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Abstract

In this paper we propose an affordable solution to self-
localization, which utilizes visual odometry and road maps
as the only inputs. To this end, we present a probabilis-
tic model as well as an efficient approximate inference al-
gorithm, which is able to utilize distributed computation
to meet the real-time requirements of autonomous systems.
Because of the probabilistic nature of the model we are
able to cope with uncertainty due to noisy visual odometry
and inherent ambiguities in the map (e.g., in a Manhattan
world). By exploiting freely available, community devel-
oped maps and visual odometry measurements, we are able
to localize a vehicle up to 3m after only a few seconds of
driving on maps which contain more than 2,150km of driv-
able roads.

1. Introduction
Self-localization is key for building autonomous systems

that are able to help humans in everyday tasks. Despite
decades of research, it is still an exciting open problem. In
this paper we are interested in building affordable and ro-
bust solutions to self-localization for the autonomous driv-
ing scenario. Currently, the leading technology in this set-
ting is GPS. While being a fantastic aid for human driv-
ing, it has some important limitations in the context of au-
tonomous systems. Notably, the GPS signal is not always
available, and its localization can become imprecise (e.g.,
in the presence of skyscrapers, tunnels or jammed signals).
While this might still be viable for human driving, conse-
quences can be catastrophic for self-driving cars.

To provide alternatives to GPS localization, place recog-
nition approaches have been developed. They assume that
image or depth features from anywhere around the globe
can be stored in a database, and cast the localization prob-
lem as a retrieval task. Both 3D point clouds [5, 7, 10, 20]
and visual features [2, 3, 11, 15, 16, 24] have been lever-
aged to solve this problem. In combination with GPS, im-
pressive results have been demonstrated (e.g., the Google
self-driving car). However, it remains unclear if main-

Figure 1. Visual Self-Localization: We demonstrate localizing
a vehicle with an average accuracy of 3.1m within a map of ∼
2, 150km of road using only visual odometry measurements and
freely available maps. In this case, localization took less than 21
seconds. Grid lines are every 2km.

taining an up-to-date world representations will be feasi-
ble given the computation, memory and communication re-
quirements. Furthermore, these solutions are far from af-
fordable as every corner of the world needs to be visited
and updated constantly. Finally, privacy and security issues
need to be considered as the recording and storage of such
data is illegal in some countries.

In contrast to the above mentioned approaches, here we
tackle the problem of self-localization in places that we
have never seen before. We take our inspiration from hu-
mans, which excel in this task while having access to only
a rough cartographic description of the environment. We
propose to leverage the crowd, and exploit the development
of OpenStreetMap (OSM), a free community-driven map,
for the task of vision-based localization. The OSM maps
are detailed and freely available, making this an inexpen-
sive solution. Moreover, they are more frequently updated
than their commercial counterparts. Towards this goal, we
derive a probabilistic map localization approach that uses
visual odometry estimates and OSM data as the only inputs.
We demonstrate the effectiveness of our approach on a va-
riety of challenging scenarios making use of the recently
released KITTI visual odometry benchmark [8]. As our ex-
periments show, we are able to localize ourselves after only
a few seconds of driving with an accuracy of 3 meters on a
18km2 map containing 2, 150km of drivable roads.
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Figure 2. Evolution of OpenStreetMap coverage from 2006-
2012: As of 2012, over 3 billion GPS track points have been added
and 1.6 billion nodes / 150 million line segments have been created
by the community. Here we use OSM maps and visual odometry
estimates as the only inputs for localizing within the map.

2. Related Work

Early approaches for map localization [5, 7, 10, 20]
make use of Monte Carlo methods and the Markov assump-
tion to maintain a sample-based posterior representation of
the agent’s pose. However, they only operate locally with-
out providing any global (geographic) positioning informa-
tion and thus can not be applied to the problem we consider
here. Furthermore, they are typically restricted to small-
scale environments and low-noise laser-scan observations.

At a larger scale, place recognition methods localize
[2, 11, 16, 24] or categorize [22, 23, 27] an image, given a
database of geo-referenced images or video streams [3, 15].
While processing single landmarks is clearly feasible, cre-
ating an up-to-date “world database” seems impractical due
to computational and memory requirements. In contrast, the
maps used by our localization approach require only a few
gigabytes for storing the whole planet earth1.

