the
ego-vehicle coordinate frame) as input to the GRU in addi-
tion to the encoder since it can more directly influence the
waypoint predictions. Following [2], we use a single layer
GRU followed by a linear layer which takes in the hidden
state and predicts the differential ego-vehicle waypoints
{0w;}I_, for T = 4 future time-steps in the ego-vehicle
current coordinate frame. Therefore, the predicted future
waypoints are given by {w; = w;_; + dw;}7_;. The input
to the first GRU unit is given as (0,0) since the BEV space is
centered at the ego-vehicle’s position.

3.5 Controller

We use two PID controllers for lateral and longitudinal
control to obtain steer, throttle, and brake values from the
predicted waypoints, {w;}_;. The longitudinal controller
takes in the magnitude of a weighted average of the vectors
between waypoints of consecutive time steps, whereas the
lateral controller takes in their orientation. For the PID
controllers, we use the same configuration as in the author-
provided codebase of [87]. Additional details regarding the
controllers can be found in the supplementary material.

Creeping: If the car has not moved for a long duration (55
seconds, chosen to be higher than the expected wait time at
a red light), we make it creep forward by setting the target
speed of the PID controller to 4 m/s for a short time (1.5
seconds). This creeping behavior is used to recover from the
inertia problem observed in IL for autonomous driving [38].
When a vehicle is still, the probability that it continues to
stay in place (e.g. in dense traffic) is very high in the training
data. This can lead to the trained agent never starting to
drive again after having stopped.

Safety Heuristic: The creeping behavior alone would be
unsafe, e.g. in situations where the agent is stuck in traffic
where creeping forward could lead to a collision. To pre-
vent this, we implement a safety check that overwrites the
creeping behavior if there are any LiDAR hits in a small
rectangular area in front of the car. While this heuristic
is essential during creeping, it can also be applied during
regular driving to enhance safety [99]. We study the impact
of applying a global safety heuristic during both creeping
and regular driving in Section 4.11.
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Fig. 3: Auxiliary Loss Functions. Besides the waypoint loss
(Eq. (5)), we incorporate four auxiliary tasks: depth predic-
tion and semantic segmentation from the image branch; HD
map prediction and vehicle detection from the BEV branch.

3.6 Loss Functions

Following [587], we train the network using an L; loss
between the predicted waypoints and the ground truth way-
points (from the expert), registered to the current coordinate
frame. Let wY* represent the ground truth waypoint for
time-step ¢, then the loss function is given by:

T
L= |lwe—wil|; ®)
t=1

Note that the ground truth waypoints {w{'} which are
available only at training time are different from the sparse
goal locations G provided at both training and test time.

Auxiliary Tasks: To account for the complex spatial and
temporal scene structure encountered in autonomous driv-
ing, the training objectives used in IL-based driving agents
have evolved by incorporating auxiliary tasks. Training sig-
nals aiming to reconstruct the scene have become common,
such as image auto-encoding [100], 2D semantic segmen-
tation [101], Bird’s Eye View (BEV) semantic segmenta-
tion [102], 2D semantic prediction [103], and BEV semantic
prediction [3], [39]. Performing auxiliary tasks has been
shown to lead to more interpretable and robust models [3],
[39]. In this work, we consider four auxiliary tasks: depth
prediction, semantic segmentation, HD map prediction, and
vehicle detection (Fig. 3).

2D Depth and Semantics: Combining 2D depth estima-
tion and 2D semantic segmentation as auxiliary tasks has
been an effective approach for image-based end-to-end
driving [39], [104]. We use the same decoder architecture
as the AIM-MT baseline of [39] to decode depth and se-
mantics from the image branch features. The depth output
is supervised with an L; loss, and the semantics with a
cross-entropy loss. Following [39], we consider 7 semantic
classes: (1) unlabeled, (2) vehicle, (3) road, (4) red light, (5)
pedestrian, (6) lane marking, and (7) sidewalk.

HD Map: We predict a three-channel BEV segmentation
mask containing the classes road, lane marking and other.
This encourages the intermediate features to encode infor-
mation regarding drivable and non-drivable areas. The map



uses the same coordinate frame as the LiDAR input, and
is therefore obtained from the feature map of the LiDAR
branch with a convolutional decoder. However, we predict
a downsampled version of the HD map (64 x 64 instead
of 256 x 256) for computational efficiency. The HD map
prediction task uses a cross-entropy loss.

Bounding Boxes: We locate other vehicles in the scene
via keypoint estimation with a CenterNet decoder [105].
Specifically, we predict a position map P € [0,1]%4%64 from
the BEV features using a convolutional decoder. Similar to
the HD map prediction task, the 256 x 256 input is mapped
to smaller 64 x 64 predictions for vehicle detection. The
2D target label for this task is rendered with a Gaussian
kernel at each object center of our training dataset. While
the orientation is a single scalar value, directly regressing
this value is challenging, as observed in existing 3D detec-
tors [105]-[107]. Therefore, our CenterNet implementation
takes a two-stage approach of predicting an initial coarse
orientation followed by a fine offset angle. To predict the
coarse orientation, we discretize the relative yaw of each
ground truth vehicle into 12 bins of size 30°, and predict
this class via a 12-channel classification label at each pixel,
0 e [0, 1]64%64x12 " a5 in [107]. Finally, we predict a re-
gression map R € R64*64X5 This regression map holds
three regression targets: vehicle size (€ R?), position offset
(€ R?) and orientation offset (€ R). The position offset is
used to make up for quantization errors introduced by pre-
dicting position maps at a lower resolution than the inputs.
The orientation offset corrects the orientation discretization
error [107]. Note that only locations with vehicle centers
are supervised for predicting O and R. The position map,
orientation map and regression map use a focal loss [108],
cross-entropy loss, and L; loss respectively.

