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Abstract—Geometric 3D reasoning at the level of objects has received renewed attention recently, in the context of visual scene
understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is
linked to the fact that today’s object class detectors are tuned towards robust 2D matching rather than accurate 3D geometry,
encouraged by bounding-box based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of
computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover
geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose,
and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and
inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our
approach in detail, and demonstrate novel applications enabled by such an object class representation, such as fine-grained
categorization of cars and bicycles according to their 3D geometry, and ultra-wide baseline matching.

Index Terms—3D Representation, recognition, single image 3D reconstruction, scene understanding, ultra-wide baseline
matching
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1 INTRODUCTION

Over the last decade, automatic visual recognition
and detection of semantic object classes have made
spectacular progress. It is now possible to detect and
recognize members of a semantic object categories
with reasonable accuracy. Based on this development,
there has been a renewed interest in high-level vision
and scene understanding, e.g. [26], [13], [59], [24], [21],
[5], [60].

The present work starts from the observation that
although modern object detectors are very successful
at finding things, the object hypotheses they output
are in fact extremely crude: typically, they deliver a
bounding box around the object in either 2D image
space [58], [12], [16] or 3D object space [34], [24], [43].
That is, the detected object is represented by a box,
which differs from other objects only by its size and
aspect ratio. We believe that such simplistic object
representations severely hamper subsequent higher-
level reasoning about objects and their relations, since
they convey very little information about the objects’
geometry.

We thus try to take a further step towards the
ultimate goal of scene-level image understanding, by
looking back at ideas from the early days of computer
vision. Starting from Marr’s seminal ideas [39], many
3D models of objects were proposed, which provided
rich and detailed descriptions of object shape and
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Fig. 1.
results. (Left) overlaid closest training 3D CAD model.
(Right) reconstruction of object shape, pose, and cam-
era pose (CAD model rendered from novel viewpoint
using original image as texture).
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pose [8], [44], [38], [27], [53], [22]. Unfortunately, these
models proved difficult to match to real world images.
As a consequence, later researchers traded off model
accuracy for robustness in matching, for example by
representing objects by the statistics of local features
in an image window. This has led to impressive per-
formance for recognition of a variety of object classes
[14] as well as related tasks like scene classification
[28], but the extent to which relations between scene
entities can be modeled with such representations is
rather limited. Also, we note that the recognition per-
formance of 2D appearance representations at present
is showing only small improvements and seems to
be saturating (e.g. at ~35% average precision for the
well-known PASCAL VOC challenge [14]). Although
per se this does not mean that more complex models
are the way to go, it does raise the question whether
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Fig. 2. Full system diagram.

some of the difficulties could be overcome with 3D
models, which allow one to segment, reconstruct, and
recognize in a more integrated fashion.

Over the last couple of years researchers have ex-
plored coarse “box-level” representations of 3D ge-
ometry in the context of scene understanding [26],
[13], [59], [24], [21], [5], [60], and have shown that 3D
geometric reasoning is not only interesting as a goal in
itself, but that the additional information it supplies
also leads to better recognition performance. In this
work, we try to go one step further. Inspired both
by early work on 3D recognition and by more recent
advances in 2D appearance descriptors, we combine
detailed models of 3D geometry with modern dis-
criminative appearance models into a richer and more
fine-grained object representation.

Using a 3D model naturally affords invariance to
viewpoint. While viewpoint-invariant detection has
been a hot topic for some time now [49], [55], [62],
[42], [3], [64], [51], [20], [43], [19], [57], [45], most
approaches are made up of several flat viewpoint-
dependent representations connected together in one
way or the other. There are some more recent works
which model the 3D geometry more explicitly [6],
[34], [54], [9], [45]. While these are an important
step towards true 3D recognition, they typically still
deliver 2D or 3D bounding boxes as output, and there
is still room for improvement in the granularity of the
output hypotheses.

System overview. We exploit the fact that for many
important classes there are already high-quality 3D

models available, and start from a database of 3D
computer aided design (CAD) models of the desired
object class as training data. After simplifying the raw
CAD models we apply principal components analysis
to obtain a coarse 3-dimensional wireframe model
which captures the geometric intra-class variability. In
order to capture appearance, we train detectors for the
vertices of the wireframe, which we call “parts”. The
training is also based on renderings of the (original,
unsimplified) CAD models, such that our model does
not require any image annotation. We apply the model
to two rather different object classes, cars and bicycles.

At test time, we generate evidence for the parts
by densely applying the part detectors to the test
image. We then explore the space of possible object
geometries and poses by guided random sampling
from the shape model, in order to identify the ones
that best agree with the image evidence. The system
is schematically depicted in Fig. 2.

Contributions. The paper makes the following con-
tributions. (i) we show that for certain object types
classical 3D geometric object class representations bet-
ter fulfill the requirements of detailed visual model-
ing, and deliver object hypotheses with much more
geometric detail than current detectors (see Fig. 1).
We believe this geometric richness is an important
ingredient for scene-level geometric reasoning. (ii) we
demonstrate that a 3D model enriched with local ap-
pearance descriptors can accurately predict 3D object
pose and shape from single still images. In particular,
our model improves over state-of-the-art results for
pose estimation on a standard multi-view dataset. (iii)
we show the benefit of detailed geometric category
models for a geometric modeling task, namely ultra-
wide baseline matching, where we successfully re-
cover relative camera pose over viewpoint changes up
to 180°, again improving over previous work. And (iv)
we give experimental results on predicting more fine-
grained object categories (different types of cars and
bicycles) based solely on the inferred 3D geometry.

Parts of this work have appeared in a preliminary
conference paper [66]. The present paper introduces
an appearance model based on random forests which
is both more accurate and much more efficient, a mod-
ified objective function for model-to-image matching,
and improved and extended experimental results,
including the addition of the challenging bicycle class.

The remainder of this paper is structured as follows.
Sect. 2 reviews related work. Sect. 3 introduces our
3D geometric object class model. Sect. 4 gives exper-
imental results, and Sect. 5 concludes the paper with
an outlook on future work.

2 RELATED WORK

Our work attempts to recover detailed geometric 3D
object representations from single input images. As
such, it is related to 3D geometric modeling from the



earlier days of computer vision, more recent advances
in scene understanding, and multi-view object class
recognition, each of which we review in the following.

Early 3D modeling. Geometric modeling in 3D
used to be an important component of visual object
recognition, from the inception of computer vision
until about the mid 1990ies. Many systems [46], [8],
[44] were proposed which built complex shapes from
simpler primitives, such as polyhedra [46], general-
ized cylinders [8], and super-quadrics [44]. With these
primitives, single objects as well as entire scenes were
represented. Alternatively, salient local parts of the 3D
shape, such as triplets of line segments, were matched
to their image projections [38]. Hand-crafted, rigid
3D models were proposed to track vehicles in scenes
with static background [22], [27], later extended to
deformable models [53].

