
Supplementary Material for
NEAT: Neural Attention Fields for End-to-End Autonomous Driving

Kashyap Chitta*1,2 Aditya Prakash*1 Andreas Geiger1,2
1Max Planck Institute for Intelligent Systems, Tübingen 2University of Tübingen

{firstname.lastname}@tue.mpg.de

Abstract

In this supplementary document, we begin by providing additional information regarding our architecture (Section 1).
We go on to describe our data generation pipeline (Section 2), compare the baselines used in our experiments to their
implementation in the original publications (Section 3), and provide details regarding the hyper-parameter choices for all
the models (Section 4). Finally, we present additional results and analysis to supplement our findings in the main paper
(Section 5). The supplementary video contains qualitative driving visualizations of NEAT.

1. Architecture Details
In this section, we first provide the pseudo-code for the forward pass of our NEAT model for a given query point (Algo-

rithm 1), to supplement the description from the main paper. This is followed by in-depth descriptions of our architecture
components, in particular (1) the transformer block of the encoder, (2) the conditional batch normalization operation used in
NEAT and the decoder, and (3) the low-level PID controller.

1.1. Transformer

Transformers [23] were developed for natural language processing (NLP) as an alternative to sequence-to-sequence models
and subsequently applied to visual domains [3, 10, 20, 22]. A transformer takes as input a sequence of discrete tokens, each
represented by a feature vector. The feature vector is supplemented by a positional embedding to incorporate positional
inductive biases. These positional embeddings can be fixed, e.g. order of the input tokens in a text or video, or can be learned,
so that the network infers any spatial dependencies between tokens during training.

Formally, we denote the input sequence as Fin ∈ RN×Df , where N is the number of tokens in the sequence and each
token is represented by a feature vector of dimensionality Df . The transformer uses linear projections for computing a set of
queries, keys and values (Q, K and V),

Q = FinMq, K = FinMk, V = FinMv (1)

where Mq ∈ RDf×Dq , Mk ∈ RDf×Dk and Mv ∈ RDf×Dv are weight matrices. It uses the scaled dot products between Q
and K to compute the attention weights and then aggregates the values for each query,

A = softmax
(
QKT

√
Dk

)
V (2)

where the softmax is used to normalize the weights. The scaling factor 1√
Dk

is used to prevent numerical instabilities. Finally,
the transformer uses a set of non-linear transformations to calculate the output features, Fout which are of the same shape as
the input features, Fin.

Fout = MLP(A) + Fin (3)

*indicates equal contribution

1

Algorithm 1: Pseudo-code for processing a query point with NEAT.

input : X , v,p = (x, y, t, x′, y′); // sensor data, velocity and query point
output: {si,oi}Ni=1 ; // semantic class and (x, y) offset to waypoint at p

c = eθ(X) ; // encoder
c0 = mean(c) ; // initial attention
for i← 1 to N do

ai = aφ(p, ci−1); // neural attention field
ci = softmax(ai)> · c; // update
{si,oi} = dψ(p, ci) ; // decoder

Figure 1: NEAT implicit function architecture. NEAT outputs an attention map ai. The input to NEAT is a query point
p = (x, y, t, x′, y′), which is processed through an MLP with 5 fully-connected ResNet blocks, and conditioned on ci−1
through conditional batch normalization (CBN, Eq. (4)). The decoder uses an identical network structure as NEAT, but takes
as input ci instead of ci−1, and uses two output CBN layers which output semantics si and offsets oi.

The transformer applies the attention mechanism multiple times throughout the architecture resulting in L attention layers.
Each layer in a standard transformer has multiple parallel attention ‘heads’, which involve generating several Q, K and V
values per Fin for Eq. (1) and concatenating the resulting values of A from Eq. (2).

1.2. Conditional Batch Normalization

We employ the same MLP architecture for the NEAT and decoder in all experiments, illustrated in Fig. 1. The query
points p = (x, y, t, x′, y′) are passed through a fully-connected layer to obtain a 128-dimensional feature per point. This is
then passed through 5 ResNet [13] blocks (b = 1, ...5). Each block involves a composite operation of (1) a conditional batch
normalization (CBN) function [8, 11], (2) a ReLU activation, and (3) a linear layer. This composite operation is applied two
times followed by an additive skip connection. The output is passed through a final CBN layer and ReLU activation before
being projected to the required output dimensions (ai ∈ RS∗T∗P for NEAT, and two outputs si ∈ RK and oi ∈ R2 for the
decoder from two different output CBN layers). The attention map ai and semantic outputs si use the softmax activation,
whereas no extra activation function is required for the offset outputs oi.

To implement CBN, we first pass the feature (ci−1 in Fig. 1) through a 2-layer ReLU MLP to obtain 128-dimensional
vectors βb,1, βb,2, γb,1, and γb,2 for each CBN operation in the network. Given the input feature fin, CBN is performed as a
standard batch normalization operation with these values of β and γ obtained from ci−1:

fout = γ
fin − µ√
σ2 + ε

+ β (4)

where µ and σ are the empirical mean and standard deviation of the input features fin over the batch dimension. At test time,
a running mean of µ and σ computed during training is used to fix these values. ε is used to prevent numerical instabilities,
set to 10−5 (the default value in PyTorch [17]).