3.7 Latent TransFuser

CILRS [38] is a widely used image-only baseline for the old
CARLA version 0.8.4. It learns to directly predict vehicle
controls (as opposed to waypoints) from visual features
while being conditioned on a discrete navigational com-
mand (follow lane, change lane left/right, turn left/right).
However, as shown in [39] this approach obtains poor
results on the challenging CARLA leaderboard. Despite this,
recent studies involving image-based driving on CARLA
have shifted from IL towards more complex Reinforcement
Learning (RL) based training, while using CILRS as the pri-
mary IL baseline [109], [110]. To provide a more meaningful
IL baseline for future studies, we now introduce an image-
only version of our approach, called Latent TransFuser.
Latent TransFuser replaces the 2-channel LiDAR BEV
histogram input to our architecture with a 2-channel po-
sitional encoding of identical dimensions (256 x 256 x 2).
The 2D positional encoding is a grid with equally-spaced
values from -1 to 1, with one channel for the left-right axis,
and one for the top-down axis. Other than this change, the
architecture, training procedure, and auxiliary losses remain
identical to the LiDAR-based TransFuser. Additionally, our
controller uses the LiDAR input for its safety heuristic while
creeping (Section 3.5). For Latent TransFuser, we check for
an intersection between the small rectangular safety area
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in front of the car and any detected object from the auxil-
iary CenterNet detection head instead. Creeping is disabled
whenever such an intersection occurs.

The positional encoding input of Latent TransFuser acts
as a proxy for the BEV LiDAR. Since the LiDAR branch is su-
pervised to predict the HD map and bounding boxes, which
are in the BEV coordinate frame, fusing image features
with the latent features in this branch acts as an attention-
based projection from the perspective view to the BEV. The
architecture shares similarities with existing attention-based
camera to BEV projection techniques such as NEAT [39]
and PYVA [80]. However, unlike these methods, Latent
TransFuser projects features at multiple feature resolutions.
We show in our experiments that Latent TransFuser is a
powerful baseline, outperforming far more complex RL-
based methods on the CARLA leaderboard in the image-
only input setting (Table 3).

4 EXPERIMENTS

In this section, we describe our experimental setup, com-
pare the driving performance of TransFuser against several
baselines, visualize the attention maps of TransFuser and
present ablation studies to highlight the importance of
different components of our approach.

41 Task

We consider the task of navigation along a set of predefined
routes in a variety of areas, e.g. freeways, urban areas, and
residential districts. The routes are defined by a sequence
of sparse goal locations in GPS coordinates provided by
a global planner. Each route consists of several scenarios,
initialized at predefined positions, which test the ability of
the agent to handle different kinds of adversarial situations,
e.g. obstacle avoidance, unprotected turns at intersections,
vehicles running red lights, and pedestrians emerging from
occluded regions to cross the road at random locations. The
agent needs to complete the route within a specified time
limit while following traffic regulations and coping with
high densities of dynamic agents.

4.2 Training Dataset

We use the CARLA [5] simulator for training and testing,
specifically CARLA 0.9.10 which consists of 8 publicly avail-
able towns. We use all 8 towns for training. Our dataset
is collected along a set of training routes: around 2500
routes through junctions with an average length of 100m,
and around 1000 routes along curved highways with an
average length of 400m. For generating training data, we
roll out an expert policy designed to drive using privileged
information from the simulation and store data at 2FPS.
The expert is a rule-based algorithm similar to the CARLA
traffic manager autopilot'. Our training dataset contains
228k frames in total. In the following, we provide more
details regarding the expert algorithm.

1. https:/ /carla.readthedocs.io/en/latest/adv_traffic_manager/
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(a) The expert waits before taking the turn because the trajec-
tory forecasting predicts a collision if the expert would drive.

(b) After the oncoming cars have passed, the expert crosses
the intersection.

Fig. 4: Expert performing an unprotected left turn. The
black boxes on the street mark the path that the expert has
to follow. The predictions of the bicycle model are colored
green for the expert and blue for all other vehicles. Red
bounding boxes mark predicted collisions. The white box
around the car is used to detect the traffic light trigger boxes
that are placed on the street (e.g. bottom left Fig. 4a).

4.3 Expert

For generating training data, we roll out an expert policy
designed to drive using privileged information from the
simulator. The waypoints of the expert are the ground
truth labels for the imitation loss, so it can be viewed as
an automatic labeling algorithm. The ground truth labels
for the auxiliary tasks are provided by the simulator. We
build upon the code provided by the authors of [87]. This
approach is based on simple handcrafted rules. Building the
expert with RL is also possible [111], [112] but it is more
computationally demanding and less interpretable. Our ex-
pert policy consists of an A* planner followed by 2 PID
controllers (for lateral and longitudinal control). The lateral
and longitudinal control tasks are treated independently.
Lateral control is done by following the path generated
by the A* planner. Specifically, we minimize the angle of
the car towards the next waypoint in the route, which is
at least 3.5 meters away, using a PID controller. Longitu-
dinal control is done using a version of model predictive
control and differentiates between 3 target speeds. The
standard target speed is 4.0 m/s. When the expert is inside
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an intersection, the target speed is reduced to 3.0 m/s.
Lastly, in case an infraction is predicted the target speed
is set to 0.0 m/s bringing the vehicle to a halt. We predict
red light infractions by performing intersection tests with
trigger boxes that CARLA provides. Collision infractions
are predicted by forecasting the oriented bounding boxes
of all traffic participants. We forecast in 50 ms discrete
steps, for 4 seconds in intersections and 1 second in other
areas. The forecasting is done using the pretrained kine-
matic bicycle model from [110]. This bicycle model is a
simple mathematical model that can predict the position,
orientation, and speed of a car after a discrete time step,
given its current position orientation speed and the applied
control. We forecast all vehicles by iteratively rolling out the
bicycle model using its output at time step ¢ as the input
for time step ¢ + 1. Since we only know the control input of
other traffic participants at the current time step (provided
by the simulator), we assume that they will continue to
apply the same control at future time steps. For the ego
vehicle, we calculate its future steering and throttle by using
PID controllers that try to follow the route. The ego brake
control is always set to 0 because we want to answer the
counterfactual question of whether there will be a collision
if we do not brake. We forecast pedestrians analogously but
model them as a point with velocity and acceleration. This
works well because the movement patterns of pedestrians
in CARLA are simple. A collision infraction is detected if
there is an intersection of the ego vehicle bounding box at
future time step t with the bounding box of another traffic
participant at future time step t. A common failure of the
action repeat forecast mechanism described above is that
it does not anticipate that fast cars approaching the expert
from behind will eventually slow down before colliding. To
avoid false positives, we do not consider rear-end collisions
by only using the front half of the vehicle as its bounding
box. Collisions with the front half that happen through the
back half are ignored. For the longitudinal controller, we set
K, =5.0,K; = 0.5, Kg = 1.0 and for the lateral controller,
we set K, = 1.25, K; = 0.75, Kq = 0.3. Both controllers
use a buffer of size 20 to approximate the integral term as
a running average. An example of the expert performing an
unprotected left turn can be seen in Fig. 4.