Unfortunately, while these models provided rich
descriptions of objects and scenes, robustly matching
them to cluttered real-world images proved to be
exceedingly difficult at the time. Thus, later research
abandoned them in favor of less expressive, but more
robust 2D models. These include sparse sampling
at locally confined regions of interest [1], [11], [29];
modeling the spatial relationship between these re-
gions at different levels of detail [17], [16] (or not
considering such relations at all [11]); and densely
sampling (usually gradient-based) features from the
object’s extent in 2D [12].

Recent 3D modeling. With the advent of powerful
computers and advances in machine learning, it has
become feasible to revisit some of the classical ideas
of 3D object modeling. In the context of indoor scene
understanding, [59] proposes a method to infer the 3D
layout of the walls and segment out the clutter objects,
and [24] shows that such 3D modeling not only
provides a better interpretation of the scene, but also
improves 2D object detection performance. Along the
same lines, [26] models interactions between objects,
surface orientations, and 3D camera viewpoint for
outdoor scene understanding, and demonstrates im-
proved performance in object detection. [21] takes into
account qualitative geometric and mechanical proper-
ties of objects and model their relationships, in order
to generate a qualitative 3D interpretations of outdoor
scenes. Similarly, pedestrian and vehicle tracking from
mobile platforms has been demonstrated to benefit
from 3D reasoning [13], [60].

Inspired by this comeback of 3D scene understand-
ing, our work aims to furnish the underlying repre-
sentations with a lot more geometric detail [66]. By
combining a deformable 3D shape model with pow-
erful local descriptors, we obtain more detailed and
more expressive object class models, that directly lend
themselves to detailed 3D reasoning about object and
scene geometry. Recent works with similar ambitions
as ours are [61], [25]. An object is represented in [61]
as a collection of a few planar segments in 3D space

called “aspect parts” (e.g. one planar “aspect” for the
bicycle class, six for the car class). Like us they train on
3D CAD models, manually defining the aspect parts
for different object categories. Geometric relations are
represented in a similar way as in [48], whereas pose
is represented by a discrete set of viewpoints. In [25],
a 2D part-based object model predicts the location of
land marks, which is lifted to 3D in a second stage
by fitting a coarse 3D model to these land marks
with non-rigid SfM. In our work, we go even further
in terms of 3D detail and predict in a continuous
pose space. In another paper [65], we apply our
representation to explicitly model occlusions.

Multi-view recognition. A closely related problem
to ours is multi-view recognition, which has received
a lot of interest in recent years. The most frequently
used approach for that task are banks of viewpoint-
specific detectors [49], [42], [64], [51], [57], [43], [45].
Other approaches, while still relying on several flat,
viewpoint-specific representations, establish connec-
tions between viewpoints via homographies [62],
probabilistic morphing of object parts [52], discrim-
inative mixtures of global templates [20], or by fea-
ture tracking with integrated single-view codebooks
[55]. One step further towards true 3D recognition
are models with rigid 3D configurations of local 2D
features [35], [3], [19].

Similar to the renewed trend of 3D modeling on
the scene-level, attempts are recently being made to
explicitly represent 3D object class geometry along-
side appearance. A coarse, volumetric blob model is
learned from 3D CAD data in [34], and combined
with 2D appearance models, which have been learned
from annotated real-world images. The implicit shape
model [29] is augmented in [54] with the relative
depth between codebook entries, obtained from a
structured light system. [45] extend the deformable
part model (DPM) of [16] to include coarse viewpoint
estimates in a structured prediction framework, and
enforce part correspondences across viewpoints by 3D
constraints.

While these approaches internally capture 3D object
class geometry to some degree, they typically still
provide 2D bounding boxes and coarse viewpoint
labels as their output, and do not guarantee that the
local parts are localized correctly. In contrast, our
method generates complete hypotheses of 3D object
geometry, including continuous viewpoint estimates
with 5 degrees of freedom.

Efficient part detection. As the number of object
classes and viewpoints increases, the computational
cost for appearance-based detection grows signifi-
cantly. Several attempts have been made to solve
this problem by sharing information between object
classes on different levels, e.g. [47]. Random Forests [7]
provide a natural way to perform classification with
multiple classes, and allow sharing at the level of
weak learners inside the algorithm. They have suc-



cessfully been used to train detectors for interest
points [32], [30]. In our experience, random forests
also handle multi-modal distributions rather well. We
use a single multiclass random forest classifier with
one class per object part, combining examples from
many different viewpoints in each class.

3 3D GEOMETRIC OBJECT CLASS MODEL

Decomposing object class representations into sep-
arate components for global layout and local ap-
pearance is a widely accepted paradigm in object
class recognition [17], [16]. Its main advantages are
the ability to account for variations in object shape
better than rigid template models, and robustness to
partial occlusion. The paradigm is often implemented
by optimizing a smooth, continuous function of the
global layout at recognition time, e.g. in the form of
tree-structured [16] or fully connected [17] Gaussian
densities over part positions. While these approaches
have efficient implementations and have proven ro-
bust in terms of image matching, the resulting object
hypotheses are hard to interpret and reason about
in terms of geometry: deviations from geometrically
plausible layouts are merely penalized, but not ren-
dered impossible, and in fact individual parts are
misplaced rather frequently.

Since we aim to not only detect the object, but also
recover its geometry, we choose a different route and
generate only geometrically valid hypotheses to start
with. In a second step, we then verify that the gen-
erated hypotheses are supported by sufficient image
evidence, a strategy sometimes termed hypothesize-
and-verify, or sample-based inference.

We model an object class as a 3D wireframe repre-
senting global layout, with attached local appearance
representations of object parts. Like several other
recent works in multi-view recognition we leverage
synthetic training data besides real-world images [34],
[51], [66], [45], and learn both shape and appearance
from a collection of 3D computer aided design (CAD)
models, thereby ensuring consistency between global
layout and local part models by design. At recognition
time, we establish the connection between the 3D
wireframe and the 2D image by means of a projective
transformation, which is part of the object hypoth-
esis. The transformation could potentially be shared
among multiple objects in the same scene, however
this is not further explored here.

3.1 Global geometry representation and learning

Our global geometry representation is given by a
deformable 3D wireframe, which we learn from a col-
lection of exemplars obtained from 3D CAD models.
More formally, a wireframe exemplar is defined as
an ordered collection of n vertices, residing in 3D
space, chosen from the set of vertices that make up
a 3D CAD model. In our current implementation the

topology of the wireframe is pre-defined (manually
defined for each object class, similar to [61]) and its
vertices are chosen manually on the 3D CAD models.
In the future, they could potentially be obtained using
part-aware mesh segmentation techniques from the
computer graphics literature [50].