Algorithm 2: Generating an action from waypoints.

input : v, (x′, y′), r, {wt}T+Z
t=T+1; // velocity, red light indicator, target and waypoints

output: steer ∈ (−1, 1), throttle ∈ (0, 1), brake ∈ (0, 1); // vehicle control

δ = 0
for t← T + 1 to T + Z − 1 do

δ += 1
Z−1 ||wt+1 −wt||; // desired velocity

α∗ = tan−1
(

(w∗)[1]
(w∗)[0]

)
; // aim

αb = tan−1
(
y′

x′

)
; // backup aim

if ||α∗ − αb|| > βerr or αb < α∗ then
α = αb

else
α = α∗

steer = LatPID(α)
if r = 1 or δ < βmin or δ < vβratio then

throttle = 0
brake = 1

else
throttle = LonPID(δ − v)
brake = 0

1.3. PID Controller

To convert waypoints to vehicle controls, we use a combination of two PID controllers. This process is summarized in
Algorithm 2. We first compute the Z−1 vectors between waypoints of consecutive time-steps. The mean magnitude of these
vectors is input to longitudinal controller (LonPID in Algorithm 2), which tries to match the vehicle velocity v to the desired
velocity δ as much as possible. We then identify the waypoint closest to 4 meters in distance from the ego-vehicle as w∗.
This is used to compute the angular aim, which is input to a lateral controller (LatPID). Each controller has 3 gain parameters,
which are tuned on a subset of our training routes. For the speed controller, we set Kp = 5.0,Ki = 0.5,Kd = 1.0 and for
the turn controller, we set Kp = 0.75,Ki = 0.75,Kd = 0.3. Both controllers use a buffer of size 40 to approximate the
integral term as a running average. The other parameters used are a brake threshold speed βmin, angular error threshold βerr,
and brake speed ratio βratio, which we tune jointly with the gain parameters, and set to 0.4, 0.2, and 1.1 respectively.

2. Data Generation and Evaluation

In this section, we describe our expert and data generation pipeline; providing statistics regarding the distribution of
navigational commands in our dataset. We then describe the routes and scenarios used in our novel evaluation setting. Note
that our data generation process closely mirrors that of [19], with the key difference being the use of additional weather and
daylight conditions during training.

2.1. Sensor Configuration

We use 3 cameras, each with a field of view (FOV) of 100◦, mounted at a height of 2.3m from the ground level and 1.3m
in front of the centroid of the ego-vehicle. We offset the cameras forward by 1.3m to avoid the hood of the ego-vehicle
from occluding a portion of the rendered images. The cameras are oriented forward, 60◦ left and 60◦ right respectively.
We extract images at a resolution of 400 × 300 pixels. When a 256 × 256-pixel crop is taken from these 3 images, they
provide a full 180◦ field-of-view of the scene, which is useful for the BEV semantic prediction task. For the ground-truth
depth and semantic maps, we use CARLA’s 2D depth and semantic segmentation cameras1 placed at the same location as
the three RGB cameras. Additionally, we extract the BEV semantics for NEAT using a semantic segmentation camera with
a resolution of 512 × 512 pixels, placed at a height of 100m from the center of the ego-vehicle with a FOV of 50◦. We use

1https://carla.readthedocs.io/en/latest/ref sensors

https://carla.readthedocs.io/en/latest/ref_sensors

an IMU to obtain orientation, a GPS sensor to register frames to the current time-step during training, and a speedometer to
get the current velocity of the ego-vehicle which is used as an input to our encoder.

2.2. Expert

For generating training data, we roll out an expert policy designed to drive using privileged information from the simulator.
We adapt the code2 provided by the authors of [2] to build our expert. Several heuristics based on the global position of the
dynamic agents and traffic lights are used by this expert to avoid collisions and traffic violations. We make two modifications
to the existing code, (1) we add stop sign avoidance functionality, and (2) we change the distance and speed heuristics used
for avoiding collisions and following traffic lights to make the expert more cautious. Both changes improved the driving
scores of the expert in our preliminary analysis.

Given the route to be followed as a sequence of sparse waypoints, the expert uses an A* planner to interpolate these sparse
waypoints to dense waypoints in the CARLA town map with a sampling resolution of 1m. From these dense waypoints, it
selects two waypoints - the nearest waypoint after 4m from its current position as the near node and the nearest waypoint
after 7m from its current position as the far node. It uses the orientation of the near node as the aim direction, which is fed to
the lateral PID controller, with the steering value as its output. Note how we designed the PID controller for NEAT to mimic
this at test time, by choosing the waypoint closest to 4m to determine the aim for steering. The expert uses the orientation of
the far node as an indication of an approaching turn. For longitudinal control, the expert uses a discrete set of speed values,
{0, 4, 7}m/s as the target speed depending on its current circumstances. If the expert is close to pedestrians, vehicles, red
light, or an uncleared stop sign (which is accessed as privileged information from CARLA), then the target speed is set to 0
m/s. If the expert has to steer by more than 5◦ or is approaching a turn, as indicated by the orientation of the far node, then
the target speed is set to 4 m/s. Under every other circumstance, the target speed is set to 7 m/s. A longitudinal PID controller
then tries to match the speed of the expert policy to this target speed as much as possible. For the longitudinal controller, we
set Kp = 5.0,Ki = 0.5,Kd = 1.0 and for the lateral controller, we set Kp = 1.25,Ki = 0.75,Kd = 0.3, following the
default implementation from [2]. Both controllers use a buffer of size 40 for the integral terms.

2.3. Training Routes

The CARLA simulator repository contains a recommended set of 50 routes for training and 26 routes for testing, released
accompanying a previous version of the simulator for the 2019 CARLA challenge3. Each route is defined by a sequence of
waypoints, from a total of 6 towns in CARLA. However, these routes are heavily biased towards driving straight (Fig. 2) due to
which the models trained with data generated on these routes are likely to have lower performance at turns and intersections.
To overcome this limitation, we generate a set of additional routes which incorporate more turns and intersections.

Towards this goal, we first use the positions of the traffic lights to sample the intersections present in the town map, since
most of the intersections contain traffic lights. For each such sampled intersection, we generate multiple pairs of start and end
points, by sampling points at a distance of 100m from the intersection along the canonical axes (road segments at intersections
in CARLA are aligned with the canonical axes in world coordinates). From this set of sampled points, we select pairs of
points that lie on different road segments of the intersections. Using this mechanism, we sample 8 pairs of turn routes at each
intersection. However, if any of these sampled points do not lie on a road segment, e.g. in 3-way intersections, the simulator
automatically maps the point lying off the road segment to the nearest point on a road segment. This results in several long
routes encompassing multiple intersections.