4.4 Longest6 Benchmark

The CARLA simulator provides an official evaluation
leaderboard consisting of 100 secret routes. However, teams
using this platform are restricted to only 200 hours of
evaluation time per month. A single evaluation takes over
100 hours, making the official leaderboard unsuitable for
ablation studies or obtaining detailed statistics involving
multiple evaluations of each model. Therefore, we propose
the Longest6 Benchmark, which shares several similarities
to the official leaderboard, but can be used for evaluation on
local resources without computational budget restrictions.
The CARLA leaderboard repository provides a set of 76
routes as a starting point for training and evaluating agents.
These routes were originally released along with the 2019
CARLA challenge. They span 6 towns and each of them
is defined by a sequence of waypoints. However, there is
a large imbalance in the number of routes per town, e.g.



Town03 and Town04 have 20 routes each, but Town02 has
only 6 routes. To balance the Longest6 driving benchmark
across all available towns, we choose the 6 longest routes
per town from the set of 76 routes. This results in 36 routes
with an average route length of 1.5km, which is similar to
the average route length of the official leaderboard (1.7km).
We make three other design choices for the Longest6 bench-
mark, motivated by the official leaderboard. (1) During
evaluation, we ensure a high density of dynamic agents by
spawning vehicles at every possible spawn point permitted
by the CARLA simulator. (2) Following [39], each route
has a unique environmental condition obtained by combin-
ing one of 6 weather conditions (Cloudy, Wet, MidRain,
WetCloudy, HardRain, SoftRain) with one of 6 daylight
conditions (Night, Twilight, Dawn, Morning, Noon, Sunset).
(3) We include CARLA’s adversarial scenarios in the evalu-
ation, which are spawned at predefined positions along the
route. Specifically, we include CARLA's scenarios 1, 3, 4,
7, 8,9, 10 which are generated based on the NHTSA pre-
crash typology”. Visualizations of the routes in the Longest6
benchmark are provided in the supplementary material.

4.5 Metrics

We report several metrics to provide a comprehensive un-
derstanding of the driving behavior of each agent.

(1) Route Completion (RC): percentage of route distance
completed, I; by the agent in route 7, averaged across N
routes. However, if an agent drives outside the route lanes
for a percentage of the route, then the RC is reduced by a
multiplier (1- % off route distance).

1 N
RC:N;RZ- (6)

(2) Infraction Score (IS): geometric series of infraction
penalty coefficients, p/ for every instance of infraction j
incurred by the agent during the route. Agents start with an
ideal 1.0 base score, which is reduced by a penalty coefficient
for every infraction.

Ped,Veh,Stat,Red

IS = 11

J

s "
( P J )# infractions (7)

The penalty coefficient for each infraction is pre-defined and
set to 0.50 for collision with a pedestrian, 0.60 for collision
with a vehicle, 0.65 for collision with static layout, and 0.7
for red light violations. The official CARLA leaderboard also
mentions a penalty for stop sign violations. However, we
observe that none of our submissions have any stop sign
infractions. Hence, we omit this infraction from our analysis.

(3) Driving Score (DS): weighted average of the route
completion with infraction multiplier F;

1N
DS = - Z R;P; ®)
(4) Infractions per km: the infractions considered are

collisions with pedestrians, vehicles, and static elements,
running a red light, off-road infractions, route deviations,

2. https:/ /leaderboard.carla.org/scenarios/

8

timeouts, and vehicle blocked. We report the total number
of infractions, normalized by the total number of km driven.

Ny. .
>, #infractions;

3 ki
where k; is the driven distance (in km) for route i. The
Off-road infraction is slightly different. Instead of the total
number of infractions the sum of km driven off-road is used.
We multiply by 100 because this metric is a percentage.

Infractions per km =

©)

4.6 Baselines

We compare our TransFuser model to several baselines. (1)
WOR [110]: this is a multi-stage training approach that
supervises the driving task with a Q function obtained
using dynamic programming. It is the current state-of-
the-art approach on the simpler NoCrash benchmark [38]
for CARLA version 0.9.10. We use the author-provided
pretrained model for evaluating this approach. (2) Latent
TransFuser: to investigate the importance of the LiDAR in-
put, we implement an auto-regressive waypoint prediction
network that has the same architecture as the TransFuser
but uses a fixed positional encoding image as input in-
stead of the BEV LiDAR, as described in Section 3.7. (3)
LAV [46]: this is a concurrent approach that performs sensor
fusion via PointPainting [47], which concatenates semantic
class information extracted from the RGB image to the
LiDAR point cloud, to train a privileged motion planner
to predict trajectories of all nearby vehicles in the scene.
This privileged planner is then distilled into a policy that
drives from raw sensor inputs only. We use the checkpoint
publicly released by the authors® for our experiments. We
note that this published checkpoint is not the exact same
model as the one used for LAV’s leaderboard entry. (4)
Late Fusion: we implement a version of our architecture
where the image and the LiDAR features are extracted
independently using the same encoders as TransFuser but
without the transformers (similar to [35]). The features from
each branch are then fused through element-wise summa-
tion and passed to the waypoint prediction network. (5)
Geometric Fusion: we implement a multi-scale geometry-
based fusion method, inspired by [20], [22], involving both
image-to-LiDAR and LiDAR-to-image feature fusion. We
unproject each 0.125m x 0.125m block in our LiDAR BEV
representation into 3D space, resulting in a 3D cell. We
randomly select 5 points from the LiDAR point cloud lying
in this 3D cell and project them into the image space. Then,
we aggregate the image features of these points via element-
wise summation before passing them to a 3-layer MLP.
The output of the MLP is then combined with the LiDAR
BEV feature of the corresponding 0.125m x 0.125m block
at multiple resolutions throughout the feature extractor.
Similarly, for each image pixel, we aggregate information
from the LiDAR BEV features at multiple resolutions. This
baseline is equivalent to replacing the transformers in our
architecture with projection-based feature fusion. We also
report results for the expert used for generating our training
data, which defines an upper bound for the performance on
the Longest6 evaluation setting. We provide additional de-
tails regarding the baselines in the supplementary material.

