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Abstract. In this supplementary document, we provide further insights
and details about our novel multi-scale optimization scheme. In particu-
lar, we prove the adjointness of the transformation matrices of the primal
and dual update steps of the unrolled optimization. Moreover, we detail
the upsampling operators of the multi-scale scheme and show further
examples of learned shape priors across different scale levels. Finally, we
present additional experimental results which emphasize the fact that
our method with unrolled optimization performs well when trained on
little data, while traditional fully convolutional networks fail to reach
comparable accuracy levels when trained with the same amount of data.

1 Multi-scale Optimization Scheme

This section provides additional details of our proposed multi-scale optimization
scheme.

Derivation and Intuition. As described in the paper, the main energy in a
single-scale setting can be numerically minimized using the first-order primal-
dual (PD) algorithm in [1] with the following update steps:

1. νt+1 = νt + σ
(∑

`
ūt` − 1

)
3. ut+1 = Π[0,1]

[
ut + τ(W ∗ξt+1 − f)

]
2. ξt+1 = Π‖·‖≤1

[
ξt + σWūt

]
4. ūt+1 = 2ut+1 − ut (1)

Step 1 updates the Lagrangian dual variable which ensures the simplex con-
straint on the objective. Step 4 is an extrapolation step which speeds up the
optimization and which is necessary to ensure convergence. The important steps
of the algorithm are steps 2 and 3 which represent a (projected) gradient descent
in the primal variable and a (projected) gradient ascent in the dual variable.

Remember, that W is a generalized learned gradient operator. Therefore, a
good way to get intuition on the behaviour of W is to think in terms of classic
gradient ascent (resp. descent) in step 2. (resp. step 3), without projection. That
is, in step 2, the original gradient ascent scheme, without projection, was defined
as

ξt+1 = ξt + σ∇ūt (2)

? These authors share first authorship.
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In the multi-scale setting we have multiple versions of variables at different
resolution scales s. The idea is to combine the gradient updates of the current
resolution with the ones from the coarser scale with a linear combination:

ξt+1
s = ξts + σ

(
∇ssūts + Uss+1∇ss+1ū

t
s+1

)
(3)

where ∇ss is the gradient operator on the current resolution, ∇ss+1 is the gradient
operator on the coarser scale and Uss+1 is the upsampling operator in order to
combine the two terms at the current scale level. This combined gradient ascent
scheme then follows the deepest ascent directions of both resolution levels at
the same time. Now, we can go back and replace the gradient operator with our
proposed generalized matrix W and reintroduce the projection to arrive at the
equation we presented in the paper:

ξt+1
s = Π‖·‖≤1

[
ξts + σ

(
W s
s ū

t
s + Uss+1W

s
s+1ū

t
s+1

)]
(4)

Here, it is important to note that we learn the matrices W implicitly also their
scaling which defines the relative contribution of the two ascent steps. Without
the learned weighting of these terms this gradient ascent scheme is unlikely to
work. The derivation of the primal update step with the gradient descent is
analogous.

The proposed multi-scale optimization incorporates information from coarser
resolution levels (if available) in order to perform the update step. This leads to
a weighted sum of gradient-based updates for the current and the next coarser
resolution. In addition, the learned weights also regulate the step size of individ-
ual gradient descent and ascent steps which are crucial for algorithmic efficiency
and to ensure convergence. An example of learned weights for different scale lev-
els is given in Figure 1. Note that due to the learned weights, we cannot give any
convergence guarantees for our multi-scale optimization. A necessary condition
for the convergence of the primal-dual algorithm is however the adjointness of
the primal and dual updates which we show in the following.