Relative motion estimates can be obtained using visual
odometry [19], which refers to generating motion estimates
from visual input alone. While current implementations
[1, 9, 14] demonstrate impressive performance [8], their
incremental characteristics inevitably leads to large drift at
long distances. Methods for Simultaneous Localization And
Mapping (SLAM) [18, 25, 6] are able to reduce this drift by
modelling the map using landmarks and jointly optimizing
over poses and landmarks. Limitations in terms of speed
and map size have been partially overcome, for example
by efficient optimization strategies using incremental sparse
matrix factorization [13] or the use of relative representa-
tions [17]. Furthermore, recent progress in loop-closure de-
tection [4, 21, 26] has led to improved maps by constrain-
ing the problem at places which have been visited multiple
times. However, SLAM methods can only localize them-
selves in maps that have been previously created with a sim-
ilar sensor setup, hence strongly limiting their application
at larger scales. In contrast, the proposed approach enables
geographic localization and relies only on freely available
map information (i.e., OpenStreetMap). To our knowledge,
ours is the first approach in this domain.

1http://wiki.openstreetmap.org/wiki/planet.osm

3. Visual Localization
We propose to use one or two roof-mounted cameras to

self-localize a driving vehicle. The only other information
we have is a map of the environment in which the vehicle is
driving. This map contains streets as line segments as well
as intersection points. We exploit visual odometry in or-
der to obtain the trajectory of the vehicle. As this trajectory
is too noisy for direct shape matching, here we propose a
probabilistic approach to self-localization that employs vi-
sual odometry measurements in order to determine the in-
stantaneous position and orientation of the vehicle in a given
map. Towards this goal, we first define a graph-based rep-
resentation of the map as well as a probabilistic model of
how a vehicle can traverse the graph. For inference, we de-
rive a filtering algorithm, which exploits the structure of the
graph using Mixtures of Gaussians. In order to keep running
times reasonable, we further propose techniques for limiting
the complexity of the mixture models which includes an al-
gorithm for simplifying the Gaussian Mixture models. We
start our discussion by presenting the employed map infor-
mation, followed by our probabilistic model.

3.1. The OpenStreetMap Project

Following the spirit of Wikipedia, Steve Coast launched
the OpenStreetMap (OSM) project in 2004 with the goal
of creating a free editable map of the world. So far, more
than 800,0002 users around the globe have contributed by
supplying tracks from portable GPS devices, labeling ob-
jects using aerial imagery or providing local information.
Fig. 2 illustrates the tremendous growth of OSM over the
last years. Compared to commercial products like Google
Maps, the provided data is more up-to-date, often includes
more details (e.g., street types, traffic lights, postboxes,
trees, shops, power lines) and – most importantly – can be
freely downloaded and used under the Open Database Li-
cense. We extracted all crossings and drivable roads (rep-
resented as piece-wise linear segments) connecting them.
For each street we additionally extract its type (i.e., high-
way or rural) and the direction of traffic. By splitting each
bi-directional street into two one-way streets and ’smooth-
ing’ intersections using circular arcs, we obtain a lane-based
map representation, on which we define the vehicle state.

3.2. Lane-based Map Representation

We assume that the map data is represented by a directed
graph where nodes represent street segments and edges de-
fine the connectivity of the roads. Roads which dead-end or
run off the edge of the map are connected to a “sink” node.
As mentioned above, we convert all street segments to one-
way streets. An example of a map and corresponding graph
representation is shown in Fig. 3 (left). Each street segment

2http://wiki.openstreetmap.org/wiki/stats
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Figure 3. Map Graph: (left) A simple map and its corresponding
graph representation. Street Segment: (right) Each street segment
has a start and end position p0 and p1, a length `, an initial head-
ing of the street segment β and a curvature parameter α. For arc
segments c is the circle center, r is the radius and ψ0 and ψ1 are
the start and end angles of the arc.

is either a linear or a circular arc segment. The parame-
ters of the street segment geometry are described in Fig. 3
(right). We define the position and orientation of a vehicle
in the map in terms of the street segment u that the vehi-
cle is on, the distance from the origin of that street segment
d and the offset of the local street heading θ. The global
heading of the vehicle is then θ+ β +αd and its position is
`−d
` p0+ d

`p1 for a linear segment and c+rd( `−d` ψ0+ d
`ψ1)

for a circular arc segment, with d(θ) = (cos θ, sin θ)T .