3. https://github.com/dotchen/LAV
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Method DS 1 RC 1 IS ¢ Ped| Veh| Stat| Red ] OR | Dev| TO | Block |
WOR [110] 20.53 £3.12 4847 +3.86 0.56 £0.03| 0.18 1.05 037 128 047 088 0.08 0.20
Latent TransFuser (Ours) | 37.31 + 5.35 95.18 + 0.45 0.38 +0.05| 0.03 3.66 0.18 0.13 0.04 0.00 0.12 0.05
LAV [46] 3274+ 145 7036 +3.14 051+0.02] 0.16 0.83 0.15 096 042 0.06 012 045
Late Fusion (LF) 2247 +3.71 8330+ 3.04 027 +0.04| 0.05 4.63 028 011 048 0.02 011 0.21
Geometric Fusion (GF) [27.32 £0.80 91.13 £ 095 0.30+0.01| 0.06 464 0.17 013 048 0.00 0.05 0.11
TransFuser (Ours) 47.30 £ 5.72 9338 £1.20 0.50 +0.06| 0.03 245 0.07 0.16 0.04 0.00 0.06 0.10
Expert 76.91 +£2.23 88.67 £0.56 0.86+0.03| 002 028 0.01 003 0.00 0.00 008 013

TABLE 1: Longest6 Benchmark Results. We compare our TransFuser model with several baselines in terms of driving
performance and infractions incurred. We report the metrics for 3 evaluation runs of each model on the Longest6 evaluation
setting. For the primary metrics (DS: Driving Score, RC: Route Completion, IS: Infraction Score) we show the mean and
std. For the remaining infractions per km metrics (Ped: Collisions with pedestrians, Veh: Collisions with vehicles, Stat:
Collisions with static layout, Red: Red light violation, OR: Off-road driving, Dev: Route deviation, TO: Timeout, Block:
Vehicle Blocked) we show only the mean. TransFuser obtains the best DS by a large margin.

4.7

We use 2 sensor modalities, the front-facing cameras and
LiDAR point cloud converted to a BEV representation (Sec-
tion 3.2), i.e.,, S = 2. The camera inputs are concatenated
to a single image and encoded using a RegNetY-3.2GF [113]
which is pretrained on ImageNet [114]. We use pre-trained
models from [115]. The LiDAR BEV representation is en-
coded using another RegNetY-3.2GF [113] which is trained
from scratch. Similar to [87], we perform angular viewpoint
augmentation for the training data, by randomly rotating
the sensor inputs by +20° and adjusting the waypoint labels
according to this rotation. We use 1 transformer per resolu-
tion and 4 attention heads for each transformer. We select
D,, Dy, D, from {72,216,576,1512} for the 4 transformers
corresponding to the feature embedding dimension Dy at
each resolution. We train the models with 8 RTX 2080Ti
GPUs for 41 epochs. We use an initial learning rate of
10~* and a batch size of 12 per GPU, and disable batch
normalization in the backbones during training. We reduce
the learning rate by a factor of 10 after epoch 30. We
evaluate the epochs 31, 33, 35, 37, 39 and 41 closed loop
on the validation routes of [39] for one seed and pick the
epoch with the highest driving score. For all models, we use
the AdamW optimizer [116], which is a variant of Adam.
Weight decay is set to 0.01, and Adam beta values to the
PyTorch defaults of 0.9 and 0.999.

Implementation Details

4.8 Longest6 Benchmark Results

We begin with an analysis of driving performance on
CARLA on the new Longest6 evaluation setting (Table 1).
For each experimental result, the evaluation is repeated 3
times to account for the non-determinism of the CARLA
simulator. Furthermore, imitation based methods typically
show variation in performance when there is a change in the
random initialization and data sampling due to the training
seed [41], [43]. To account for the variance observed between
different training runs, we use 3 different random seeds for
each method, and report the metrics for an ensemble of these
3 training runs.

Latent TransFuser as a Strong Baseline: In our first experi-
ment, we examine the performance of image-based meth-
ods. From the results in Table 1, we observe that WOR
performs poorly on the Longest6 evaluation setting. In
particular, we observe that WOR suffers from a poor RC

with a much larger number of route deviations (Dev) than
the remaining methods. On the other hand, we find that
Latent Transfuser obtains the best RC in Table 1, with zero
route deviations. This is likely because Latent TransFuser
uses our inverse dynamics model (PID controller) for low-
level control and represents goal locations in the same
BEV coordinate space in which waypoints are predicted.
In contrast, WOR uses coarse navigational commands (e.g.
follow lane, turn left/right, change lane) to inform the
model regarding driver intentions, and chooses an output
action from a discrete action space. This result indicates
that the TransFuser architecture involving auto-regressive
waypoint prediction a strong baseline for the end-to-end
driving task, even in the absence of a LiDAR sensor.