While this method improves the relative representation of turns by 2-3% in the dataset, the turns are still severely under-
represented in comparison to the ‘Follow Lane’ command. Therefore, we sample additional turns at these intersections. For
this, we interpolate each of the routes (using the same procedure followed by the expert, as explained in Section 2.2) obtaining
a dense set of waypoints along each. Then, we explicitly sample points along these routes where the navigational command
provided by CARLA changes from ‘Follow Lane’ to ‘Turn Left’, ‘Turn Right’ or ‘Go Straight’. These points indicate the
starting position of an intersection. When the navigation command changes back to ‘Follow Lane’ along the interpolated
route, this indicates the end of an intersection, which we use as the end point. In this manner, we sample several pairs of start
and end points along each long route with each pair representing a single intersection of length 25-50m. Adding these short,
single-intersection routes significantly improves the distribution of navigational commands in our dataset (Fig. 2).

2https://github.com/bradyz/leaderboard/blob/master/team code/auto pilot.py
3https://github.com/carla-simulator/leaderboard/tree/stable/data

https://github.com/bradyz/leaderboard/blob/master/team_code/auto_pilot.py
https://github.com/carla-simulator/leaderboard/tree/stable/data

sa

m
pl

es
 in

 tr
ai

ni
ng

 d
at

a

0

25000

50000

75000

100000

Turn
Left

Turn
Right

Go
Straight

Follow
Lane

Change
Lane Left

Change
Lane Right

Original Routes Our Routes

Figure 2: Distribution of Navigational Commands. We report the distribution of navigational commands for the original
routes provided in the Leaderboard repository and our routes used for generating data. Our routes incorporate more turns and
intersections in the training data.

2.4. Training Scenarios

The official CARLA Leaderboard repository also provides a set of scenarios4 for each town based on the NHTSA pre-
crash typology5. Each scenario is defined by (1) a trigger ‘transform’ which indicates the spawn location and the orientation
of that scenario in a particular town and (2) ‘other actors’ which contains information about additional agents present in that
scenario. While the CARLA scenario manager provides access to a set of 10 scenarios in total, each assigned a specific
scenario number (1-10), the trigger transforms for only 3 of these are publicly released with the Leaderboard starter code -
control loss without previous action, obstacle avoidance without prior action and obstacle avoidance with prior action.

To include scenarios such as other vehicles running red lights and unprotected turns, which can be dangerous in a real-
world situation, we create a dense set of trigger transforms for additional scenarios while generating training data. We focus
on safety-critical scenarios involving pedestrians emerging from occluded regions to cross the road at random locations,
vehicles running red lights, and unprotected turns. Specifically, we include Scenarios 1, 3, 4, 7, 8, 9, 10 in our training
dataset. Scenario 2 occurs naturally during the driving in the presence of other dynamic agents so we do not explicitly include
it. Since we focus on safety-critical scenarios, we also do not include Scenarios 5 and 6, which involve lane changing. To
spawn these scenarios densely, we consider the trigger transforms provided in the Leaderboard’s set of scenarios and sample
additional spawn locations at a 5m distance along the canonical axes in a 10m × 10m grid centered at each available trigger
position. For the spawn orientation, we select yaw ∈ {0◦, 90◦, 180◦, 270◦}. Therefore, for each provided trigger transform
in a particular town, we generate 36 additional trigger transforms for each scenario. Since multiple scenarios can have the
same trigger position, we randomly select one scenario per trigger position while generating training data.

2.5. Training Data Statistics

For training data generation, we use all 8 publicly available towns (Town01, Town02, Town03, Town04, Town05, Town06,
Town07, Town10) and 7 weather conditions (Clear, Cloudy, Wet, MidRain, WetCloudy, HardRain, SoftRain); storing data
at 2 FPS. The number of dynamic agents in each town is then fixed (Town01: 120, Town02: 100, Town03: 120, Town04:
200, Town05: 120, Town06: 150, Town07: 110, Town10: 120). We sample the sun elevation from a mixture of Gaussian
distribution with 6 components. The mean values used for these Gaussian components (-80, 0, 5, 15, 35, 75) correspond to
6 different daylight conditions used in our evaluation (Night, Twilight, Dawn, Sunset, Morning, Noon). The sun azimuth is
sampled randomly from {0, 45, 90, 135, 180, 225, 270, 315} degrees. The weather and daylight conditions are varied every
0.5 seconds in simulation, to obtain a uniform distribution during training. We do not use DAgger [18, 21] during training.
Our training set contains 130000 frames (sampled from ‘Our Routes’ in Fig. 2) and our validation set contains 20000 frames
(sampled from the ‘Original Routes’ in Fig. 2).

4https://github.com/carla-simulator/leaderboard/blob/stable/data/all towns traffic scenarios public.json
5https://leaderboard.carla.org/scenarios/

https://github.com/carla-simulator/leaderboard/blob/stable/data/all_towns_traffic_scenarios_public.json
https://leaderboard.carla.org/scenarios/

Town Weather Daytime Length (m)
0 1 HardRain Twilight 1303
1 1 Clear Sunset 1303
2 1 Wet Night 1303
3 1 Clear Noon 322
4 1 Cloudy Night 322
5 1 Wet Morning 322
6 2 Wet Dawn 110
7 2 WetCloudy Twilight 110
8 2 WetCloudy Night 110
9 2 Cloudy Sunset 638

10 2 MidRain Sunset 638
11 2 SoftRain Twilight 638
12 3 MidRain Noon 306
13 3 Clear Twilight 306
14 3 HardRain Dawn 306
15 3 HardRain Night 462
16 3 WetCloudy Noon 462
17 3 Cloudy Dawn 462
18 4 WetCloudy Dawn 2811
19 4 SoftRain Morning 2811
20 4 SoftRain Sunset 2811