3.3. State-Space Model

We define the state of the model at time t to be xt =
(ut, st) where st = (dt, d̂t−1, θt, θ̂t−1)T and d̂t−1, θ̂t−1
are the distance and angle at the previous time defined rel-
ative to the current street ut. Visual odometry observations
at time t, yt, measure the linear and angular displacement
from time t− 1 to time t. We thus model

p(yt|xt) = N (yt|Mutst,Σ
y
ut

) (1)

where Mu = [md,mθ]
T , md = (1,−1, 0, 0)T and mθ =

(αu,−αu, 1,−1)T . The curvature of the street, αu, is nec-
essary because the global heading of the vehicle depends
on both d and θ. We factorize the state transition distribu-
tion p(xt|xt−1) = p(ut|xt−1)p(st|ut,xt−1) in terms of the
street transition probability p(ut|xt−1), and the state tran-
sition model p(st|ut,xt−1). The state transition model is
assumed to be Gauss-Linear, taking the form

p(st|ut,xt−1) = N (st|Aut,ut−1st−1 + but,ut−1 ,Σ
x
ut

)
(2)

with Σx
ut

the covariance matrix for a given ut which is
learned from data as discussed in Section 4. We use a
second-order, constant velocity model for the change in d
and a first order autoregressive model, i.e., AR(1), for the
angular offset θ. That is, dt = dt−1 + (dt−1 − d̂t−2) plus
noise, and θt = γut−1

θt−1 plus noise where γut−1
∈ [0, 1]

is the parameter of the AR(1) model which controls the cor-
relation between θt and θt−1. In practice, we found these

models to be both simple and effective. Because the com-
ponents of st are relative to the current street, ut, when
ut 6= ut−1 the state transition model must be adjusted so
that st becomes relative to ut. Both dt and d̂t−1 must have
`ut−1 subtracted, and θ̂t−1 needs to be updated so that θ̂t−1
relative to ut has the same global heading as θt−1 relative
to ut−1. The above model can then be expressed as

Aut,ut−1 =




2 −1 0 0
1 0 0 0
0 0 γut 0
0 αut−1 − αut 1 0


 (3)

but,ut−1
=

{
−(`ut−1

, `ut−1
, 0, θut,ut−1

)T ut 6= ut−1

(0, 0, 0, 0)T ut = ut−1
(4)

where θut,ut−1 = βut − (βut−1 + αut`ut−1) is the angle
between the end of ut and the beginning of ut−1.

The street transition probability p(ut|xt−1) defines the
probability of transitioning onto the street ut given the pre-
vious state xt−1. We use the Gaussian transition dynamics
to define the probability of changing street segments, i.e.,

p(ut|xt−1) = ξut,ut−1

∫ `ut−1
+`u

`ut−1

N (x|aTd st−1,aTd Σx
ut−1

ad)dx

(5)
where ad = (2,−1, 0, 0),

ξut,ut−1
=





1 ut = ut−1
1

|N(uj)| ut ∈ N(ut−1)

0 otherwise

(6)

and N(u) is the set of streets to which u connects.
As short segments cannot be jumped over in a single time

step, we introduce “leapfrog” edges which allow the vehicle
to move from ut−1 to any ut to which there exists a path in
the graph. To handle this properly, we update the entries
of but,ut−1 to consider transitioning over a longer path and
ξut,ut−1 is the product ξ along the path. As the speed of the
vehicle is assumed to be limited, we need to add edges only
up to a certain distance. Assuming a top speed of around
110km/h and observations every second, we add leapfrog
edges for paths of up to 30m.

3.4. Inference

Given the above model we wish to compute the filtering
distribution, p(xt|y1:t). We can write the posterior using
the product rule as p(xt|y1:t) = p(st|ut,y1:t)p(ut|y1:t),
where p(ut|y1:t) is a discrete distribution over streets and
p(st|ut,y1:t) is a continuous distribution over the position
and orientation on a given street. We choose to represent
p(st|ut,y1:t) using a Mixture of Gaussians, i.e.,

p(st|ut,y1:t) =

Nut∑

i=1

π(i)
ut
N (st|µ(i)

ut
,Σ(i)

ut
) (7)



Algorithm 1 Filter
1: Input: Posterior at t−1, {P t−1

u ,Mt−1
u }, and observation, yt

2: Initialize mixtures,Mt
u ← ∅, for all u

3: for all streets ut−1 do
4: for all streets ut reachable from ut−1 do
5: for k = 1, . . . , |Mt−1

ut−1
| do

6: if p(ut|ut−1, st−1) is approx. constant then
7: Analytically approx. cpredN (µpred,Σpred)
8: else
9: Sample to compute cpredN (µpred,Σpred)

10: Incorporate yt to compute cupdN (µupd,Σupd)
11: AddN (µupd,Σupd) toMt

ui
with weight cupd

12: for all streets u do
13: Set P t

u to the sum of the weights of mixtureMt
u

14: Normalize the weights of mixtureMt
u

15: Normalize P t
u so that

∑
u P

t
u = 1.