Sensor Fusion Methods: The goal of this experiment is to
determine the impact of the LIDAR modality on the driving
performance and compare different fusion methods. For
this, we compare TransFuser to three baselines, LAV, Late
Fusion (LF), Geometric Fusion (GF). LAV performs worse
than TransFuser in terms of DS. The main difference arises
from the 23% lower RC. Potential reasons could be worse
steering as indicated by the higher off-road infractions, or
false positives in the modular components which might be
the reason for the higher blocked infraction. While LAV
obtains a similar IS to TransFuser, upon probing further, we
notice that it is only better in terms of avoiding collisions
with vehicles and TransFuser performs better with respect
to all other infractions. We note that in the Longest6 bench-
mark, there are a few routes where the vehicle is required
to drive in dense traffic on multi-lane highways. TransFuser
fails at lane merging in these situations, incurring a large
amount of vehicle collisions (>20), strongly affecting its ve-
hicle collision metric. Surprisingly, we observe that LF and
GF perform worse than the image-only Latent TransFuser
baseline (Table 1). The multi-scale geometry-based fusion
encoder of GF gives some improvements when compared
to LF, however, both LF and GF suffer from a poor IS. We
hypothesize that this occurs because they do not incorporate
global contextual reasoning which is necessary to safely
navigate the intersections, and focus primarily on naviga-
tion to the goal at all costs while ignoring obstacles, which
leads to several infractions. In contrast, our TransFuser
model obtains an absolute improvement 19.98% in terms
of DS when compared to GF. It also achieves an 48.59%
reduction compared to LF and 47.64% reduction compared
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Fig. 5: Lane Change Failures. TransFuser fails at lane changes in dense traffic incurring a high number of consecutive
collisions in routes where these situations occur. Two examples are shown in the top and bottom rows. Time goes forward

from left to right.

Method Single Model Ensemble (3) Method LiDAR? | DSt RCtT IS?Y

Late Fusion (LF) 23.5 46.7 NEAT [39] - 21.83 4171 0.65

Geometric Fusion (GF) 43.5 69.1 MaRLn [109] - 2498 4697 0.52

TransFuser (Ours) 27.6 59.6 WOR [110] - 31.37 57.65 0.56

GRIAD [117] - 36.79 61.86 0.60

TABLE 2: Runtime. We show the runtime per frame in ms Latent TransFuser (Ours) - 4520 66.31 0.72

for each method averaged over all timesteps in a single Late Fusion (LF) v 26.07 64.67 047

evaluation route. We measure runtimes for both a single Geometric Fusion (GF) v 41.70  87.85 0.47

model and an ensemble of three models. A single Trans- Tranilz\l/sfl[r (O]urs) 5 21!13253 3222 82}1
Fuser model runs in real-time on an RTX 3090 GPU. - - -

to GF in collisions per kilometer (Ped+Veh+Stat), and an
absolute improvement of over 0.2 in its IS. These results
indicate that attention is effective in incorporating the global
context of the 3D scene, which allows for safer driving.

Limitations: We observe that all methods with a high RC
struggle with vehicle collisions (Veh). Avoiding collisions
is very challenging in our evaluation setting due to the
traffic density being set to the maximum allowed density
in CARLA. In particular, TransFuser has around 9x more
vehicle collisions per kilometer than the expert. We observe
that these collisions primarily occur during unprotected
turns and lane changes as is illustrated in Fig. 5.

Runtime: We measure the runtime of each method on a
single RTX 3090 GPU by averaging over all time-steps of one
evaluation route. The runtime considered includes sensor
data pre-processing, model inference and PID control. The
results are shown in Table 2. We observe that the trans-
formers in our architecture increase the runtime relative
to the LF baseline by 17% for a single model and 28% for
an ensemble of three models. However, a single TransFuser
model can still be executed in real-time on this hardware.
The GF baseline is slower than TransFuser despite its sim-
pler fusion mechanism due to the extra time taken finding
correspondences between the image and LiDAR tokens.

4.9 Leaderboard Results

We submit the models from our study to the CARLA au-
tonomous driving leaderboard which contains a secret set
of 100 evaluation routes and report the results in Table 3.
Among the models that do not use LiDAR inputs, Latent

TABLE 3: CARLA Leaderboard Evaluation. We report the
DS, RC, and IS over the 100 secret routes of the official
evaluation server. Latent TransFuser and TransFuser im-
prove the IS by a large margin in comparison to existing
methods. *The LAV leaderboard entry uses an updated
model different from the public checkpoint in Table 1.

TransFuser achieves the best performance. It obtains a DS
of 45.20, which is nearly 10 points better than the next best
image-based method, GRIAD [117]. GRIAD builds on top of
the Reinforcement Learning (RL) method presented in [109].
In this approach, an encoder is first trained to predict both
the 2D semantics and specific affordances such as the scene
traffic light state, and the relative position and orientation
between the vehicle and lane. The encoder is then frozen
and used to train a value function-based RL method using
a replay buffer that is partially filled with expert demon-
strations. GRIAD requires 45M samples from the CARLA
simulator for training [117] whereas our training dataset has
only 228k frames (200 less than GRIAD).

For the LiDAR-based baselines, GF performs better than
LE similar to our findings on Longest6. Incorporating global
attention via TransFuser leads to further improvements
with a state-of-the-art IS. While LAV performs similarly
to TransFuser, it is only marginally better in terms of DS
(+0.67), which is likely within the evaluation variance. To
obtain this marginal improvement, LAV adopts multi-stage
training with several pretrained modular components and
a teacher-student distillation framework. In contrast, Trans-
Fuser achieves state-of-the-art results with a straightforward
single-stage IL training procedure. For further improve-
ments, the training procedure of TransFuser can potentially
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Fig. 6: Attention Maps. For the red query token, we show the top-5 attended tokens in green and highlight the presence

of vehicles in the LiDAR point cloud in

. Top 2 rows: image to LiDAR, bottom 2 rows: LiDAR to image. TransFuser

attends to areas near vehicles and traffic lights at intersections.

Head T1 T2 T3 T4
L L | L L L L, L Lt
1 |100.00 0.00{99.83 0.00|44.55 98.69 |77.79 89.97
2 |100.00 0.00|99.99 0.00|07.58 98.98|80.05 95.91
3 [100.00 0.00]39.71 0.00|27.73 98.09|90.08 99.98
4 19999 1.45|99.99 0.26]99.99 99.98|80.13 99.47

TABLE 4: Cross-Modal Attention Statistics. We report the
% of tokens (I;: Image tokens, L;: LIDAR tokens) for which
at least 1 of the top-5 attended tokens belongs to the other
modality for each head of the transformers: T1, T2, T3, T4.

be combined with techniques used in previous work on
autonomous driving such as Active Learning [118]-[120],
DAgger [121], [122], adversarial simulation [123]-[125], RL-
based fine-tuning [100] and teacher-student distillation [46],
[871, [110], [126].