Adjointness of Update Steps in Primal-Dual Algorithm. In order to
apply the primal-dual algorithm [1], the minimization problem over the voxel
labeling u is first transformed into a saddle point problem by introducing a dual
variable which results from replacing the norm in the TV-regularization by its
Legendre-Fenchel dual. In a discretized setting, we obtain

‖Wu‖1 = max
‖ξ‖∞≤1

〈Wu, ξ〉 . (5)

The algorithm further uses the adjoint W ∗ of matrix W to transfer the differen-
tial operator from the primal to the dual variable:

〈Wu, ξ〉 = 〈u,W ∗ξ〉 . (6)

This leads to the property that the primal and dual gradient terms in the up-
date equations of the algorithm must be adjoint. For our novel multi-resolution
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scheme, this property is not obvious and we therefore show the adjointness of
the update steps in the following. The update steps for the multi-resolution
optimization in the main paper are as follows:

ξt+1
s = Π‖·‖≤1

[
ξts + σ

(
W s
s ū

t
s + Uss+1W

s
s+1ū

t
s+1

)]
(7)

ut+1
s = Π[0,1]

[
uts + τ

(
W s∗
s ξt+1

s + U
s

s+1W
s∗
s+1ξ

t+1
s+1

)
+ τ

(
νt+1 − f

) ]
(8)

ūt+1 = 2ut+1 − ut (9)

where Uss+1 is the upsampling operator from scale s + 1 to scale s in the space

of dual variables, and U
s

s+1 is the upsampling operator in the space of primal
variables. A necessary condition for viability of the primal-dual algorithm is
therefore the following proposition.

Proposition 1 (Adjointness of Multi-scale Primal-dual Updates). The
transformation matrices of the multi-resolution primal dual updates

W s
s ū

t
s + Uss+1W

s
s+1ū

t
s+1 and W s∗

s ξt+1
s + U

s

s+1W
s∗
s+1ξ

t+1
s+1 (10)

are adjoint operators.

Proof. We first rewrite the dual update step as a single matrix vector multipli-
cation by stacking the matrices and vectors

〈 (
W s
s Uss+1W

s
s+1

)(
ūts ūts+1

)T
,

(
Is Uss+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(11)

=
〈 (

Is Uss+1

)(
W s
s W s

s+1

)(
ūts ūts+1

)T
,

(
Is Uss+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(12)

=
〈 (

W s
s W s

s+1

)(
ūts ūts+1

)T
,
(
Is Uss+1

)∗(
Is Uss+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(13)

=
〈 (

W s
s W s

s+1

)(
ūts ūts+1

)T
,

(
Is Is+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(14)

=
〈 (

ūts ūts+1

)T
,

(
W s∗
s W s∗

s+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(15)

where Is is the identity at scale s. The transitions from (13) to (14) is due to
the fact that since our upsampling uses a copy operator to go from scale s+ 1 to
scale s, its adjoint is the corresponding downsampling operator. We can conclude
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with a similar reasoning:〈 (
ūts ūts+1

)T
,

(
W s∗
s W s∗

s+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(16)

=
〈 (

ūts ūts+1

)T
,

(
Is Is+1

)(
W s∗
s W s∗

s+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(17)

=
〈 (

ūts ūts+1

)T
,
(
Is U

s

s+1

)∗(
Is U

s

s+1

)(
W s∗
s W s∗

s+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(18)

=
〈 (

Is U
s

s+1

)(
ūts ūts+1

)T
,

(
Is U

s

s+1

)(
W s∗
s W s∗

s+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(19)

=
〈 (

Is U
s

s+1

)(
ūts ūts+1

)T
,

(
W s∗
s U

s

s+1W
s∗
s+1

)(
ξt+1
s ξt+1

s+1

)T 〉
(20)

This proves the proposition. ut

Upsampling Operators. Note that the upsampling operators Uss+1, U
s

s+1 op-
erate on different dimensions and spaces, respectively in the dual space and
in the primal space. As shown above, they are also adjoint operators and, in
our setting, the adjointness corresponds to a matrix transpose. For upsampling
the primal and dual variables, we duplicate the values of coarser voxels on the
finer resolution level. Let the weight matrix be W s

s ∈ R2−sM×2−sN and W s
s+1 ∈

R2−(s+1)M×2−(s+1)N , then the upsampling matrix Uss+1 ∈ R2−sM×2−(s+1)M is bi-
nary and contains ones only when voxel indices j in the coarse grid correspond
to voxel indices i in the finer grid:

(Uss+1)ij =

{
1 if i = upSampleIdx(j)

0 otherwise
(21)

For a given voxel index of a coarser resolution level, the function upSampleIdx(·)
returns the corresponding index in the upsampled, next finer voxel grid.