16: Return: Posterior at t, {P t
u,Mt

u}

where Nut
is the number of components for the mixture as-

sociated with ut and Mt
ut

= {π(i)
ut , µ

(i)
ut ,Σ

(i)
ut }

Nut
i=1 are the

parameters of the mixture for ut. This is a general and pow-
erful representation but still allows for efficient and accurate
inference. Assuming independent observations given the
states and that the state transitions are first order Markov,
we write the filtering distribution recursively as

p(xt|y1:t) =

∫
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
p(xt−1|y1:t−1)dxt−1

(8)
which, after factoring p(xt−1|y1:t−1), gives

p(xt|y1:t) =
∑

ut−1

Put−1

Zt
p(yt|xt)

∫
p(st|ut, ut−1, st−1)

× p(ut|ut−1, st−1)p(st−1|ut−1,y1:t−1)dst−1

(9)

where Put−1
= p(ut−1|y1:t−1) and Zt = p(yt|y1:t−1).

Substituting in the mixture model form of
p(st−1|ut−1,y1:t−1), and the model transition dynamics
the integrand in the above equation becomes
N∑

i=1

π(i)

∫
p(ut|ut−1,st−1)N (st|Ast−1 + b,Σx)

× N (st−1|µ(i),Σ(i))dst−1 .

(10)

In general, the integral in Eq. (10) is not analytically
tractable. However, if p(ut|ut−1, st−1) were constant
the integral could be solved easily. In our model
p(ut|ut−1, st−1) is the Gaussian CDF and has a sigmoidal
shape. Because of this, it is approximately constant every-
where except near the transition point of the sigmoid. We
determine whether p(ut|ut−1, st−1) can be considered con-
stant and, if so, use an analytical approximation. Other-
wise, we use a Monte Carlo approximation, drawing sam-
ples from N (st−1|µ(i),Σ(i)). Finally the observation yt is
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Figure 4. Simplification Threshold: Impact of the simplification
threshold ε on localization accuracy (left) and computation time
(right). We use ε = 10−2 for all other experiments.
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Figure 5. Map Size: Driving time (left) and distance travelled
(right) before localization as a function of the map size.

incorporated by multiplying two Gaussian PDFs. This algo-
rithm can also be parallelized by assigning subsets of streets
to different threads, a fact which we exploit to achieve real-
time performance. Appendix A gives more details and the
filtering process is summarized in Algorithm 1.

3.5. Managing Posterior Complexity

The previous section provides a basic algorithm to com-
pute the filtering distributions recursively. Unfortunately, it
is impractical as the complexity of the posterior (i.e., the
number of mixture components) grows exponentially with
time. To alleviate this, we propose three approximations
which limit the resulting complexity of the posterior. We
have found these approximations to work well in practice
and to significantly reduce computational costs.

First, for each pair of connected streets, the modes that
transition from ut−1 to ut are all likely similar. As such, all
of the transitioned modes are replaced with a single com-
ponent using moment matching. Second, eventually most
streets will have negligible probability. Thus, we truncate
the distribution for streets whose probability p(ut|y1:t) is
below a threshold and discard their modes. We use a con-
servative threshold of 10−50. Finally, the number of compo-
nents in the posterior grows with t. Many of those compo-
nents will have small weight and be redundant. To prevent
this from happening, we run a mixture model simplification
procedure when the number of modes on a street segment
exceeds a threshold. This procedure removes components
and updates others while keeping the KL divergence below
a threshold ε. Details of this approximation can be found
in Appendix B, and the effects of varying the maximum al-
lowed KL divergence, ε, are investigated in the experiments.