4.10 Attention Statistics and Visualizations

Our architecture (Fig. 2) consists of 4 transformers with 4
attention layers and 4 attention heads in each transformer.
In this section, we visualize the attention maps from the

final attention layer for each head for each transformer. The
transformer takes in 110 image feature tokens and 64 LiDAR
feature tokens as input where each token corresponds to a
32 x 32 patch in the input modality. We consider intersection
scenarios from Town03 and Town05 and examine the top-5
attention weights for the 66 tokens in the 2"%, 3% and 4*"
rows of the image feature map and the 24 tokens in the 4'",
5" and 6" rows of the LiDAR feature map. We select these
tokens since they correspond to the intersection region in
the input modality and contain traffic lights and vehicles.

We compute statistics on cross-modal attention for image
and LiDAR feature tokens. Specifically, we report the %
of tokens for which at least one of the top-5 attended
tokens belong to the other modality for each head of the
4 transformers (T1, T2, T3, T4) in Table 4. We observe that
the earlier transformers have negligible LiDAR to image
attention compared to later transformers in which nearly
all the LiDAR tokens aggregate information from the image
features. Furthermore, different heads of each transformer
also show distinctive behavior, e.g. head 3 of T2 has sig-
nificantly less cross-attention for image tokens than other
heads, head 2 of T3 has very little cross-attention whereas
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Method Ensemble? | Safety Heuristic DS 1 Lorﬁ%jes%m IS 4 DS I%eadlsrcb$ardls 4

- Global 50.00 £ 1.13 90.38 £3.32 0.56 £ 0.02 | 47.05 71.66 0.72

Latent TransFuser - Creep Only 4219 £549 9484+140 0441006 | 4236 86.67 0.51
v Creep Only 36.18 £536 95.34 220 037 £0.05 | 45.03 7537 0.62

- Global 49.49 £8.63 90.67 £4.78 055+0.09 | 4193 5855 0.77

TransFuser - Creep Only 4251 +249 91.01 £0.83 0.46 +0.02 | 50.57 7384 0.68

v Creep Only 4730 £5.72 9338 +£1.20 0.50+0.06 | 61.18 86.69 0.71

TABLE 5: Impact of Global Safety Heuristic. The heuristic leads to consistent minor improvements for Latent TransFuser.
For TransFuser, though the heuristic improves the Longest6 scores, it reduces the performance on the CARLA leaderboard.

head 4 has significantly higher cross-attention for image
tokens compared to other heads. Overall, T4 exhibits ex-
tensive cross-attention for both image and LiDAR tokens,
which indicates that TransFuser is effective in aggregating
information between the two modalities.

We show four cross-attention visualizations for T4
in Fig. 6. We observe a common trend in attention maps:
TransFuser attends to areas near vehicles and traffic lights
at intersections, albeit at a slightly different location in the
image and LiDAR feature maps. Additional visualizations
for all the transformers are provided in the supplementary.

4.11

The primary motivation of the safety heuristic described
in Section 3.5 is to prevent collisions during the applied
creeping behavior. Therefore, in Tables 1 and 3, we apply the
safety heuristic during creeping only. However, rule-based
fallback systems have been shown to improve the safety of
IL models [99]. In this experiment, we investigate the impact
of applying the safety heuristic described in Section 3.5
globally, i.e. during both creeping and regular driving. We
show results on both the Longestt benchmark and the
CARLA leaderboard. To reduce the computational overhead
of this analysis, we evaluate a single model instead of an
ensemble of 3 different training runs, which were used in
Tables 1 and 3. However, for clarity, we also report the
scores of the ensemble. Additionally, the results shown for
Latent TransFuser are from preliminary experiments where
we include a LiDAR sensor and use the LiDAR-based safety
heuristic instead of the CenterNet based intersection check
described in Section 3.7, leading to minor differences when
compared to the numbers from Tables 1 and 3.

The results are shown in Table 5. For Latent TransFuser, we
observe that the global safety heuristic improves the DS by
8 points on the Longest6 benchmark and 5 points on the
leaderboard compared to it being applied during creeping
only. In particular, this is due to a large improvement in the
IS (e.g. from 0.51 to 0.72 on the leaderboard). Interestingly,
we observe a different trend for TransFuser. The global
safety heuristic improves the DS by 7 points on the Longest6
benchmark where we tuned the hyper-parameters (i.e., size
of the rectangular safety box). However, it leads to a drop
of nearly 10 points in DS on the leaderboard. The global
safety heuristic leads to reduced route completion for both
methods on the CARLA leaderboard. This indicates that
the heuristic works well on observed maps, but does not
generalize to unknown and potentially unseen road layouts.
For TransFuser, which already had a higher infraction score
than Latent TransFuser, the improvement in IS does not

Global Safety Heuristic

Training | Eval | LTF LF GF TF

1 48.82 3194 46.13 59.45

1 2 50.12 33.29 43.62 44.15
3 51.07 3479 39.42 4487

avg. | 50.00 33.34 43.06 49.49

1 4453 37.05 36.64 5150

5 2 5435 36.79 39.40 5091
3 5257 4798 3493 5235

avg. | 5048 40.60 36.99 51.59

1 51.15 3490 49.77 59.76

3 2 48.10 3247 4564 57.39
3 49.80 4498 5247 52.88

avg. | 49.68 3745 4930 56.68

TABLE 6: Training and evaluation variance. We show the
DS of each evaluation on the Longest6 benchmark. We train
each baseline 3 times, and perform 3 evaluation runs of each
individual trained model. LTF: Latent TransFuser, LF: Late
Fusion, GF: Geometric Fusion, TF: TransFuser. All models
exhibit large variance in scores.

make up for the reduction in RC leading to an overall
reduction in DS through the safety heuristic.