We follow the classical “active shape model” formu-
lation of point-based shape analysis [10], and perform
PCA on the resulting (centered and rescaled) vectors
of 3D coordinates. The final geometry representation
is then based on the mean wireframe p plus the m
principal component directions p; and corresponding
standard deviations ¢;, where 1 < j < m. Any 3D
wireframe X can thus be represented, up to some
residual ¢, as a linear combination of r principal
components with geometry parameters s, where s
is the weight of the k" principal component:

X(s)=p+ Z SkOKPE + € 1)
k=1

Example 3D wireframe models for cars and bicycles
are shown in Fig. 3. Please note how principal direc-
tions represent the diversification of cars into sedan,
SUV, sports car, and compact car, and of bicycles into
mountain bike, racing bike, and children’s bike. In
our experiments, we show that we can in fact recover
these fine-grained vehicle categories by fitting the
model to single input images (Sect. 4.6).

3.2 Local shape representation

In order to match the 3D geometry representation
to real-world images, we train a distinct part shape
detector for each vertex in the wireframe, for a variety
of different viewpoints. This is in contrast to early
approaches relying on the matching of discrete image
edges to model segments [27], [53], [22], which has
proven to be of limited robustness in the face of real-
world image noise and clutter.

Following [51], [66], we employ sliding-window
detectors, searching over image locations and scales,
using a dense variant of shape context [2] as features.
For each wireframe vertex, a detector is trained from
vertex-centered patches of non-photorealistic render-
ings of our 3D CAD models (Fig. 4). Despite the
apparent difference from real-world appearance, this
particular combination of edge-based rendering and
shape feature has shown to generalize well from
rendered to real-world images [51], [45]. Rendering
positive training examples further has the advantage
of being able to generate massive amounts of artifi-
cial training data from arbitrary viewpoints. Follow-
ing [51], [66], [45], we render three different types
of edges: crease edges, which are inherent properties
of a 3D mesh, and thus invariant to the viewpoint,
part boundaries, which mark the transition between
semantically defined object parts and often coincide
with creases, and silhouette edges, which describe the
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Fig. 3. Coarse 3D wireframe representations of cars (left) and bicycles (right). Modes of variation along the first

three principal component directions.
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Fig. 4. Non-photorealistic renderings for local part

shape detector training, cars (top), bicycles (bottom).
Green boxes denote positive training examples.

(a)
Fig. 5. Random forest detection map for one car part.
(a) Testimage and ground truth part, (b) detection map.
Brighter shade corresponds to higher likelihood.

(b)

viewpoint-dependent visible outline. Negative train-
ing data is obtained by sampling random patches
from a set of real-world background images set, as
well as random patches from rendered images in the
vicinity, but not on the parts of interest. The latter
is important in order not to bias the part detectors
to label all photorealistic patches as background, and
also improves localization accuracy of the detectors.

3.3 Discriminative part detection

As local part detectors, we use discriminative clas-
sifiers trained for a discrete set of viewpoints, spec-
ified by azimuth and elevation angles. We explore
two different variants, namely individual binary Ad-
aBoost [18] classifiers per part and viewpoint, and a

monolithic multi-class random forest [7] per object
class. As we show in our experiments (Sec. 4.3),
random forests prove favorable w.r.t. runtime while
maintaining the same part localization performance,
which is why all following results in Sect. 4 are based
on random forests.

AdaBoost. In this variant, we train for each part
and each viewpoint an individual binary AdaBoost
classifier, which discriminates that particular part in
that particular view from the background. Such a
strategy has been employed successfully for people
detection in [2], and in our previous work [66].

Random forest. In an attempt to reduce the massive
amount of detectors arising from the cross product of
parts and viewpoints, we make two modifications to
the above scheme. First, we replace the binary clas-
sifiers by a single multi-class classifier with one class
per part (plus one for the background). We choose
random forests [7], since they have been shown to
deliver excellent performance for multiclass problems
with complex class-conditional distributions. Second,
we leverage the ability of random forests to model
multi-modal distributions, and combine all training
examples into a single class that depict the same part
at any viewpoint. That is, we train a single viewpoint-
invariant random forest, which distinguishes between
parts, irrespective of the viewpoint.

In the individual nodes of the decision trees, we
use oblique splits that decide based on random hyper-
planes of a larger number of randomly chosen di-
mensions [40], as opposed to the more commonly
used axis-aligned (or orthogonal) splits, where node
decisions are based on a single feature dimension.
Oblique splits increase the discriminative power in
connection with high-dimensional features, such as
our dense shape context features. Furthermore we
use the ratio between the part-conditional distribution
and the background as final part detection score, as
in [17], [57]. Fig. 5(b) gives a random forest detection
map for the car part of Fig. 5(a).

Our quantitative evaluation indicates that the detec-
tion maps from random forests, although more diffuse
due to the marginalization over viewpoints, provide



a better tradeoff between discrimination and recall
when used in combination with the global geometry
model (Sect. 4.3).

3.4 Viewpoint-invariant shape & pose estimation

During recognition, we seek to find an instance of our
3D geometric model that best explains the observed
image evidence. This is formulated as an objective
function defined over possible configurations of the
model as well as its projection to the test image. It is
worth noting that this entails a search over continuous
3D geometry and viewpoint parameters rather than
switching or interpolating between flat viewpoint-
dependent representations as in previous work [55],
[52], [51], [45].

More formally, we denote a recognition hypothe-
sis as h = (s, f,0,q). It comprises object geometry
parameters s (see Sect. 3.1), camera focal length f,
spherical viewpoint parameters for azimuth and el-
evation 8 = (6,,,0.), and image space translation
and scale parameters q = (g, gy, gs). For perspective
projection we assume a simplified projection matrix P
that depends only on f, 8, and q. It is composed of a
camera calibration matrix K(f) and a rotation matrix
R(6), and projects wireframe vertices X (s) to image
coordinates x;:

P(f,0,q) = K(f) [R(6) —R(6)q]

X; = PXJ(S) . (2)

For recognition, we want to find the maximum a-
posteriori estimate

~

h = argmax,, [L(h) + AQ(h)] , ©)]

where L(h) is the data likelihood term and Q(h) is a
shape prior (regularizer).

Data likelihood and shape prior. The inference
in our framework (see below) is based on sampling
part configurations from the explicit 3D model (1)
and scoring them. In such a model-driven approach
only globally plausible shapes are ever generated,
which allows for a relatively simple data likelihood
(compared to approaches where the part locations can
move independently in a data-driven manner [51]).