Town Weather Daytime Length (m)
21 4 WetCloudy Morning 204
22 4 Clear Morning 204
23 4 MidRain Night 204
24 6 SoftRain Noon 686
25 6 SoftRain Dawn 686
26 6 SoftRain Night 686
27 6 WetCloudy Sunset 706
28 6 Wet Noon 706
29 6 HardRain Morning 706
30 5 MidRain Twilight 337
31 5 Clear Dawn 337
32 5 MidRain Dawn 337
33 5 Wet Twilight 1642
34 5 HardRain Noon 1642
35 5 Clear Night 1642
36 3 Wet Sunset 961
37 3 Cloudy Night 961
38 3 Cloudy Noon 961
39 4 Cloudy Morning 225
40 4 MidRain Morning 225
41 4 HardRain Sunset 255

Table 1: Evaluation routes. Environmental condition and length (in meters) of each of the 42 evaluation routes.

2.6. Evaluation Routes

Our proposed evaluation setting consists of 42 routes from 6 different CARLA towns (Town01-Town06). We consider 14
unique routes: 2 routes from Town01, Town02, Town05, Town06, and 3 routes from Town03, Town04. Each unique route is
repeated 3 times, but with a different environmental condition on each repetition, giving the final set of 42 routes. Each route
has a unique environmental condition obtained by combining one of 7 weather conditions (Clear, Cloudy, Wet, MidRain,
WetCloudy, HardRain, SoftRain) with one of 6 daylight conditions (Night, Twilight, Dawn, Morning, Noon, Sunset). We
provide details regarding the weather, daytime, and length of the 42 evaluation routes in Table 1 and visualizations of the 14
unique routes in Fig. 3.

2.7. Evaluation Scenarios

During evaluation, we consider all the 10 scenarios available in CARLA: control loss without previous action, longitudinal
control after leading vehicle’s brake, obstacle avoidance without prior action, obstacle avoidance with prior action, lane
changing to evade slow leading vehicle, vehicle passing dealing with oncoming traffic, crossing traffic running a red light
at an intersection, unprotected left turn at an intersection with oncoming traffic, right turn at an intersection with crossing
traffic, crossing negotiation at an unsignalized intersection. We use the trigger transforms for these scenarios from the
CARLA scenario runner GitHub repository6. While the CARLA leaderboard framework7 considers prioritized sampling of
scenarios (scenarios with higher ID are given preference, e.g. scenario 10 is prioritized over scenario 9 and so on) in case
multiple scenarios can be spawned at a particular trigger location, we consider uniform sampling in our evaluation.

3. Baselines
In this section, we describe the adapted versions of the baselines CILRS [7] and LBC [2] used in our experiments. In

particular, we highlight the updates made to adapt these models from the CARLA version of their original publication (0.8.4
for CILRS and 0.9.6 for LBC) to the latest CARLA version 0.9.10. We then discuss in detail the new baselines designed in
this work, AIM-MT (which is based on AIM [19]) and AIM-VA (which is based on Visual Abstractions [1]).

6https://github.com/carla-simulator/scenario runner/blob/master/srunner/data/all towns traffic scenarios.json
7https://github.com/carla-simulator/leaderboard

https://github.com/carla-simulator/scenario_runner/blob/master/srunner/data/all_towns_traffic_scenarios.json
https://github.com/carla-simulator/leaderboard

Figure 3: Visualization of evaluation routes. We show the 14 unique routes on their corresponding town map. The starting
point is shown in red, the destination in blue and the route is highlighted in green.

3.1. CILRS

CILRS follows the conditional imitation learning paradigm [6, 7], where driver intention is encoded and passed into the
driving model in the form of a discrete navigational command. While the original architecture used 4 navigational commands
(follow lane, left/right/straight at intersection), we adapted this model to include 2 additional commands for lane changes (left
and right). Since the space of navigational commands is discrete, CILRS uses a conditional module to select one of several
command branches based on the input command. The command branch directly outputs control values (steer, throttle, and
brake). The best performing CILRS architecture involves a ResNet34 encoder pre-trained on ImageNet [9], whose output
is flattened and combined with the measured vehicle velocity v using fully connected layers. Additionally, CILRS uses
ego-velocity prediction as auxiliary supervision. The features from the encoder (before combining with velocity features) in
CILRS are used to output a prediction of the current vehicle speed v̂, which is compared to the actual vehicle speed with the

velocity loss Lvelocity defined in Eq. 5.

Lvelocity = ||v − v̂||1 (5)

3.2. LBC

LBC is a knowledge distillation approach where a teacher model with access to ground truth BEV semantic maps is
first trained using expert supervision to predict waypoints, followed by an image-based student model which is trained
using supervision from the teacher. The waypoints predicted by the teacher are projected into the image coordinates of
the student model to provide supervision. Once the teacher is trained, it can output waypoints for a given input for any
arbitrary driver intention (e.g. turning left or right at an intersection). By supervising with this teacher model instead of
the original expert, LBC provides ground truth supervision to its student model corresponding to multiple driver intentions
at each training iteration. While the original LBC architecture uses only the front camera image as input and also uses a
branched conditional architecture similar to CILRS, the authors recently released an updated version of their architecture8

with 2 major modifications, (1) multi-view camera inputs which are stacked as channels to a ResNet50 encoder (front, left and
right images, similar to our NEAT model), and (2) target heatmap as input (instead of the navigational command) which is
formed by projecting the target point into front camera image coordinates. We directly use this codebase in our experiments
and found that other modifications (eg. using a single camera input or matching the semantic classes considered by the
teacher model to those used by NEAT) did not lead to performance improvements.