00 01 02 03 04 05 06 07 08 09 10 Average

Position Error

M 15.6m * 8.1m 18.8m * 5.6m * 15.5m 45.2m 5.4m * 18.4m
S 2.1m 3.8m 4.1m 4.8m * 2.6m * 1.8m 2.4m 4.2m 3.9m 3.1m
G 1.8m 2.5m 2.2m 6.9m * 2.7m * 1.5m 2.0m 3.8m 2.5m 2.4m
O 0.8m 1.3m 1.0m 2.5m 3.9m 1.3m 1.0m 0.6m 1.1m 1.2m 1.1m 1.44m

Heading Error
M 2.0◦ * 1.5◦ 2.4◦ * 2.0◦ * 1.3◦ 10.3◦ 1.6◦ * 3.6◦

S 1.2◦ 2.7◦ 1.3◦ 1.6◦ * 1.4◦ * 1.9◦ 1.2◦ 1.3◦ 1.3◦ 1.3◦

G 1.0◦ 1.0◦ 0.8◦ 1.4◦ * 1.2◦ * 1.5◦ 1.0◦ 0.9◦ 1.0◦ 1.0◦

Table 1. Sequence Errors: Average position and heading errors for 11 training sequences. “M” and “S” indicate monocular and stereo
odometry, “G” GPS-based odometry and “O” is the oracle error, i.e., the error from projecting the GPS positions onto the map. Chance
performance is 397m. All averages are computed over localized frames (see text) and “*” indicates sequences which did not localize.

4. Experimental Evaluation
To evaluate our approach in realistic situations, we per-

formed experiments on the recently released KITTI bench-
mark for visual odometry [8]. We utilize the 11 training
sequences for quantitative evaluation (where ground truth
GPS data is available), and perform qualitative evaluation
on both training and test sequences (see Supplemental Ma-
terial). This results in 39.2km of driving in total. The visual
odometry input to our system is computed using LIBVISO2
[9], a freely available library for monocular and stereo vi-
sual odometry. To speed up inference, we subsample the
data to a rate of one frame per second. Slower rates were
found to suffer from excessive accumulated odometry er-
ror. For illustration purposes, here we extracted mid-size
regions of OpenStreetMap data which included the true tra-
jectory and the surrounding region. On average, they cover
an area of 2km2 and contain 47km of drivable roads. It is
important to note that our method also localizes success-
fully on much larger maps, see Fig. 1 for example, which
covers 18km2 and contains 2,150km of drivable roads. We
set the simplification threshold to ε = 10−2 which is ap-
plied when the number of mixture components for a seg-
ment is greater than one per 10m segment length.

Quantitative Evaluation: Quantitative results can be
found in Table 1, with corresponding qualitative results
shown in Fig. 7. Here, “M” and “S” indicate results using
monocular and stereo visual odometry respectively. In addi-
tion, we computed odometry measurements from the GPS
trajectories (entry “G” in the table) and ran our algorithm
using the learned parameters from the stereo data. Note that
this does not have access to absolute positions, but only rel-
ative position and orientation with respect to the previous
frame. We also projected the GPS data onto the map data
and measured the error produced by this projection. These
errors, reported as “O” for oracle, are a lower bound on the
best possible error to be achieved using the given map data.
Note for some cases this error can be significant, as the map
data does not account for lane widths, number of lanes or in-
tersection sizes. Finally, we compute chance performance
to be 397m by computing the average distance of the GPS

data to the mean road position of each map.
We used the projected GPS data to learn the small num-

ber of model parameters. In particular, the street state evo-
lution noise covariance Σx

u, the angular AR(1) parameter
γu and the observation noise Σy

u were estimated using max-
imum likelihood. We learn different parameters for high-
ways and city/rural roads as the visual odometry performs
significantly worse at higher speeds.

The accuracy of position and heading estimates is not
well defined until the posterior has converged to a single
mode. Thus, we only compute accuracy once a sequence
has been localized. All results are divided into two tempo-
rally contiguous parts: unlocalized and localized. We define
a sequence to be localized when for at least five seconds
there is a single mode in the posterior and the distance to
the ground truth position from that mode is less than 20 me-
ters. Once the criteria for localization is met, all subsequent
frames are considered localized. Errors in global position
and heading of the MAP state for localized frames were
computed using the GPS data as ground truth. Sequences
which did not localize are indicated with a “*” in Table 1.