We define the (log-)likelihood of an object instance
being present as a sum over the likelihoods of its
constituent parts, assuming conditional independence
between them. The likelihood S;(s, x;) of part j being
present at any given image location x; and local scale
¢ has already been estimated by the part detector
(Sect. 3.3). Following [57] we normalize the part like-
lihood by the background likelihood Sy(s,x;) at the
same location. In order to account for object-level self-
occlusion, only parts that are visible in the putative
projection are considered, leading to binary indicator
functions o0(s, 8) for the visibility. Finally the likeli-
hood is re-normalized to the number of visible parts.

The complete data term then reads

S5 (s, PX;(s))

Sb (C, PXJ (S)) (4)

1 m
max | —=m—————— 0;(s,0) log
| ST 0.0 2

The PCA model (1) implies a zero-mean multivariate
Gaussian distribution of the shape parameters around
the mean shape. Consequently we introduce a shape
prior which penalizes deviations from the mean 3D
shape of the object class according to

Q(h) =) log N(sy;0,1). ()

k=1

To avoid overly unlikely shape hypotheses from
the extreme tails of the Gaussian we limit the shape
parameters to the range |s;| < 3, such that they cover
99.7% of the shape variation observed in the training
set.

Inference. The objective (3) cannot be easily maxi-
mized, since the data term is highly non-convex and—
due to the binary o;(s, #)—also not smooth. We thus
resort to a stochastic hill-climbing method. To account
for the multi-modality of the posterior we generate
multiple starting points (“particles”) {h},} with cor-
responding objective values L(h?,)+AQ(h7,), and iter-
atively improve them through stochastic search. Each
particle h7, corresponds to a distinct set of values in
the space of object hypotheses {s, 8, q}, with m being
the particle index and n the iteration.! The initial set of
particles is drawn from a uniform distribution for the
unknown shape parameters, whereas the parameters
for location and pose are based on the initialization.
In every iteration the particles are then updated to
increase their objective value (3). Instead of comput-
ing gradients, semi-local update steps are determined
by random sampling, which copes better with weak
local minima and avoids problems due to visibility
changes: for each particle a number of candidates
{h"'} are generated by drawing new values for the
individual parameters h,, from Gaussians centred at
the current values,

Rt~ p(h R ) = N (R, o7 (n)) - (6)

Among the candidates the one with the highest like-
lihood replaces the original particle, thus yielding
a new particle set {h”"1}. The variances o} (n) of
the proposal distributions are successively reduced
according to an annealing schedule, for faster con-
vergence. After the last iteration the particle with
the highest weight is kept as MAP-solution h. Al-
though the underlying posterior distribution may be
very complicated, hill-climbing with simple Gaussian
perturbations works well in practice. This procedure

1 is held fixed in our experiments, assuming that the perspec-
tive effects are similar for all images.



is similar to [31] (per particle), except that instead
of computing the variances as a function of drawn
samples, we choose them according to a pre-defined
schedule. While this means that each of our particles
might get stuck at local optima, keeping of multiple
particles allows choosing the best one among them as
well as keeping extra locally optimal hypotheses for
a future scene-level reasoning stage.

Initialization. Rather than running inference
blindly over entire test images, we start from
promising image positions, scales, and viewpoints,
which we obtain in the form of predicted object
bounding boxes from a conventional 2D multi-view
detector. In particular, we use the recently proposed
multi-view extension of the deformable part model
by Pepik et al. [45], which has been shown to yield
excellent performance w.r.t. both 2D bounding box
localization and coarse viewpoint classification.
Specifically, we initialize ¢, and ¢, inside of a
predicted object bounding box, and ¢, according
to the bounding box size. Similarly, we initialize
the viewpoint parameters 8 according to the coarse
viewpoint predicted by the detector. Due to the
highly non-convex nature of the problem the overall
system performance is strongly influenced by the
initialization quality (Sect. 4.2).

4 EXPERIMENTAL EVALUATION

In the following, we carefully analyze the perfor-
mance of our 3D object class model in a series of
experiments, focusing on its ability to provide de-
tailed 3D object geometry. To that end, we evaluate
its performance in four different tasks, comparing to
results reported by prior work where appropriate.

(i) first we evaluate the ability to accurately predict
the locations of individual object parts in the 2D image
plane (Sec. 4.3). In the context of 3D scene under-
standing, this ability is important in order to establish
geometric relations between different scene entities,
such as an object touching the ground plane at a
specific location. (ii) we evaluate the ability to recover
the full 3D pose of recognized objects (Sec. 4.4). In
contrast to most prior work, we report results for
both coarse viewpoint classification and continuous 3D
pose estimation with 5 degrees of freedom (pictures are
assumed to be upright, without in-plane rotation). In
either case, we achieve results en par with or better
than previous work. (iii) we evaluate our object class
representation in the context of a 3D scene modeling
task, namely to recover relative camera pose from
wide-baseline pairs of images depicting the same
object (Sec. 4.5). Here, the model is challenged to re-
cover consistent 3D object geometries across different
viewpoints, and improves over previously reported
results for all baselines, up to 180°. (iv) we leverage
the detailed 3D shape hypotheses provided by our
approach for fine-grained object categorization based
on geometric shape (Sect. 4.6).

4.1

We commence by describing the experimental setup
w.rt. test and training data, random forest training,
inference, and initialization.

Test datasets. The evaluation is based on the 3D
Object Classes [48] and EPFL Multi-view cars [42]
datasets, which both have been designed specifically
for multi-view recognition. These datasets constitute
a suitable trade-off between controlled conditions for
experimentation and challenging real-world imagery.
Our focus is on the object classes car and bicycle. The
3D Object Classes test set depicts 5 object instances
from 8 different azimuth angles, 3 distances, and 2
(cars) or 3 (bicycles) elevation angles, against varying
backgrounds, amounting to a total of 240 cars and 360
bicycle test images. The EPFL Multi-view cars test set
comprises 10 different car models with largely varying
shape, rotating on a platform, with a sample every 3 to
4 degrees, totaling to about 1000 images. Fig. 10 and
11 show qualitative results obtained by our method
on images of these data sets.

Synthetic training data. In all experiments, we use
38 commercially available 3D CAD models of cars?
and 32 freely available CAD models of bicycles® for
training. We annotate 36 model points for cars and 21
for bicycles (Fig. 4) in order to train both global geom-
etry (Sec. 3.1) and local part shape (Sec. 3.2). Each part
is rendered from 72 different azimuth (5° steps) and
2 elevation angles (7.5° and 15° above the ground)
for cars, respectively 3 elevation angles (7.5°, 15°, and
30°) for bicycles, densely covering the relevant part of
the viewing sphere (the bicycle test set covers a larger
range of viewpoints). CAD models are rendered using
the non-photorealistic style of [51], [45]. Rendered
part patches serve as positive examples, randomly
sampled image patches as well as non-part samples
from the renderings serve as negative examples. The
total number of training patches is 140,000 per class,
evenly split into positive and negative ones.