The second upsampling operator U
s

s+1 is similarly defined with the difference

being that U
s

s+1 ∈ R2−sN×2−(s+1)N .
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Fig. 1: Learned multi-scale 3D shape priors for label transitions to free space. The
influence of the current and successive finer resolution to the update of the primal and
dual variables has similar magnitude (e.g., similar magnitude of W 0

0 and W 0
1 contribut-

ing to update of ut+1
s and ξt+1

s ), while the overall magnitude of the weights between
different levels are increasing with higher scales to account for the different resolutions
(e.g., W 0

0 < W 1
0 < W 2

0 ). Note that the step sizes of the primal-dual algorithm and
the weighting between data cost and regularization are factored into W . In contrast
to manually choosing these hyper-parameters as in traditional approaches, our method
learns the balancing of these parameters automatically from data.

2 Additional 2D Segmentation Results
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Fig. 2: Per-label ac-
curacies for the se-
mantic segmentations
on synthetic images.

In Figure 3 we present additional qualitative results of
the 2D experiments we used to study and assess the be-
havior of our model. In this series of examples we can
see the various benefits that our approach to segmen-
tation gains over traditional TV-L1 approaches. The
first is the capacity to propagate information through
large region with missing data (see for instance exam-
ple 3). A second useful benefit is that our method is
able to adapt the segmentation to the labels. In tra-
ditional TV-L1, the regularizer looks for the minimal
boundary between different labels. This may lead to
unrealistic segmentations. Our approach on the other
hand incorporates shape priors in its regularizer, which
leads to more accurate segmentations (see,e.g., image
2). Finally, our method learns sophisticated label inter-
actions and ordering such as the fact that a roof can
only exist above a building (see image 6).

Figure 2 depicts a per-label accuracy plot for the 2D
semantic segmentation experiments on synthetic data.
It demonstrates that our learned semantic priors are
much more useful for scene completion and denoising
than the isotropic TV prior which does account for geometric nor semantic pixel
neighborhood relationships.
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Fig. 3: 2D semantic segmentations on synthetic images. Our method is capable
of filling-in missing regions for shape completion. In case of image 6, our method is
able to hallucinate a building below the observation of a roof, even though all data
supporting the building is missing. This demonstrates the strong label interactions
that our method is able to learn (roof can only be located on top of building).
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3 Additional 3D Reconstruction Results

3.1 Quantitative Results

We present additional quantitative results for 3D reconstruction in Tab. 1. More
specifically, we introduce some other baseline against which we compare our
method. First of all, we present accuracy results for a solution extracted from
the input datacost (entry Input data in Tab. 1. We then trained our method
without unrolled optimization. This corresponds to a classic fully convolutional
network with alternating convolution layers and ReLU activation layers. We
trained this network on 300 scenes, but also on only 5 scenes which were selected
by choosing the 5 training scenes with the largest variety of present semantic
labels. The results are presented at the entry Ours-5 (0 it.) and Ours-300 (0
it.) in Tab. 1. We can see that this fully convolutional approach obtains good
results when trained on 300 scenes, with an overall accuracy of 97.3%, though
lower than our approach trained on 300 scenes. What is more interesting, is
that the resutls are considerably degraded when trained on only 5 scenes, with
overall accuracy of 65.1%, where our approach still reaches an overall accuracy
of 96.7%. This illustrates how our method with unrolled optimization can learn
strong models from little data.