3.3. AIM-MT

AIM [19] is an improved version of CILRS which uses a GRU decoder to regress waypoints, similar to the architecture
of [12]. An important modification is that the GRU takes as an input the BEV target location, similar to NEAT, rather than
conditioning with different branches for discrete navigational commands as in CILRS.

The best-performing architecture for AIM involves a ResNet34 encoder, pre-trained on ImageNet, which outputs a 512-
dimensional feature vector. This feature vector is passed through an MLP (consisting of 2 hidden layers with 256 and 128
units) to reduce its dimensionality to 64 for computational efficiency before passing it to the auto-regressive waypoint network
implemented using GRUs [4]. The update gate of the GRU controls the flow of information encoded in the hidden state to the
output and the next time-step. It also takes in the current position and the target location as input, which allows the network
to focus on the relevant context in the hidden state for predicting the next waypoint. Following [19], we use a single layer
GRU followed by a linear layer which takes in the hidden state and predicts the differential ego-vehicle waypoints {δwt}Tt=1

for T = 4 future time-steps in the ego-vehicle coordinate frame. Therefore, the predicted future waypoints are given by
{wt = wt−1 + δwt}Tt=1. The input to the first GRU unit is set to (0,0) since the BEV space is centered at the ego vehicle’s
position.

We train the network using an L1 loss between the predicted waypoints and the ground truth waypoints (from the expert),
registered to the current coordinate frame (empirically, this leads to better results than an L2 loss). Our multi-task variants of
AIM, which we call AIM-MT, are constructed by adding different auxiliary tasks to AIM during training. Let wgt

t represent
the ground truth waypoint for time-step t, then the loss function for AIM-MT can be described as:

L =

T∑
t=1

||wt −wgt
t ||1 + λb LCE(sbev, sgtbev) + λs LCE(s2d, sgt2d) + λd ||d− dgt||1 (6)

Here, wt represents the waypoint at time-step t, sbev represents the BEV semantic map, s2d represents the 2D semantic
segmentation d represents the 2D depth map, and LCE is the cross entropy loss. For the base AIM model with no auxiliary
supervision, λb = λs = λd = 0.

Auxiliary 2D supervision: We use a deconvolutional decoder to predict the 2D semantic segmentation and 2D depth similar
to the architecture of [15]. We consider the 8 × 8 × 512 feature map from the penultimate layer of the ResNet34 encoder
(before average pooling) and pass it through 6 convolutional and 2 upsampling layers to output the 2D semantic segmentation
and 2D depth at a resolution of 256 × 256. For the semantic segmentation we consider 7 classes: (1) unlabeled (to which
we include pixels labeled by CARLA as building, fence, other, pole, vegetation, wall, traffic sign, sky, ground, bridge, rail
track, guard rain, traffic light, static, dynamic, water, terrain, yellow light, green light, and stop sign) (2) vehicle, (3) road,
(4) red light, (5) pedestrian, (6) lane marking, (7) sidewalk. As we see in Section 5.3, the additional classes used for the

8https://github.com/bradyz/2020 CARLA challenge

https://github.com/bradyz/2020_CARLA_challenge

2D semantic prediction task (such as lane marking and sidewalk) are crucial to driving performance, with significant drops
in scores observed when only using the same 5 classes as NEAT. For the AIM-MT variant with only 2D segmentation, We
set λb = 0, λs = 1 and λd = 0 during training. For the best performing AIM-MT variant with both 2D depth and 2D
segmentation, we use λb = 0, λs = 1 and λd = 10.

Auxiliary BEV supervision: We use a spatial broadcast decoder [24] to predict the BEV semantic map from the 512-
dimensional feature vector. In terms of structure and supervision, this variant of AIM-MT is most comparable to NEAT.
Therefore, the semantic classes used by this variant are the same as those used by NEAT: (1) unlabeled, (2) road, (3) obstacle
(pedestrian + vehicle), (4) red light, and (5) green light. We set λb = 0.1, λs = 0 and λd = 0 during training for this variant.

3.4. AIM-VA

AIM-VA generates 2D segmentation map representations of the inputs using a 2D semantic segmentation model. These
are then fed into an AIM model (without any auxiliary supervision) to regress waypoints. By abstracting away irrelevant
details in the RGB image space (such as textures and lighting), using these Visual Abstractions [1] have been shown to
improve robustness in CARLA.

We use a ResNet-50 FCN for semantic segmentation, using the same 7 classes as AIM-MT with auxiliary 2D supervision
(see Section 3.3). In the AIM component of the AIM-VA model, we use a ResNet-18, which performs the best.

4. Implementation Details

In this section, we discuss the training hyper-parameter choices and schedules. These optimizer-related hyper-parameters
were tuned based on the validation loss of each model on a subset of our training dataset. We perform single-GPU training
for all models, on GTX 1080Ti GPUs. Our code is implemented in PyTorch [17].

4.1. NEAT

For NEAT training, we use the AdamW optimizer [16], which is a variant of Adam [14]. The ResNet34 in the encoder is
pre-trained on ImageNet [9]. The learning rate is set to 10−4, weight decay to 0.01, and Adam beta values to the PyTorch
defaults of 0.9 and 0.999. During training, we track the offset loss on a validation partition of the dataset and save the
checkpoint with the lowest offset loss after 50 epochs of training with our dataset for online evaluation. We use a batch size
of 16 for all variants of NEAT.

4.2. Other Models

We train the LBC model using the codebase provided by the authors, which uses the Adam [14] optimizer with a learning
rate of 10−4 and weight decay of 0.0. The model is validated after every epoch. In this implementation, the learning rate
is reduced by a factor of 2 if the validation loss does not improve for 5 epochs. We train the model for a maximum of 100
epochs with a batch size of 64 and terminate the training if the learning rate goes below 10−6 or if the validation loss has not
improved for 15 epochs.