Random forest training. As part detectors, we
train a single random forest classifier [7] for each
object class (one for bicycles and one for cars), dis-
tinguishing between the parts of interest (36 for cars,
21 for bicycles) and background. In both cases the
random forests have 30 trees with a maximum depth
of 13. Node tests are given by random hyperplanes
of dimensionality 200 (chosen from a total of 3,500
dimensions of the shape context descriptor), which
for our high-dimensional input we found empirically
to deliver much higher performance than the more
commonly used single dimension node tests.

Inference. We sample 6,, over a continuous range
of 20° centered around the initialization and 6,; from
ground level to 20° for cars and 30° for bicycles. For
part detections, we consider the maximum score in a

Setup

2www.doschdesign.com
Swww.sketchup.google.com /3dwarehouse/



Fig. 6. Example detections without (top row) and with
informed initialization [45] (bottom row).

scale range of £30% around the bounding box scale.

Initialization. We report results for two different,
informed initializations of our model, as well as re-
sults obtained by running our model from random
starting points, not using any prior information about
object location and pose (Sect. 4.2).

The first initialization is provided by the state-
of-the-art multi-view detector [45], providing almost
perfect 2D bounding box localization on the 3D Object
Classes dataset for cars and bicycles (97.5% average
precision each). Specifically, we use the multi-view
DPM referred to as DPM-VOC-VP in [45], trained
from the respective car and bicycle training sets pro-
vided by the 3D Object Classes and EPFL Multi-view
cars data sets [42]. In the following, we refer to the
combination of this initialization and our model as the
full system, since it constitutes a fully automatic pro-
cedure that infers detailed 3D geometric hypotheses
from input images, as it would be used in a real-world
application.

The second initialization (termed GT) aims at pro-
viding a best case evaluation of our model isolated
from the effects of the multi-view DPM, starting from
annotated ground truth bounding boxes and coarse
viewpoint estimates.

4.2 Recognition without initialization

We commence by exploring the performance of our
approach in isolation, independent from any informed
initialization, by running it from a number of ran-
domly selected starting points (250 particles drawn
uniformly at random from the location, pose, and
shape parameter space). We evaluate over the car class
in the 3D Object Classes dataset. Considering the high-
est scoring hypothesis in each of the 240 test images,
we are able to localize the correct 2D bounding box in
51.7% of the cases (according to Pascal criterion [14]).
Further, following the experimental protocol of [52],

the viewpoint of these true positive detections is cor-
rectly classified into 8 different azimuth angle classes
(left, front-left, front, front-right, right, back-right, back,
back-left) in 66.9% of the cases.

Although these numbers are encouraging, running
our detailed 3D geometric model blindly over entire
test images is obviously inferior to current state-of-
the-art object class detectors, both w.rt. 2D local-
ization performance and computational complexity.
In the following, we thus provide our model with
informed initializations in the form of rough 2D ob-
ject locations and poses (full system), obtained by a
2D multi-view detector [45]. This cascaded approach
drastically reduces computation, and results in state-
of-the-art performance in pose estimation (Sect. 4.4).
Fig. 6 compares example detections obtained with and
without informed initialization.

Please note that other recent work [33] on de-
formable object models also relies on initializing mod-
els within a small operating window centered around
the object (much like our GT initialization), and even
assumes fixed object scale.

4.3 Part localization

One way of performing accurate geometric reasoning
on the scene-level is to have object class models that
provide well-defined anchor points, so as to geomet-
rically relate them to other scene entities. Consider
for example the wheels of a vehicle, which can be as-
sumed to rest on a supporting surface, and can hence
provide hints on the likely position and orientation of
a ground plane. Likewise, localizing extremal points
on the vehicle body (such as bumper corners) can help
to assess the area of covered ground and hence its 3D
extent in the scene.

Since the parts in our model are chosen to corre-
spond to well-defined regions of an object’s anatomy
(Sect. 3.1), we can evaluate the ability of our model
to localize these parts individually. To that end, we
annotate the 2D locations of all visible parts in our
test images. We have made all annotations publicly
available?.

Protocol. We measure part localization accuracy as
the fraction of correctly localized parts of a specific
type across test images, restricted to those test images
where the method under consideration delivers a true
positive detection in terms of the Pascal criterion [14]
on the 2D bounding box. A part is considered cor-
rectly localized if its estimated 2D position deviates
less than a fixed number of pixels from annotated
ground truth, relative to its estimated scale. For in-
stance, for a car side view at scale 1.0, covering
460 x 155 pixels, that number is 20, which amounts to
localizing a part to within ~ 4% of the car length. The
same criteria is used for bicycles. Note that this strict

4http:/ /www.igp.ethz.ch/photogrammetry /downloads
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Fig. 7. Part localization results on 3D Object Classes. Part numbering schemes (left), localization performance
for individual parts (center) and viewpoints (right), for (a) bicycles, and (b) cars.

criterion is applied in all cases, even for hypotheses
with grossly wrong viewpoint estimates.

Results. Fig. 7 gives the results for part localiza-
tion for cars (a) and bicycles (b), averaged over all
test images, grouped by individual parts (center bar
plots) and viewpoints (right bar plots). We distinguish
among the performance of the full system (blue bars),
our system initialized from ground truth (GT,red
bars), and a baseline also initialized from GT, but
using uniform part score maps (chance, green bars).

Per-part evaluation. In Fig. 7 (a) and (b) (center),
we observe that there are in fact differences in the
localization accuracy of different parts. Notably for
cars (Fig. 7(a)(center)), parts located in the wheel
regions (9-18, 27-36) are localized almost perfectly by
both the full system and when starting from GT. This
is not surprising, since wheels provide plenty of local
structure that can robustly matched by local part de-
tectors, providing strong guidance for the geometric
model. Parts on the front roof (4, 22) can also be
localized with great accuracy (89.4% and 87.2% by the
full system), followed by back roof parts (5 with 74.9%
and 23 with 76.0%) and hood parts (3 with 72.1%
and 21 with 74.9%). Parts in the trunk region tend
to perform worse (7 with 53.0% and 25 with 61.7%).
We attribute this difference to the greater flexibility
that our learned global geometry model allows in the
back: the collection of training CAD models comprises
limousines and sports cars as well as SUVs and station
wagons.

Bicycles (Fig. 7(b)(center)) appear to be more chal-
lenging than cars in general (GT performance drops
by 9.5% from 87.6% to 78.1%), possibly due to their
wire-like nature, which amplifies the influence of
background clutter. Concerning the ranking of the
parts, we observe a similar trend as for cars: parts

located on the wheels (7-8,12-21) have localization
accuracy of at least 82.8% for the full system, whereas
the wheel centers (8,14) even reach 92.4% and 94.8%,
respectively. Again, parts that exhibit more variability
in the training CAD models perform worse, such as
the handle region (1-3, between 49.7% and 67.8%) and
the joint below the seat (9 with 59.5%).