Methods O
v
e
ra

ll

F
re
e
sp

a
c
e

O
c
c
u
p
ie
d

S
e
m
a
n
ti
c

Input data 59.8 39.1 99.7 68.4
TV-L1 (50 it.) 92.8 71.0 91.4 87.8
TV-L1 (500 it.) 95.8 86.4 92.3 88.5
C2F (50 it.) 21.0 26.7 99.9 31.4
Ours-5 (0 it.) 65.1 98.0 83.5 76.2
Ours-5 (50 it.) 96.7 95.8 93.9 86.4
Ours-300 (0 it.) 97.3 97.6 92.3 90.2
Ours-300 (50 it.) 98.7 98.6 94.4 91.5

Table 1: 3D Reconstruction accuracy for ScanNet [2]. The table reproduces the
table from Fig. 7 in the paper, with the additional results for “Ours-5 (0 it.)” corre-
sponding to our method without unrolled optimization trained on 5 scenes only. These
results show that the variational unrolling significantly helps the network to generalize
from very small amounts of training data and generally improves the overall perfor-
mance.

3.2 Qualitative Results

In Figures 4, 5, 6, and 7 we show additional 3D reconstruction results for the
ScanNet [2] dataset and outdoor scenes used in [3]. The reconstructions of our
method are often more complete than the ground truth scene as our model learns



8 I. Cherabier, J.L. Schönberger, M.R. Oswald, M. Pollefeys, A. Geiger

G
ro

u
n
d

T
ru

th
T
V
-L

1
(5

0
0
it
.)

O
u
rs
-3
0
0
(5

0
it
.)

O
u
rs
-3
0
0
(0

it
.)

O
u
rs
-5

(5
0
it
.)

O
u
rs
-5

(0
it
.)

Fig. 4: 3D reconstruction results for ScanNet [2] for different types of scenes and
methods.

how to interpolate missing data, resulting in plausible and visually pleasing
semantic 3D reconstruction results compared to the incomplete scans provided
as ground truth. While classic fully convolutional network (our method without
unrolled optimization) work well when trained on all 300 scenes, a significant
loss in performance can be observed when trained on only 5 scenes. In Figure 7,
we compare results of our approach with and without unrolled optimization, and
see that the later helps with removing strong artifacts.

3.3 Application on SUNCG Data

We tested our method on the more challenging task of single view reconstruction
by applying it to the synthetic indoor dataset SUNCG [4]. We wish first to stress
that [4] solve a different problem than ours: they use a non-semantic TSDF as
input and tune their approach for single view reconstruction. Our approach on
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Fig. 5: 3D reconstruction results for ScanNet [2] for different types of scenes and
methods.

the other hand requires a multi-label input datacost, and is inherently adapted
to a multi-view setting as it works by denoising and propagating data, rather
than hallucinating new structures. Since we have neither tuned nor designed our
method for such applications, this explains that the results are worse. We trained
our multi-scale approach for 50 iterations and 3 scales on 500 views from SUNCG
for 1770 epochs, and tested on 74 views. Results are presented in table 2.

The results support our intuition that our method is better suited for multi-
view 3D reconstruction. We can see especially that it is more difficult to obtain
good semantic accuracies.
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Fig. 6: 3D reconstruction results for ScanNet [2] for different types of scenes and
methods.

Table 2: Accuracies of our network on SUNCG data [4]

Method Overall Freespace Occupied Semantic

Ours-500 (50it - 3 level) 82.2 84.0 90.1 70.5
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Fig. 7: 3D reconstruction results for Outdoor scenes. We use the results from [3]
as a groundtruth, and learn how to reproduce them. The results for TV-L1 with 1000
iterations correspond to convergence case. These results show that the absence of shape
priors lead to incorrect reconstruction, such as the absence of ground. We can see that
the results of our method without unrolled optimization can achieve good denoising,
but with strong remaining artifacts for the left and right scene, or mislabeling in the
case of the middle scene. Our approach with unrolled optimization overcomes these
difficulties.
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3. Häne, C., Zach, C., Cohen, A., Angst, R., Pollefeys, M.: Joint 3d scene reconstruc-
tion and class segmentation. In: Proc. Conference on Computer Vision and Pattern
Recognition (CVPR) (2013)

4. Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene
completion from a single depth image. Proc. Conference on Computer Vision and
Pattern Recognition (CVPR) (2017)