When comparing the results of a single model and the
corresponding ensemble, we find that ensembling improves
the DS for both Latent TransFuser and TransFuser on the
leaderboard, in particular for TransFuser which improves by
more than 10 points. On the Longest6 routes, the ensembling
has a lower impact of 5 points for the TransFuser and even a
reduction in performance for Latent TransFuser. The single
models reported in Table 5 are the first of three training
seeds (Table 6). Ensembling might have a larger positive
impact on TransFuser because the models had a larger
training variance, which we discuss in the following.

Training Seed Variance: We show the impact of training
and evaluation seed variance in Table 6. We train each
baseline 3 times and evaluate each model 3 times on the
Longest6 routes with the global safety heuristic enabled.
We observe that the best achieved score can differ from the
worst score by 10-15 points for an individual model, leading
to extremely large variance. In particular, for the first seed of
TransFuser, the DS ranges from 44.15 to 59.45. For Geometric
Fusion, the average DS differs by 12 points between the
worst and best training seed. This amount of variance is
problematic when trying to analyze or compare different
approaches. We would like to emphasize that the variance
reported in Table 6 comes from two factors. The training
variance between different seeds results from different net-
work initializations, data sampling and data augmentations
during optimization. The evaluation variance is a result



Auxiliary Losses DS 1 RC 1 ISt
None 4429 7817 0.58

No Depth 5623 91.80 0.61

No Semantics 53.76 88.40 0.61

No HD Map 50.96  89.52  0.58

No Vehicle Detection 5343 8849  0.60
All Losses (Worst Seed) | 4949  90.67  0.55
All Losses (Best Seed) 56.68 92.28  0.62

TABLE 7: Auxiliary Tasks. The results shown are the mean
over 3 evaluations on Longest6. Training without auxiliary
losses leads to a significant reduction in RC and DS.

of the variation in the traffic manager, physics and sensor
noise of CARLA 0.9.10. Based on the results observed, the
randomness in evaluation is the primary cause of variance,
in addition to secondary training seed variance, but both
factors are considerable. The existing practice for state-of-
the-art methods on CARLA is to report only the evaluation
variance by running multiple evaluations of a single training
seed. This may lead to premature conclusions (e.g. when
considering only the three evaluations of the first training
seed, Latent TransFuser outperforms TransFuser). We argue
(given these findings) that future studies should report
results by varying the training seed for both the baselines
and proposed new methods, in addition to the results of the
best seed or ensemble.

4.12 Ablation Studies

We now analyze several design choices for TransFuser in a
series of ablation studies on the Longest6 benchmark. Since
the global safety heuristic leads to consistent and signifi-
cant improvements for TransFuser on the Longest6 routes
(Table 5), we use this setting for the ablation studies. The
evaluation is repeated 3 times for each experiment, however,
we use a single training run for these results instead of an
ensemble of 3 different training runs as in Table 1. To further
reduce the computational overhead, we always evaluate
epoch 31, as we have observed in preliminary experiments
that it is usually close to the best epoch in performance. For
the default configuration, we have 3 available training runs.
We report the best and worst training seed to account for
the randomness due to training. Ablations lying within this
interval likely do not have a large impact.

Auxiliary Tasks: As described in Section 3.6, we consider
4 auxiliary tasks in this work. In Table 7 we show the
performance of TransFuser when all these auxiliary losses
are removed, as well as the impact of removing each loss
independently. We observe that with no auxiliary tasks,
there is a steep drop in RC from 92.28 to 78.17. Removing
only a single auxiliary task does not have a large impact.
All results lie within the range between the best and worst
seed of the default configuration in terms of driving score.
In Fig. 7, we visualize the predictions made by TransFuser
when trained with all 4 auxiliary losses.

Architecture: In Table 8, we analyze the impact of varying
the TransFuser encoder architecture. We study the impor-
tance of fusion in both directions by selectively removing
the residual output connections from the fusion transform-
ers to the convolutional backbones. Fusion for only the
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(a) Top to bottom: image input, predicted depth, predicted
semantics (legend: none, road, , sidewalk, vehicle, person).

(b) Left to right: LIDAR ground plane channel, bounding box
predictions overlaid on LiDAR obstacle channel (points above
ground plane), HD map prediction.

Fig. 7: Visualization of Auxiliary Tasks. We visualize the
inputs and outputs of both the image branch and LiDAR
branch for the same driving scene. Further, the input target
point is visualized as a red circle and predicted waypoints
as blue and white circles on the HD map prediction. The
first two waypoints (which are used to obtain the steering
angle for our PID controller) are shown as blue circles, and
the remaining two waypoints as white circles.

Camera — LiDAR or only the LiDAR — Camera direction
gives a slightly lower performance that the default model
with bi-directional fusion. Removing the fusion mechanism
in the early blocks of the encoder and performing feature
fusion at only the deepest 1, 2 and 3 scales also leads to
a small drop in performance. For the fusion transformers,
we find that 2-8 attention layers give similar performance.
The default resolution of the image features is 22x5 and
the LiDAR features is 8x8. We observe that using each of
these 22x5 + 8x8 features as independent input tokens
for the transformer leads to better results when compared
to a fusing information across different image and LiDAR
resolutions through a reduced image token count of 11x3
or LiDAR token count of 4x4. We also evaluate a ver-
sion of TransFuser where the input to the MLP and GRU
decoder from the final fusion transformer is obtained via
a dedicated attention token instead of the default global
average pooling. This is a standard idea for attention-based
averaging of spatial features, similar to the CLS token of
Vision Transformers [37]. We find that the default architec-
ture with global average pooling is simpler to implement
and performs similarly in practice. The most impactful
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Parameter Value DSt RCt ISt Parameter Value DS+ RCt ISt
Fusion Direction LiDAR — Cqmera 46.36 8746 0.55 LiDAR Range 64m x 32m | 49.08 91.10 0.54
Camera — LiDAR | 47.99 86.24 0.57 64m x 64m | 47.55 90.72 0.52
1 49.35 84.47 0.57 LiDAR Encoder PointPillars | 50.83 91.56 0.55
Fusion Scales 2 53.52 91.78 0.59 Camera FOV 120° 4990 90.05 0.56
3 48.77 85.33 0.60 90° 42.18 8849 0.51
2 53.49 90.65 0.60 No Rasterized Goal - 54.80 91.63 0.60
Attention Layers 6 56.24 9256 0.61 No Rotation Aug - 56.85 92.73 0.61
8 56.13 92.61 0.61 Default Confi Worst Seed | 49.49 90.67 0.55
Token Count 11x3 + 8x8 45.63 90.32 0.51 & Best Seed | 56.68 92.28 0.62
22x5 + 4x4 49.14 87.10 0.56
Averaging Attention Token [ 54.21 90.78 0.60 TABLE 9: Model Input Ablations. The results shown are
Res34-Res18 4201 9243 045 the mean over 3 evaluations on Longest6. The default con-
Backbones Reg0.8-Reg0.8 44.38  87.96 0.50 figuration uses a 32m x 32m LiDAR range and 132° camera
ﬁee)g(:_,?:ﬁeg(lt_@r iggg g;gg 82% FOV. Camera FOV has the largest impact on the DS.
} Worst Seed 49.49 90.67 0.55 . .
Default Config Best Seed 56.68 9228 0.62 Velocity Input? Cree?mg? 411)683g ;{Sng és6g
TABLE 8: Architecture Ablations. The results shown are ‘_/ ;ggi 2421?7; 82§
the mean over 3 evaluations on Longest6. The default con- v v 4535 8622 052