On average, we achieve correct part localization in
an encouraging 81.5% of all cases for cars using the
full system (87.6% using GT), and in 78.1% for bicycles
(for both full system and GT).

Per-viewpoint evaluation. Fig. 7 (a) and (b) (right)
groups the part localization results according to the
different azimuth angles of test images, averaged
over all parts. For cars (Fig. 7(a)(right)), we observe
that part localization performs best for plain side
views (left 91.5%, right 86.5%, full system), followed
by diagonal front (front-left 86.7%, front-right 84.7%)
and back views (back-right 81.7%, back-left 75.2%).
Plain front (72.5%) and back (63.5%) views perform
moderately, apparently due to the absence of the
strong evidence provided by the wheels in the other
views.

The same tendency can be observed for bicycles
(Fig. 7(b)(right)). Plain side views perform best (left
90.2%, right 87.8%, full system), followed by the diag-
onal views (back-right 83.0%, front-right 80.1%, back-
left 77.1%, front-left 74.8%) and the plain back and
front views (42.9% and 41.4%).

Comparison to AdaBoost [66].

Tab. 1 compares the part localization performance
of the full system using random forest classifiers as
part detectors with two variations of AdaBoost, as
we previously proposed in [66]. The first variant
trains a single binary AdaBoost classifier for each part
(36 for cars), azimuth (72), and elevation angle (2),



Classifier |classifiers| class. tested | 1 3 post
type trained |per detection| mode | modes || inference
AdaBoost [66]| 5,184 36 56.3%| 75.5% || 79.9%
AdaBoost [66]| 5,184 432 61.4%|79.0% || 81.1%
Random forest 36 36 35.0% | 57.8% || 81.5%
TABLE 1

Comparison of part detector performance using
random forests and AdaBoost [66] (on cars).

resulting in 5, 184 trained classifiers. At test time, only
those classifiers belonging to the coarse viewpoint
predicted by the initialization are considered (36 in
total). The second variant uses the same set of trained
classifiers, but considers neighboring viewpoints at
test time as well (432 in total) to account for viewpoint
uncertainty.

Tab. 1 gives results for post-inference part localiza-
tion (i.e., applying the full system end to end) as well as
pre-inference localization, considering 1 and 3 highest
modes in the part detection maps as hypotheses,
respectively. When using 3 highest modes we consider
a part detection as correct if any one of the modes falls
on the ground truth part location. Not surprisingly,
we observe that both AdaBoost versions perform
much better in pre-inference localization than random
forests (up to 26.4% for 1 and 21.2% for 3 modes),
since the restriction to a narrow range of viewpoints
increases the discriminative power of the resulting
classifiers. While the inclusion of neighboring view-
points aids robustness, including all viewpoints (as
we do for random forests) degrades performance. Post-
inference, however, random forests have a slight edge
(81.5% vs. 79.9% and 81.1%), achieved with two or-
ders of magnitude fewer classifiers (36 vs. 5,184).
This seemingly counter-intuitive behavior stems from
the fact that in difficult cases the binary AdaBoost
classifiers are sometimes “too convinced” that a part
is not present, and these false negatives (low part
likelihoods at the correct position) drive the inference
away from the correct shape.

Summary. We conclude that our model yields accu-
rate estimates of the 2D locations of individual parts
in the majority of cases, providing a solid basis for
3D geometric reasoning. Since we also observe a non-
negligible difference between the results obtained by
different initializations (full system vs. GT), we expect
further improvements in response to improved initial
detections to start from.

4.4 Pose estimation

In this section, we evaluate the ability of our model
to accurately estimate the 3D pose of recognized
objects. Even without considering individual parts
(as in Sect. 4.3), pose estimation facilitates monocular
3D perception and can provide valuable geometric
information for scene-level reasoning. As an exam-
ple, consider the effect of observing an object, say,
a bicycle from different azimuth angles: knowledge
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3D Object Classes | cars | bicycles
Liebelt et al. [34] | 70.0% | 75.5%
Stark et al. [51] | 81.0% -
Zia et al. [66] | 84.0% -
Glasner et al. [19] | 85.3% -
Payet et al. [43] |86.1% | 80.8%
Initialization [45] |97.5% | 97.5%
Full system 97.1% | 97.1% g

| GT [98.7% | 99.4%

() ®)

Fig. 8. Coarse viewpoint classification on 3D Object
Classes. (a) Accuracies, (b) confusion matrices for
cars (top), bikes (bottom), using our full system.

EPFL Multi-view | cars
Ozuysal et al. [42] | 41.6%
Xiang et al. [61] | 64.8%
Lopez et al. [36] | 66.0%
Initialization [45] | 76.5%
Full system 76.5%

TABLE 2
Coarse viewpoint classification on EPFL Multi-view
cars, using our full system.

about its 3D shape enables the viewer to estimate the
perspective distortion not only of the object itself, but
of the entire scene, and thus reason about distances
and relations in 3D Euclidean space.

While the focus of our approach lies on providing
detailed, continuous 3D pose estimates with 5 degrees
of freedom (or even 6, if initialized with an object
detector that is invariant to in-plane rotation), we
start by reporting results for the popular task of
viewpoint classification with 8 and 16 equally spaced
viewpoint bins on 3D Object Classes and EPFL Multi-
view cars, respectively. In that setting, pose estima-
tion is discretized into a multi-class labeling problem.
Since our method relies on coarse viewpoint estimates
provided by [45] as an initialization, this evaluation
also serves as a sanity check, to ensure that the added
expressiveness of our model does not significantly
degrade viewpoint classification performance.

Coarse viewpoint classification. Following the ex-
perimental protocol of [52], we report results on 3D
Object Classes dataset for the classification of true posi-
tive object detections according to 8 different azimuth
angle classes (left, front-left, front, front-right, right, back-
right, back, back-left). Fig. 8(a) gives the corresponding
results for cars and bicycles, comparing our full system
to our system initialized from GT bounding boxes, the
estimate provided by the initialization [45], and results
reported in prior work.