Overall, we are able to estimate the position and head-
ing to 3.1m and 1.3◦ using stereo visual odometry. Note
that this comes very close to the average oracle error of
1.44m, the lower bound on the achievable error induced
by inaccuracies in the OpenStreetMap data! These results
also outperform typical consumer grade navigation systems
which offer accuracies of around 10 meters at best. Fur-
thermore, errors are comparable to those achieved using the
GPS-based odometry, suggesting the applicability and util-
ity of low-cost vision-based sensors for localization. Using
monocular odometry as input performs worse, but is still
accurate to 18.4m and 3.6◦, once it is localized. However,
due to its stronger drift, it fails to localize in some cases as in
sequence 01. This sequence contains highway driving only,
where high speeds and sparse visual features make monocu-
lar visual odometry very challenging, leading to an accumu-
lated error in the monocular odometry of more than 500m.
In contrast, while the stereo visual odometry has somewhat
higher than typical errors on this sequence, our method is
still able to localize successfully as shown in Fig. 7.
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Figure 6. Localization Accuracy with Noise: Position and head-
ing error with different noise levels. Averaged over five indepen-
dent samples of noise.

Ambiguous Sequences: Sequences 04 and 06, shown in
Fig. 8, are fundamentally ambiguous and cannot be local-
ized with monocular, stereo or even GPS-based odometry.
Sequence 04 is a short sequence on a straight road segment
and, in the absence of any turns, cannot be localized be-
yond somewhere on the long road segment. Sequence 06 is
longer and has turns, but traverses a symmetric path which
results in a fundamental bimodality. In both cases our ap-
proach correctly indicates the set of probable locations.

Simplification Threshold: We study the impact of vary-
ing the mixture model simplification threshold. Fig. 4 de-
picts computation time per frame and localized position er-
ror averaged over sequences as a function of the threshold,
ranging from 10−5 to 0.1 nats. We excluded sequences 04
and 06 as they are inherently ambiguous. As expected, com-
putation time decreases and error increases with more sim-
plification (i.e., larger threshold). However, there is a point
of diminishing returns for computation time around 10−2

nats, and little difference in error for smaller values. Thus
we use a threshold of 10−2 for all other experiments.

Map Size: To investigate the impact of region size on lo-
calization performance, we assign uniform probability to
portions of the map in a square region centered at the ground
truth initial position and give zero initial probability to map
locations outside the region. We varied the size of the
square from 100m up to the typical map size of 2km, con-
stituting an average of 300m to 47km of drivable road. We
evaluated the time to localization for all non-ambiguous se-
quences (i.e., all but 04, 06) and plotted the average as a
function of the region size in Fig. 5. As expected, small ini-
tial regions allow for faster localization. Somewhat surpris-
ingly, after the region becomes sufficiently large, the impact
on localization becomes negligible. This is due to the inher-
ent uniqueness of most sufficiently long paths, even in very
large regions with many streets as the one shown in Fig. 1.
While localization in a large and truly perfect Manhattan
world with equiangular intersections and equilength streets
would be nearly impossible based purely on odometry, such
a world is not often realized as even Manhattan itself has
non-perpendicular roads such as Broadway!

Noise: To study the impact of noise on the localization ac-
curacy, we synthesized odometry measurements by adding

Figure 8. Ambiguous Sequences: Both 04 and 06 cannot be lo-
calized due to fundamental ambiguities. Sequence 04 consists of a
short, straight driving sequence and 06 traverses a symmetric part
of the map, resulting in two equally likely modes.

Gaussian noise to the GPS-based odometry. For each se-
quence five different samples of noisy odometry were cre-
ated with signal-to-noise ratios (SNR) ranging from 0.1 to
1000. Fig. 6 depicts error in position and heading after lo-
calization. As expected, error increases as the SNR de-
creases, however the performance scales well, showing little
change in error until the SNR drops below 1.

Scalability: Running on 16 cores with a basic Python im-
plementation, we are able to achieve real time results as
shown in Fig. 4 (right). To test the ability of our method
to scale to large maps we ran the sequences using stereo
odometry and a map covering the entire urban district of
Karlsruhe, Germany. This map was approximately 18km2

and had over 2,150km of drivable road. Despite this, the
errors were the same as with the smaller maps and, while
computation was slower, it still only took around 10 sec-
onds per frame on average. We expect this could be greatly
improved with suitable optimizations. Results on sequence
02 are shown in Fig. 1 and more are available in the supple-
mental material.