The image to segmentation model of AIM-VA is trained on our dataset using the MMSegmentation library9 using the
default hyper-parameters for the ResNet-50 FCN model. For CILRS, AIM, AIM-MT, as well as the segmentation to control
model of AIM-VA, we use the same AdamW optimizer hyper-parameters as NEAT. The models are validated after every
5 epochs and we use early stopping to terminate the training if the validation loss has not improved for 25 epochs, or at a
maximum of 100 epochs. For CILRS, the weight for the velocity loss term is set to 0.05 and batch size is set to 256. We use
a batch size of 192 for the base AIM model, 160 for the BEV semantics variant, 72 for both the 2D semantics variant and 2D
semantics + depth, and 24 for the control model of AIM-VA.

5. Additional Results

In this section, we provide more details regarding the Driving Score (DS) metric for evaluation on CARLA (Section 5.1)
and show additional quantitative and qualitative experimental results. In particular, we provide a town-wise breakdown of
the performance of all the baselines and NEAT (Section 5.2), discuss in more depth the results of the ablation study in the
main paper (Section 5.3), and provide additional visualizations of the attention maps generated by NEAT (Section 5.4).

9https://github.com/open-mmlab/mmsegmentation

https://github.com/open-mmlab/mmsegmentation

Method Auxiliary Supervision Town01 Town02 Town03 Town04 Town05 Town06
CILRS [7] Velocity 24.59 33.73 25.62 24.53 3.56 28.11
LBC [2] BEV Sem 32.03 32.38 25.85 27.89 34.80 23.70
AIM [19] None 63.53 47.06 33.12 48.59 65.36 60.21

AIM-MT
2D Semantics 61.77 44.67 30.03 70.13 72.79 76.20

BEV Semantics 63.12 47.96 34.70 77.40 51.16 93.88
Depth+2D Semantics 59.79 46.01 45.17 81.09 64.94 93.89

AIM-VA 2D Semantics 71.82 51.73 36.82 76.88 54.54 77.97
NEAT BEV Semantics 74.64 78.94 39.12 81.56 49.81 71.23

Table 2: Town-wise Driving Score. We show the mean of 3 evaluations for each model on the 42 evaluation routes.

5.1. Metrics

For CARLA, the driving proficiency of an agent is characterized by its Driving Score (DS). This metric can be broken
down into two components (Route Completion and Infraction Score), which we describe below.

1. Route Completion (RC): percentage of route distance completed, Ri by the agent in route i, averaged across N routes.

RC =
1

N

N∑
i

Ri (7)

2. Infraction Score (Pi): geometric series of infraction penalty coefficients, pji for every instance i of infraction j incurred
by the agent during the route. Agents start with an ideal 1.0 base score, which is reduced by a penalty coefficient for
every infraction.

Pi =

ped,....,stop∏
j

(pji)
infractions(j) (8)

Each infraction is pre-assigned a different base penalty pj , which we list below.

• Collisions with pedestrians — 0.50.

• Collisions with other vehicles — 0.60.

• Collisions with static elements — 0.65.

• Running a red light — 0.70.

• Running a stop sign — 0.80.

Besides these, there is one additional infraction that has no explicit fixed coefficient. If an agent drives off-road, that percent-
age of the route will not be deducted with a multiplier (1−off road percentage). The Driving Score (DS) is the weighted
average of the route completion with the infraction multiplier Pi. DS is the main metric used in both our experiments and for
ranking models on the CARLA Leaderboard.

DS =
1

N

N∑
i

RiPi (9)

5.2. Town-wise results

The town-wise driving score of the methods compared in the main paper is shown in Table 2. CILRS and LBC perform
poorly across all towns. For the other models, we observe that Town03 is consistently difficult, with even the best of all
models having a driving score below 50. On Town02, which is very difficult for all the baselines due to its dense traffic
relative to the small map size, NEAT outperforms the next best method by over 25 points.

Variant Value Driving ↑ Waypoint ↓ Segmentation IoU ↑
Score L1 Unlabeled Obstacle Road Red Light Green Light Lane Marking

Training Seeds 1 67.04 0.242 0.805 0.798 0.585 0.688 0.534 -
(Default Configuration) 2 64.41 0.252 0.814 0.800 0.585 0.707 0.536 -

4 Classes (- Green Light) K = 4 48.65 0.242 0.841 0.784 0.641 0.779 - -
6 Classes (+ Road Line) K = 6 57.86 0.276 0.780 0.750 0.377 0.738 0.581 0.579

Less Iterations N = 1 46.13 0.249 0.816 0.827 0.602 0.717 0.554 -
More Iterations N = 3 51.82 0.234 0.825 0.803 0.595 0.685 0.483 -
Shorter Horizon Z = 2 38.65 0.098 0.825 0.849 0.651 0.793 0.636 -
Longer Horizon Z = 6 50.54 0.440 0.779 0.811 0.545 0.673 0.515 -
No Side Views S = 1 55.13 0.246 0.751 0.721 0.520 0.710 0.523 -
No Transformer L = 0 62.93 0.263 0.804 0.792 0.578 0.644 0.468 -

No Intermediate Loss γ1 = 0 51.78 0.253 0.795 0.829 0.607 0.611 0.477 -
No Semantic Loss λ = 0 36.29 0.287 - - - - - -

No Red Light Indicator r = 0 47.62 0.242 0.805 0.798 0.585 0.688 0.534 -

Table 3: Ablation study. We show the mean DS over the 42 CARLA routes for a single evaluation run of different NEAT
model configurations. In addition, we show the waypoint L1 loss and class-wise segmentation IoUs for these configurations
on our offline validation set. The default configuration of K = 5, N = 2, L = 2, Z = 4, S = 3, L = 2, and γ1 = 0.1 with a
red light indicator leads to the best driving scores.