In Fig. 8(a), we observe that, for both cars and
bicycles, the initialization [45] alone already provides
almost perfect viewpoint classification (97.5% and
97.5%, respectively), outperforming the next best prior
results [43] by margins of 11% and 17%, respec-
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3D Object Classes| Total | True |% Correct|Avg. Error|Avg. Error| [Azimuth|Image|SIFT|Parts| Zia |[DPM-3D-Const.| Full || GT
cars Images|Positives| Azimuth | Azimuth | Elevation Diff. | Pairs | [37] | only | [66] [45] system
Stark et al. [51] 48 46 67.4% 4.2° 4.0° 45° 53 |2.0%|30.2%|54.7% 54.7% 86.8% ((86.8%
Zia et al. [66] 48 45 73.3% 3.8° 3.6° 90° 35 |0.0%/22.8%|60.0% 51.4% 88.6% ((94.3%
Initialization [45] | 48 48 70.8% 3.4° - 135° 29 10.0%|20.7%|51.7% 51.7% 65.5% |(89.7%
Full system 48 47 95.7% 3.8° 3.7° 180° 17 10.0%| 0.0% [41.2% 70.6% 76.5% ||76.5%
Without init. 48 21 61.9% 3.9° 4.8° Avg. 134 |0.5%|18.4%|51.9% 57.1% 79.4% (|86.8%
[CT [ 48 | 47 | 936% | 36° | 32° | TABLE 5
a . . .
@ Ultra-wide baseline matching results (cars).
3D Object Classes | Total | True |% Correct|Avg. Error|Avg. Error
bicycles Images|Positives| Azimuth | Azimuth | Elevation ipe .
Tnitialization [55] | 72 9 T6.8% 330 - nal true positive detections. For cars (Tab. 3(a)), we
Full system 72 67 89.6% 3.4° 104° | also include previously reported results of [51], [66].
[GT [ 72 T 69 [ 96% | 32° | B87° | A viewpoint estimate is considered correct if it lies
(b) within 10° of the annotated ground truth azimuth
angle (in contrast to the 45° bins of coarse viewpoint
TABLE 3

Continuous viewpoint estimation: (a) cars, (b) bicycles.

EPFL Multi-view
cars
Initialization [45]
Full system

% Correct
Azimuth
73.3%
80.3%

True
Positives
981
972

Total
Images
994
994

Avg. Error
Azimuth
3.4°
3.3°

TABLE 4
Continuous viewpoint estimation (EPFL cars).

tively. While our full system maintains that high level
of performance for both classes (97.1% and 97.1%;
compared to [45] we mis-classify the viewpoint of
a single car/bicycle), our model initialized from GT
can further improve to 98.7% for cars and 99.4% for
bicycles.

For the EPFL Multi-view cars dataset, we perform
viewpoint classification into 16 azimuth angle classes
as in [42]. The test set contains 10 different car models
imaged under fairly poor lighting conditions, thus the
performance of most state-of-the-art methods is worse
than the results over 3D Object Classes, as indicated
in Tab. 2. Again, the initialization [45] already obtains
the best viewpoint classification accuracy reported to
date. The full system again maintains the high level
of classification accuracy (76.5 % for both initialization
and full system), though it loses the detections on 9
test images out of 994.

Continuous viewpoint estimation. Since the
ground truth of the 3D Object Classes dataset does not
provide accurate viewpoints beyond the eight rough
directions, we annotate all images depicting one par-
ticular car (48 images) and one particular bicycle
(72 images) with continuous azimuth and elevation
angles, by manually fitting 3D CAD models to the
images. In particular, we start from a CAD model of
maximally similar shape, placed on a ground plane,
and iteratively adjust the 3D position of the car, the
position and orientation of the camera, and its focal
length. This procedure is quite time-consuming, but
results in precise geometric fits for all images *.

Tab. 3(a) and (b) give the results for continuous
viewpoint estimation, comparing the full system, GT,
and the initialization [45], again considering only fi-

classification). Among those correct estimates, we fur-
ther measure and report the average angular error in
both azimuth and elevation.

In Tab. 3(a), we observe that our full system im-
proves by a remarkable 22.4% over our previous
result of 73.3% [66] for cars, amounting to 95.7%
viewpoint estimates that are within 10° of the ground
truth. At the same time, we improve 24.9% over the
initialization [45], confirming the ability of our method
to provide viewpoint estimates of much finer detail
than captured by coarse viewpoint classification. For
bicycles (Tab. 3(b)), the improvement over the initial-
ization [45] is less pronounced, but still significant (by
12.8% from 76.8% to 89.6%).

Among the correct viewpoint estimates, the actual
viewpoint errors for cars are all in the same range. Our
full system achieves angular errors of 3.8° in azimuth
and 3.7° in elevation, which is practically the same as
our model starting from GT (3.6° and 3.2°). Similar or
slightly larger errors are also obtained with competing
methods, which however have significantly lower
recall, meaning that the “more difficult” cases solved
only by our model are nevertheless accurately esti-
mated. Similarly, we achieve 3.4° in azimuth and 10.4°
in elevation for bicycles. We attribute the significantly
larger elevation errors to the fact that bicycles are
largely planar, and thus their elevation angle is rather
correlated with the shape (in particular the height-to-
length ratio).

Tab. 4 gives the corresponding results for EPFL
Multi-view cars. Here, cars are depicted from a wide
variety of viewpoints sampled densely from the entire
360° viewing circle. In unison with the results on 3D
Object Classes, we improve over the initialization [45]
by 7%, obtaining precise azimuth angle estimation
in 80.3 % of the cases, whereas the average error in
azimuth estimation decreases to 3.3°.

4.5 Ultra-wide baseline matching

While the experiments of Sect. 4.3 (part localization)
and 4.4 (pose estimation) evaluate our approach from
an object-centric perspective, the following experi-
ment quantifies its ability to recover 3D camera and
scene geometry. In particular, we consider the task of



estimating relative camera pose from a pair of im-
ages depicting the same scene, i.e. epipolar geometry
fitting. This task quickly gets very challenging as the
baseline increases; the best invariant interest point de-
scriptors like SIFT [37] allow matching up to baselines
of ~30 degrees in orientation and a factor of ~2 in
scale. Only recently, Bao and Savarese [4] have noted
that semantic knowledge (“the scene contains a car
somewhere”) can provide additional constraints for
solving the matching problem, increasing the range
of feasible baselines. Their approach enforces consis-
tency between 2D object detection bounding boxes
and coarse pose estimates across views in a structure-
from-motion framework.

In contrast, we leverage the ability of our approach
to predict accurate object part positions, and use those
directly as putative matches. The 3D model is fitted
independently to two input images, and the model
vertices form the set of correspondences. Matching is
thus no longer based on the local appearance around
an isolated point, but on the overall fit of the object
model. Note, this makes it possible to match even
points which are fully occluded. In principle, relative
camera pose could be obtained directly from the two
object pose estimates. In practice this is not robust,
since independent fitting will usually not find the
exact same shape, and even in a generally correct
fit some parts may be poorly localized, especially if
the guessed focal length is inaccurate. Hence, we use
corresponding model vertices as putative matches,
and robustly fit fundamental matrices with standard
RANSAC.