5. Conclusions
In this paper we have proposed an affordable approach

to self-localization which employs (one or two) cameras
mounted on the vehicle as well as crowd sourcing in the
form of free online maps. We have demonstrated the ef-
fectiveness of our approach in a variety of diverse scenar-
ios including highway, suburbs as well as crowded urban
scenes. Furthermore, we have validated our approach on
the KITTI visual odometry benchmark and shown that we
are able to localize our vehicle with a precision of 3 m
after only 20 seconds of driving. This is a new and ex-
citing problem for computer vision and we believe there
is much more to do. In particular, OpenStreetMaps con-
tains many other salient pieces of information to aid in
localization such as speed limits, street names, numbers
of lanes, and more; we plan to exploit this information
in the future. Finally, code and videos are available at
http://www.cs.toronto.edu/˜mbrubake.

http://www.cs.toronto.edu/~mbrubake


Figure 7. Selected Frames: Inference results for some of the sequences, full results can be found in the supplemental material. The left
most column shows the full map region for each sequence, followed by zoomed in sections of the map showing the posterior distribution
over time. The black line is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines are every 500m.
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A. Inference Details
To measure whether f(st−1) = p(ut|xt−1) is constant

for a mixture component N (µ(i),Σ(i)) we consider the
function g(µ,Σ) =

∫
f(st−1)N (st−1|µ,Σ)dst−1 which,

in the case of the Gaussian CDF form of f(st−1) can be
shown to be a Gaussian CDF (proof in Supplementary Ma-
terial). Dropping the index, i, if ‖ ddµg(µ,Σ)‖ < η for η =

10−8 we consider f(st−1) to be approximately constantly
and the integral in Equation (10) can then be computed
analytically as f(µ)N (st|Aµ + b,Σx + AΣAT ) which
corresponds to the prediction step of a Kalman filter. If
d
dµg(µ,Σ) ≥ η then the mode overlaps the inflection point
of f(st−1) and the analytic model will not be a good ap-
proximation. Instead, we use a Monte Carlo approximation,
drawing a set ofM = 400 samples s(j)t−1 ∼ N (µ,Σ) for j =
1, . . . ,M and approximate the integral with a single compo-
nent cN (st|µ̂, Σ̂) where c = M−1

∑M
j=1 f(s

(j)
t−1), and µ̂, Σ̂

are found by moment matching to the Monte Carlo mix-
ture approximation

∑M
j=1 f(s

(j)
t−1)N (st|As

(j)
t−1 + b,Σx).

Once the integral in Equation (10) is approximated we must
incorporate the observation yt. Because the observations
are Gauss-Linear and the integral approximations are Gaus-
sians this consists of multiplying two Gaussian distributions
as in the update step of the Kalman filter.

Performing the above for each component and each pair
of nodes produces a set of mixture model components for
each u, the weights of which are proportional to P tu. After
normalizing the mixtures for each street, normalizing across
streets allows for the computation of P tu, the probability of
being on a given street. The procedure for recursively up-
dating the posterior is summarized in Algorithm 1 and more
details can be found in the Supplemental Material.

B. Mixture Model Simplification
Given a Gaussian mixture model f(x) =∑
a πaN (x|µa,Σa) we seek g(x) =

∑
b ωbN (x|µb,Σb)

with the least number of components such that D(f‖g) < ε
where D(f‖g) is the KL divergence. We begin with
g(x) = f(x) and successively remove the lowest weight
component of g(x) and update the remaining components
to better fit f(x) so long as g(x) remains a good approx-
imation. To compute the KL divergence D(f‖g), we use
instead a variational upper bound [12]. Introducing the
variational parameters φa,b ≥ 0 and ψa,b ≥ 0 such that∑
b φa,b = πa and

∑
a ψa,b = ωb, D(f‖g) ≤ D̂(φ, ψ, f, g)

where D̂(φ, ψ, f, g) =
∑
a,b φa,b(log

φa,b

ψa,b
+ D(fa‖gb))

and D(fa‖gb) is the KL divergence between N (x|µa,Σa)
and N (x|µb,Σb). To compute the upper bound of D(f‖g)
we minimize D̂(φ, ψ, f, g) with respect to the variational
parameters φ and ψ. Similarly, to update the components of
g we minimize D̂(φ, ψ, f, g) with respect to the variational
parameters φ and ψ as well as the parameters ωb, µb and
Σb. While this objective function is non-convex, for each
set of parameters individually the exact minima can be
found, providing an efficient coordinate-descent algorithm.
The update equations for φ, ψ, ωb, µb and Σb, along
with the details of their derivation and a summary of the
algorithm are found in the Supplementary Material.