5.3. Ablation Study

In Table 3, we compare 2 random seeds of our default model configuration to variants with different choices for several
parameters. In addition to the Driving Score metric reported in the main paper obtained by closed-loop evaluation on our
42 CARLA routes, we show the offline performance of these models when evaluated on our validation dataset in terms
of the L1 loss between ground truth and predicted waypoints, as well as the class-wise segmentation IoU. The class-wise
intersection and union scores for our IoU computation are obtained by sampling points using our class-balancing procedure
during validation and comparing the predicted and ground truth classes for these points. Note that the online metric (DS) and
offline metrics are not always correlated to each other, in line with previous findings in Imitation Learning literature [5].
Which semantic classes help most? In this experiment, we consider 3 supervised variants of our method with different
classes used for BEV semantic prediction. We start with a 6-class configuration (K = 6) based on the efficacy of this set of
classes shown in [1]: (1) unlabeled, (2) obstacle (person + vehicle), (3) road, (4) lane marking, (5) non-green light (red light
+ yellow light), (6) green light. The class combinations for person + vehicle and red light + yellow light are introduced for
our model due to the lack of sufficient ground truth person and yellow light samples in our dataset. Further, we consider a
5-class subset (K = 5) by merging lane marking with road, which is our default configuration, and a 4-class subset (K = 4)
by further merging green light with unlabeled. The idea behind these subsets is to check if simplifying the perception task is
beneficial for driving. For example, without an explicit green light class, the network may infer the absence of a red light at
an intersection to be equivalent to a green light. Our results are shown in (Table 3), where the default configuration of K = 5
performs best. While the drop in performance with fewer classes is intuitive, it is surprising that we also observe a drop for
K = 6. This is because predicting accurate BEV lane markings is challenging due to their thin, elongated structure, and
including this class reduces the quality of segmentation for other classes (specifically road, as evidenced by the IoU drop in
Table 3). This is illustrated in Fig. 4.

In contrast to NEAT, the 2D semantic segmentation models in our study (LBC, AIM-MT, and AIM-VA) show significant
drops in performance when using only the 5 classes of NEAT’s default configuration. For example, the driving score of
AIM-MT (2D depth + 2D semantics) drops from 64.86 to 51.79 when using NEAT’s 5 classes.
How important is the iterative attention loop? In our default model configuration, we use an iterative process with N = 2
iterations. Here, we investigate a simpler, non-iterative architecture (N = 1), as well as the impact of having additional
attention iterations (N = 3). As shown in Table 3, the simpler variant (N = 1) obtains good segmentation IoU scores, but
is unable to compete with the default model (N = 2) in terms of driving. The performance also drops when increasing the
number of attention iterations from the default to N = 3, which is possibly due to sub-optimal convergence because of the
increased optimization complexity.
Is a longer prediction horizon Z useful? As shown in Table 3, NEAT’s driving score drops significantly with a shorter
prediction horizon (Z = 2). For this model, the output waypoints do not deviate sharply enough from the vertical axis for the

Figure 4: Semantic class configurations. We show the ground truth (GT) and predicted (Pred) semantics for models trained
with 4, 5, and 6 semantic classes, for 4 different input scenes. Note the fine structure of the lane markings in GT (6), which
leads to large errors in the Pred (6) visualizations in the areas of the scene containing lane markings.

controller to perform certain turning-related maneuvers. On the other hand, a longer horizon complicates the prediction task,
with Z = 6 giving worse results than the default Z = 4. Note that for both these experiments, the offline validation metrics
(Waypoint L1 and Segmentation IoU) are only included in Table 3 for reference, and are not directly comparable to models
from the other ablation experiments. This is because predicting fewer waypoints and semantics only for short time horizons
is a much simpler task and vice versa.
What is the impact of additional camera viewpoints? We now study the impact of changing the number of input sensors
(S). Combining features from S = 3 views leads to improvements for our model, showing that NEAT is an effective way to
obtain a unified scene representation from multiple sensors. In particular, we observe improvements in the Segmentation IoU
for nearly all classes and a better overall driving score. The reduced segmentation IoU with S = 1 is likely because some
of the points for which NEAT must predict semantics lie outside the field of view of a single camera. While we observed a
similar trend (better performance with 3 input views) for the LBC baseline (which also uses BEV semantics during training),
this is not the case for all methods. We obtained no improvements for CILRS, AIM (and its 2D multi-task variants), as well
as AIM-VA when using three input views.
Is the transformer encoder essential? We compare the base model (L = 2) to a simpler architecture with no transformer
(L = 0) in Table 3. Without the transformer, there is a small drop in performance due to the lack of global context, but it is
not as significant as the parameters discussed in Table 3. This showcases the ability of the iterative NEAT attention loop to
perform feature aggregation with sufficient global reasoning for the self-driving task.
Is the intermediate loss helpful? We see in Table 3 that without this loss term, the performance drops almost to the level of
the model with N = 1, showing its importance in guiding the learning of the iterative attention process.
Is the auxiliary semantic supervision necessary? The semantic loss is the most crucial ingredient in NEAT’s representation,
as evidenced by the sharp drop in driving performance in Table 3 (over 30%) when this loss is removed.
Is the red light indicator beneficial? In this experiment, we use the model trained with the default parameters, but explicitly
set the red light indicator r (which is input to the longitudinal PID controller) to zero for all frames at test time. Note that
the offline metrics for this model match our default configuration since we use the same model weights and only modify
the controller used for driving. This variant has a much lower driving score, showcasing the importance of red lights in the
new evaluation setting. Besides the penalty applied to the infraction score for running a red light, the agent often ends up
committing further infractions such as colliding with other vehicles in the intersection. The red light indicator leads to NEAT
being extra cautious, stopping as soon as a red light is observed in the BEV segmentation map, often a few meters away from

the actual line of infraction where the expert would stop.
It is also possible to implement a red light indicator for the AIM-MT models that predict semantics. For the best AIM-MT