figuration fuses in both directions. It uses 4 fusion scales, 4
attention layers, 22 x5 + 8 x8 tokens, global average pooling,
and RegNetY-3.2GF backbones. The encoder backbone has
the highest impact on the final driving score.

architecture choice is the backbone architecture for both
branches. The default configuration of RegNetY-3.2GF back-
bones outperforms ConvNeXt-Tiny [127], RegNetY-1.6GF
and RegNetY-0.8GF based backbones. We also observe a
large improvement over the use of a ResNet34 for the image
branch and ResNet18 for the BEV branch, as in [41], which
leads to a model with lower network capacity.

Model Inputs: As shown in Table 9, increasing the LIDAR
range or reducing the camera FOV from the default configu-
ration leads to a reduced IS and a corresponding drop in DS.
Our method works with arbitrary grids as inputs. Therefore,
it could benefit from orthogonal improvements in LiDAR
encoding. However, we did not observe improvements by
using a learned LiDAR encoder [128], and hence stick with
the simpler voxelization approach. This model was trained
with batch size 10 due to its higher memory requirements.
Interestingly, despite being useful in our preliminary ex-
periments, removing the rasterized goal location channel
from the LiDAR branch, or removing the random rotation
of sensor inputs by +20° used during data augmentation
show only a small impact on the performance in the final
configuration which is unlikely to be significant.

Inertia Problem: As we note in Section 3.5, we add creeping
to our controller to prevent the agent from being overly cau-
tious. This type of behavior, called the inertia problem [38]
is typically attributed to the spurious correlation that exists
between input velocity and output acceleration in an IL
dataset. Interestingly, though we do not use velocity as
an input to our models, we observe that creeping in the
controller increases the RC significantly while maintaining
a similar IS (Table 10). This indicates that a factor besides
the velocity input, such as an imbalance in training data
distribution, may be a key contributing factor to the inertia
problem. We also train a version of TransFuser where we
provide the current velocity as input by projecting the

TABLE 10: Inertia Problem. The results shown are the mean
over 3 evaluations on Longest6. Creeping improves the RC
in both the setting where we input the velocity to our
encoder and our default configuration (no velocity input).

scalar value into the same dimensions as the transformer
positional embedding using a linear layer. This velocity
embedding is combined with the learnable positional em-
bedding through element-wise summation and fed into the
transformer at all 4 stages of the backbone. Including the
velocity input leads to a sharp drop in DS, which cannot be
recovered through the creeping behavior.

5 DISCUSSION AND CONCLUSIONS

In this work, we demonstrate that IL policies based on exist-
ing sensor fusion methods suffer from high infraction rates
in complex driving scenarios. To overcome this limitation,
we present a novel multi-modal fusion transformer (Trans-
Fuser) for integrating representations of different modali-
ties. TransFuser uses attention to capture the global 3D scene
context and focuses on dynamic agents and traffic lights,
resulting in state-of-the-art performance on CARLA with a
significant reduction in infractions. Given that our method
is simple, flexible, and generic, it would be interesting to
explore it further with additional sensors, e.g. radar, or
apply it to other embodied Al tasks.

We hope that the proposed benchmark with long routes
and dense traffic will become a suitable option for the
community to conduct ablation studies or obtain detailed
statistics that are not feasible via the CARLA leaderboard.

Our study has several limitations. We have provided a
simple solution to the inertia problem (creeping), but this
deserves more study. Due to the sensor limits of the CARLA
leaderboard, our sensor setup does not generate data from
the rear of the vehicle, which is relevant in lane change
situations. We only investigate single time step input data
in this work. Processing temporal inputs is likely necessary
to reduce vehicle collisions in intersections by enabling
estimation of the acceleration and velocity of other traffic
participants. We do not investigate the impact of latency



on the final driving performance, which has been shown
to be important for real-world applications [129]. This is
because the default configuration of the CARLA simulator
waits for the agent to finish its computation before it re-
sumes simulation of the world. Finally, all our experiments
are only conducted in simulation. Real-world data is more
diverse and can have more challenging noise. We make use
of multiple high-quality labels that the CARLA simulator
provides, such as dense depth maps. Real-world datasets
often do not provide labels of such high quality and might
not provide all the types of labels we have used in this work.

Progress on the CARLA leaderboard has been rapid,
with the state-of-the-art scores increasing from the range
of 20 to 60 in the short time period since the preliminary
version of this work at CVPR 2021. As novel submissions
to the leaderboard move towards alternatives to end-to-end
IL that involve complex multi-stage training or RL-based
objectives, we show that a simple IL training procedure
with our proposed architecture is highly competitive. Future
works should consider our Latent Transfuser as a standard
baseline for image-only IL. Based on our analysis, we be-
lieve that overcoming the inertia problem in a principled
manner and reducing both training and evaluation variance
will be key challenges for IL-based driving.
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