Label Efficient Visual Abstractions for Autonomous Driving

Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

June 19, 2020

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Collaborators

Aseem Behl

Kashyap Chitta

Aditya Prakash

Eshed Ohn-Bar

Andreas Geiger

3

Which input modality?

- ► Images
- ► Lidar
- Radar

Which input modality?

- ► Images
- ► Lidar
- ► Radar
- ► GPS

Which intermediate modality?

- ► Semantic segmentation
- Bounding boxes
- ► Depth
- ► Optical flow

Related Work

Conditional Imitation Learning

Conditional Imitation Learning:

- Direct mapping: Observations \rightarrow actions
- ► Conditioned on command ("left", "straight", ...)
- ► Labeled training data obtained automatically
- Inertia problem \Rightarrow speed prediction
- Does not generalize well to new environments
- Large training variance (wrt. initialization, data sampling)

Conditional Affordance Learning

Conditional Affordance Learning:

- Map: Observations \rightarrow affordances \rightarrow actions
- Affordances: angle wrt. road, distance to lane boundaries or other cars, etc.
- Decoupling of perception and action
 ⇒Better generalization
- Rule-based controller
- Misspecification of affordances

Does Computer Vision Matter for Action?

Does Computer Vision Matter for Action?

- Analyze various intermediate representations: segmentation, depth, normals, flow, albedo
- ► Intermediate representations improve results
- Consistent gains across simulations / tasks
- ► Depth and semantic provide largest gains
- ► Better generalization performance

Latent Space Distillation

Minimizes distance between embedding of privileged teacher and student

Related Findings

- Müller, Dosovitskiy, Ghanem and Koltun: Driving policy transfer via modularity and abstraction. In CoRL, 2018.
- Mousavian, Toshev, Fiser, Kosecka, Wahid and Davidson: Visual representations for semantic target driven navigation. In ICRA, 2019.
- Sax, Emi, Zamir, Guibas, Savarese and Malik: Learning to navigate using mid-level visual priors. In CoRL, 2019.
- Wang, Devin, Cai, Yu and Darrell: Deep object centric policies for autonomous driving. In ICRA, 2019.

But: So far no systematic study on label efficiency and representation granularity

What is a good visual abstraction?

- ► Invariant (hide irrelevant variations from policy)
- ► Universal (applicable to wide range of scenarios)
- ► Data efficient (in terms of memory/computation)
- ► Label efficient (require little manual effort)

Semantic segmentation:

- Encodes task-relevant knowledge (e.g. road is drivable) and priors (e.g., grouping)
- ► Can be processed with standard 2D convolutional policy networks

Disadvantage:

► Labelling time: ~90 min for 1 Cityscapes image

Research Questions:

- ► What is the trade-off between annotation time and driving performance?
- ► Can selecting specific semantic classes ease policy learning?
- ► Are visual abstractions trained with few images competitive?
- ► Is fine-grained annotation important?
- ► Are visual abstractions able to reduce training variance?

Model:

- Visual abstraction network $a_{\psi} : \mathbf{x} \mapsto \mathbf{s}$
- Control policy $\pi_{\theta} : \mathbf{s}, \mathbf{n}, v \mapsto \mathbf{c}$
- Composing both yields $\mathbf{c} = \pi_{\theta}(a_{\phi}(\mathbf{x}))$

Datasets:

- ▶ n_s images annotated with semantic labels $S = { \mathbf{x}^i, \mathbf{s}^i }_{i=1}^{n_s}$
- n_c images annotated with expert driving controls $C = {\mathbf{x}^i, \mathbf{c}^i}_{i=1}^{n_c}$
- We assume $n_s \ll n_c$

Training:

- Train visual abstraction network $a_{\phi}(\cdot)$ using semantic dataset S
- Apply this network to obtain control dataset $C_{\phi} = \{a_{\phi}(\mathbf{x}^i), \mathbf{c}^i\}_{i=1}^{n_c}$
- Train control policy $\pi_{\theta}(\cdot)$ using control dataset C_{ϕ}

Control Policy

Model:

► CILRS [Codevilla et al., ICCV 2019]

Input:

- ► Visual abstraction s
- $\blacktriangleright\,$ Navigational command ${\bf n}$
- Vehicle velocity v

Output:

► Control $\hat{\mathbf{c}}$ and velocity \hat{v}

Loss:

$$\blacktriangleright \mathcal{L} = ||\mathbf{c} - \hat{\mathbf{c}}||_1 + \lambda ||v - \hat{v}||_1$$

Privileged Segmentation (14 classes):

- ► Ground-truth semantic labels for 14 classes
- ► Upper bound for analysis

Privileged Segmentation (6 classes):

- ► Ground-truth semantic labels for 2 stuff and 4 object classes
- Upper bound for analysis

Inferred Segmentation (14 classes):

- Segmentation model trained on 14 classes
- ► ResNet and Feature Pyramid Network (FPN) with segmentation head

Inferred Segmentation (6 classes):

- Segmentation model trained on 2 stuff and 4 object classes
- ► ResNet and Feature Pyramid Network (FPN) with segmentation head

Hybrid Detection and Segmentation (6 classes):

- Segmentation model trained on 2 stuff classes: road, lane marking
- ► Object detection trained on 4 object classes: vehicle, pedestrian, traffic light (r/g)