model from the main paper (with auxiliary 2D depth and 2D semantics), we ran an additional evaluation where the brake is
manually set to 1 if any of the predicted 2D semantic pixels are of the class red light. However, we observe no improvements
for this version of the model, with the mean driving score over 3 evaluations dropping from 64.86 to 63.54.
Is attention useful for the semantic prediction task? Table 3 shows the mIoU of different NEAT configurations, however,
these metrics only consider M = 64 ground truth points per image, sampled as per the strategy described in Section 3.2
of the main paper. We now evaluate a baseline that encodes the 3 images, concatenates latent vectors, and decodes them to
256 × 256 BEV semantics with a broadcast decoder. We evaluate the mIoU over all 2562 points. This baseline achieves a
mIoU of 27.06%. In particular, its IoU on both ”red light” (which has 171k pixels, 0.01% of the dataset) and ”green light”
(56k pixels, 0.004% of the dataset) is zero. In comparison, NEAT trained exclusively for segmentation (no waypoint loss)
obtains an mIoU of 45.20% (with 13.40% on ”red light” and 15.60% on ”green light”). This shows that attention plays an
important role in the semantic branch.
Is averaging the waypoint predictions important? Randomly sampling a single query out of the G2 predictions (DS =
64.70) does not lead to a large drop in performance compared to taking the grid average (DS = 67.04), so it is not an integral
component of our approach. However, qualitatively, the trajectories are sometimes less smooth when sampling rather than
averaging, which is not penalized by the DS metric.

5.4. Attention Visualizations

Our supplementary video contains qualitative examples of NEAT’s driving capabilities. For the first route in the video,
we visualize attention maps aN for different locations on the route. For each frame in the video, we randomly sample BEV
(x, y) locations and pass them through the trained NEAT model until one of the locations corresponds to the class obstacle,
red light, or green light. Four such frames are shown in the main paper. Twelve additional frames from the same route are
shown here in Fig. 5.

Figure 5: Attention maps. We visualize the semantics sN for 12 frames of a driving sequence from Town10 in CARLA.
We highlight one particular (x, y) value as a white circle on each sN , for which we visualize the multi-view input and
corresponding attention map an. NEAT consistently attends to the image region corresponding to the object of interest.

References
[1] Aseem Behl, Kashyap Chitta, Aditya Prakash, Eshed Ohn-Bar, and Andreas Geiger. Label efficient visual abstractions for autonomous

driving. In Proc. IEEE International Conf. on Intelligent Robots and Systems (IROS), 2020. 6, 9, 11
[2] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating. In Proc. Conf. on Robot Learning (CoRL),

2019. 4, 6, 10
[3] Mark Chen, A. Radford, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, and Ilya Sutskever. Generative pretraining from

pixels. In Proc. of the International Conf. on Machine learning (ICML), 2020. 1
[4] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.

Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014. 8

[5] Felipe Codevilla, Antonio M. Lopez, Vladlen Koltun, and Alexey Dosovitskiy. On offline evaluation of vision-based driving models.
In Proc. of the European Conf. on Computer Vision (ECCV), 2018. 11

[6] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen Koltun, and Alexey Dosovitskiy. End-to-end driving via conditional
imitation learning. In Proc. IEEE International Conf. on Robotics and Automation (ICRA), 2018. 7

[7] Felipe Codevilla, Eder Santana, Antonio M. López, and Adrien Gaidon. Exploring the limitations of behavior cloning for autonomous
driving. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019. 6, 7, 10

[8] Harm de Vries, Florian Strub, Jérémie Mary, Hugo Larochelle, Olivier Pietquin, and Aaron C. Courville. Modulating early visual
processing by language. In Advances in Neural Information Processing Systems (NIPS), 2017. 2

[9] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet: A large-scale hierarchical image database. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2009. 7, 9

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv.org, 2010.11929, 2020. 1

[11] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron Courville. Adver-
sarially learned inference. In Proc. of the International Conf. on Learning Representations (ICLR), 2017. 2

[12] Angelos Filos, Panagiotis Tigas, Rowan McAllister, Nicholas Rhinehart, Sergey Levine, and Yarin Gal. Can autonomous vehicles
identify, recover from, and adapt to distribution shifts? In Proc. of the International Conf. on Machine learning (ICML), 2020. 8

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016. 2

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. of the International Conf. on Learning
Representations (ICLR), 2015. 9

[15] Peilun Li, Xiaodan Liang, Daoyuan Jia, and Eric P. Xing. Semantic-aware grad-gan for virtual-to-real urban scene adaption. arXiv.org,
1801.01726, 2018. 8

[16] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Proc. of the International Conf. on Learning Represen-
tations (ICLR), 2019. 9

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NIPS), 2019. 2, 9

[18] Aditya Prakash, Aseem Behl, Eshed Ohn-Bar, Kashyap Chitta, and Andreas Geiger. Exploring data aggregation in policy learning
for vision-based urban autonomous driving. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. 5

[19] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fusion transformer for end-to-end autonomous driving. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021. 3, 6, 8, 10

[20] Di Qi, L. Su, Jia Song, E. Cui, Taroon Bharti, and Arun Sacheti. Imagebert: Cross-modal pre-training with large-scale weak-
supervised image-text data. arXiv.org, 2001.07966, 2020. 1

[21] Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and structured prediction to no-regret online
learning. In Conference on Artificial Intelligence and Statistics (AISTATS), 2011. 5

[22] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and Cordelia Schmid. Videobert: A joint model for video and language
representation learning. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019. 1

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems (NIPS), pages 5998–6008, 2017. 1

[24] Nicholas Watters, Loı̈c Matthey, Christopher P. Burgess, and Alexander Lerchner. Spatial broadcast decoder: A simple architecture
for learning disentangled representations in vaes. In Proc. of the International Conf. on Learning Representations (ICLR) Workshops,
2019. 9