Protocol. As test data we have extracted 134 pairs
of images from the car data set, for which the car
was not moved w.r.t. the background. The restriction
to stable background ensures the comparison is not
unfairly biased against SIFT: straight-forward descrip-
tor matching does not need model knowledge and
can therefore also use matches on the background,
whereas interest points on the cars themselves are
rather hard to match because of specularities.

To assess the correctness of the fundamental ma-
trices thus obtained, we manually label ground truth
correspondences in all 134 images pairs, on the car as
well as the background. A fit is deemed correct if the
Sampson error [23] for these points is <20 pixels.

Results. In Tab. 5, we compare, for varying angular
baselines (45°, 90°, 135°, 180°), the results obtained
by our full system and GT to previously reported
results (our previous method [66] and the multi-view
deformable part model with 3D constraints, DPM-3D-
Const. [45]), and two baseline methods: (i) we find pu-
tative matches with SIFT (using the default options in
[56]); and (ii) in order to assess whether the geometric
model brings any benefit over the raw part detections
it is based on, we perform non-maximum suppression
on the scoremaps and obtain three modes per part in
each of the two images. The permutations of these
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Car cat. 1 2 3 4 5 Total
(@) Full System|65.9%81.3%(60.4%|70.8%60.4%|(67.8%
GT 55.3%170.8%64.6%75.0%|56.2%||64.4%

Chance [38.9%|30.5%30.5%|38.9%|38.9%||35.5%

Bicycle cat.| 1 2 3 4 5 || Total
Full System|57.3%|62.5% | 71.2%|75.0%| 65.1%[66.1%
(®) GT  |55.1%|60.9%|68.6%|71.0%|68.6%||64.8%
Chance  |25.0%|28.1%|40.6%|25.0%| 25.0%|[28.7%

TABLE 6
Fine-grained categorization of (a) cars , (b) bicycles.

®® 8% | O | b

Fig. 9. Fine-grained categorization examples for
(a) cars, (b) bicycles. Example input image of true
class with corresponding CAD model prototype (left),
five most frequently matched CAD model hypotheses
(right; green denotes correct, red incorrect matches).

@V

locations form the set of putative correspondences.

As expected, SIFT catastrophically fails (0.5% cor-
rectly estimated relative poses on average). Matching
raw part detections works slightly better (18.4%),
since the dedicated detectors search for a pre-trained
part irrespective of the viewpoint, rather than com-
paring low-level appearance patterns. The DPM-3D-
Const. [45] already outperforms our previous result of
51.9% [66], but is in turn superseded by a significant
margin of 22.3% by our full system (79.4%). Note that
even for 180° viewpoint spacing, 76.5% of the esti-
mated epipolar geometries are correct, see examples
in Fig. 11(g).

4.6 Fine-grained categorization by 3D geometry

In addition to the popular task of distinguishing
between basic-level categories (such as cat and dog),
fine-grained categorization into sub-ordinate cate-
gories (such as sheep dog and Labrador) has received
increasing attention in the vision literature lately [41],
[63], [15]. It is deemed challenging due to the need to
capture subtle appearance differences between classes
(e.g., fur texture) while at the same time maintain-
ing robustness to intra-class variations induced by
viewpoint changes and lighting conditions. As a con-
sequence, the focus has mostly been on classes and
categorization methods that favor discrimination by
strong local cues (such as random image patches [63],
[15]) or global image statistics (such as color and
gradient histograms for flowers [41]).

In the following experiment, we choose a different



route, and base the fine-grained categorization en-
tirely on 3D geometry. In particular, we consider the
natural distinction between fine-grained sub-ordinate
categories of cars and bicycles, such as sedans, sports
cars, SUVs, etc. as well as mountain bikes, street bikes,
etc.

We perform fine-grained categorization following
a nearest neighbor scheme. Starting from a 3D wire-
frame estimate obtained by our model for a test im-
age, we retrieve the closest wireframe exemplar from
the database of CAD models of the basic-level object
class of interest (car or bicycle), using Euclidean dis-
tance between translation- and scale-invariant wire-
frame representations. Examples of nearest neighbor
matches are visualized in Fig. 11(a) - (f), which show
edge renderings of retrieved CAD models, projected
into the respective test image at the estimated loca-
tion, scale, and viewpoint. Please note the remarkable
accuracy of the fully automatic 3D geometry esti-
mates.

Protocol. We suggest the following procedure to
quantify the performance of fine-grained categoriza-
tion based on the 3D Object Classes data set: For each
of the 5 car and 5 bicycle instances in the test set, we
manually determine the single best matching CAD
model in terms of 3D geometry, using the method-
ology described in Sect. 4.4. We then consider each
of these CAD models a prototype of a fine-grained
category, and measure how often the retrieved CAD
models are sufficiently similar to these prototypes,
by thresholding the mean Euclidean distance between
corresponding vertices of the 3D fit and the annotated
CAD model.

Results. Tab. 6 gives fine-grained categorization
results for cars (a) and bicycles (b), comparing our
full system, GT, and a chance baseline returning ran-
dom CAD models from the database. The first five
columns give the fraction of retrieved CAD models
deemed sufficiently similar to the respective fine-
grained category prototype. The last columns give the
corresponding total fractions: for both cars (Tab. 6(a))
and bicycles (Tab. 6(b)), our full system successfully
recovers the fine-grained category in two thirds of
the cases (67.8% for cars, 66.1% for bicycles). Fig. 9
shows corresponding examples. The examples show
how sedans are most frequently matched to sedans
(Fig. 9(a)), racing bikes to racing bikes (Fig. 9(b),
top), and mountain bikes to mountain bikes (Fig. 9(b),
bottom).

5 CONCLUSIONS

We have designed a detailed 3D geometric object
class model for 3D object recognition and model-
ing, complementing ideas from the early days of
computer vision with modern techniques for robust
model-to-image matching. Combining 3D wireframes
with discriminative local shape detectors, we have
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demonstrated the successful recovery of detailed 3D
object shape and pose from single input images. We
believe that this high level of geometric detail in an
important ingredient to advance scene-level reasoning
beyond what can be achieved with box-level object
class representations.

In an extensive experimental study on the object
classes car and bicycle, we have quantified the ability
of our proposed system to recover detailed geometric
object hypotheses from single images. The model
has been tested in four different settings, ranging
from accurate 2D localization of object parts, through
continuous pose estimation, to ultra-wide baseline
matching and fine-grained categorization of car and
bicycle types. Throughout, the performance is en par
with or higher than previously reported results.

In the future, we plan to extend the present work in
two directions, namely to explicitly handle occluded
object parts, and to reason jointly over multiple
instances of several object classes in the same scene,
in order to exploit the additional constraints due
to the common viewpoint as well as interactions
between objects.
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