Experiments

Driving Task Evaluation

Training Town

Test Town

- ► CARLA 0.8.4 NoCrash benchmark
- Random start and end location
- ► Metric: Percentage of successfully completed episodes (success rate)

Traffic Density

Empty

Regular

Dense

- Difficulty varies with number of dynamic agents in the scene
- ► Empty: 0 Agents Regular: 65 Agents Dense: 220 Agents

Weathers

Identifying Most Relevant Classes (Privileged)

- 14 classes: road, lane marking, vehicle, pedestrian, green light, red light, sidewalk, building, fence, pole, vegetation, wall, traffic sign, other
- 7 classes: road, lane marking, vehicle, pedestrian, green light, red light, sidewalk, building, fence, pole, vegetation, wall, traffic sign, other
- ► 6 classes: road, lane marking, vehicle, pedestrian, green light , red light, sidewalk
- ► 5 classes: road, lane marking, vehicle, pedestrian, green light, red light

Identifying Most Relevant Classes (Privileged)

- Moving from 14 to 6 classes does not hurt driving performance (on contrary)
- ► Drastic performance drop when lane markings are removed

Identifying Most Relevant Classes (Privileged)

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020.

Identifying Most Relevant Classes (Inferred)

- ► Small performance drop when using inferred segmentations
- ► 6-class representation consistently improves upon 14-class representation
- ► We use the 6-class representation for all following experiments

Number of Annotated Images

- ► No significant differences between agents trained on 6400 or 1600 samples
- Slight drop when using 400 images
- Prior work exploiting semantics on CARLA uses millions of annotated images

Hybrid Representation

Performance of hybrid representation matches standard segmentation

- ► Annotation time (segmentation): ~ 300 seconds per image and per class
- ► Annotation time (hybrid): ~ 20 seconds per image and per class

Hybrid Representation

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020.

Variance Between Training Runs

Task	Seed 1	Seed 2	Seed 3	Seed 4	Seed 5	Mean ↑	Std ↓	$CV\downarrow$				
CILRS												
Empty	26	44	42	48	46	41.20	8.79	0.21				
Regular	24	26	30	32	40	30.40	6.23	0.20				
Dense	0	2	4	4	18	5.60	7.13	1.27				
Overall	17	24	25	28	34	25.60	6.18	0.24				
Hybrid												
Empty	76	80	82	78	90	81.20	5.40	0.06				
Regular	64	68	72	72	72	69.60	3.57	0.05				
Dense	28	22	18	34	22	24.80	6.26	0.25				
Overall	55	56	57	61	61	58.00	2.82	0.04				

► Our approach significantly reduces standard deviation & coefficient of variation

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020.

Comparison to State-of-the-Art

Task	CAL	CILRS	LaTeS	Standard	Hybrid	Expert						
Train Weather												
Empty	36±3	65±2	92±1	91±2	87±1	96±0						
Regular	26±2	46±2	74±2	77±1	82±1	91±0						
Dense	9±1	20±1	29±3	27±7	41 ±1	41±2						
Test Weather												
Empty	25±3	71±2	83±1	95±1	79±1	96±0						
Regular	14±2	59 ± 4	68±7	75±6	71±1	92±0						
Dense	10±0	31±3	29±2	29±5	32±5	45±2						

- ► CAL: Conditional Affordance Learning [Sauer et al., CoRL 2018]
- ► CILRS: Conditional Imitation Learning [Codevilla et al., ICCV 2019]
- ► LaTeS: Latent Space Distillation [Zhao et al., Arxiv 2019]

Qualitative Results

Behl, Chitta, Prakash, Ohn-Bar and Geiger: Label Efficient Visual Abstractions for Autonomous Driving. ARXIV, 2020.

Summary

Summary

- Exploiting visual abstractions leads to **more robust driving** models
- ► Higher **segmentation accuracy** does not necessarily imply better driving
- Only **few of the commonly used classes** are relevant for driving task
- ► Lane marking class is critical for good performance
- ► Only few annotations are required (400 / 1600)
- ► Hybrid representations further **reduce annotation costs** at similar performance
- ► Box-based representations can improve performance on dynamic classes
- ► Training variance is high in behavior cloning and should always be reported
- ► Visual abstractions can significantly **lower training variance**

Summary

Trained with 6400 finely annotated images and 14 classes Annotation time \approx 7500 hours, policy success rate = 50% Trained with 1600 coarsely annotated images and 6 classes Annotation time \approx 50 hours, policy success rate = 58%

KITTI-360

KITTI-360

KITTI-360

Sensors:

- ► Front-facing stereo camera
- ► 360° fisheye cameras
- ► Velodyne HDL 64 laser scanner
- ► SICK pushbroom laser scanner
- ► IMU/GPS localization system

Features:

- ► Driving distance: **73.7 km** Frames: **4** × **83,000**
- ► All frames accurately **geolocalized** (⇒ OpenStreetMap)
- Semantic label definition consistent with Cityscapes, **19 classes** for evaluation
- ► Each instance assigned with a **consistent instance ID** across all frames

3D Annotations

2D Annotations

Semantic

Instance

Confidence

Bounding Box

Thank you!

http://autonomousvision.github.io

