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Abstract— Here, we present a general framework for com-
bining visual odometry and lidar odometry in a fundamental
and first principle method. The method shows improvements in
performance over the state of the art, particularly in robustness
to aggressive motion and temporary lack of visual features. The
proposed on-line method starts with visual odometry to estimate
the ego-motion and to register point clouds from a scanning
lidar at a high frequency but low fidelity. Then, scan matching
based lidar odometry refines the motion estimation and point
cloud registration simultaneously. We show results with datasets
collected in our own experiments as well as using the KITTI
odometry benchmark. Our proposed method is ranked #1 on
the benchmark in terms of average translation and rotation
errors, with a 0.75% of relative position drift. In addition
to comparison of the motion estimation accuracy, we evaluate
robustness of the method when the sensor suite moves at a high
speed and is subject to significant ambient lighting changes.

I. INTRODUCTION

Recent separate results in visual odometry and lidar odom-
etry are promising in that they can provide solutions to 6-
DOF state estimation, mapping, and even obstacle detection.
However, drawbacks are present using each sensor alone.
Visual odometry methods require moderate lighting condi-
tions and fail if distinct visual features are insufficiently
available. On the other hand, motion estimation via moving
lidars involves motion distortion in point clouds as range
measurements are received at different times during contin-
uous lidar motion. Hence, the motion often has to be solved
with a large number of variables. Scan matching also fails in
degenerate scenes such as those dominated by planar areas.

Here, we propose a fundamental and first principle method
for ego-motion estimation combining a monocular camera
and a 3D lidar. We would like to accurately estimate the
6-DOF motion as well as a spatial, metric representation of
the environment, in real-time and onboard a robot navigating
in an unknown environment. While cameras and lidars have
complementary strengths and weaknesses, it is not straight-
forward to combine them in a traditional filter. Our method
tightly couples the two modes such that it can handle both
aggressive motion including translation and rotation, and
lack of optical texture as in complete whiteout or blackout
imagery. In non-pathological cases, high accuracy in motion
estimation and environment reconstruction is possible.

Our proposed method, namely V-LOAM, explores advan-
tages of each sensor and compensates for drawbacks from
the other, hence shows further improvements in performance
over the state of the art. The method has two sequentially
staggered processes. The first uses visual odometry running
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Fig. 1. The method aims at motion estimation and mapping using a
monocular camera combined with a 3D lidar. A visual odometry method
estimates motion at a high frequency but low fidelity to register point clouds.
Then, a lidar odometry method matches the point clouds at a low frequency
to refine motion estimates and incrementally build maps. The lidar odometry
also removes distortion in the point clouds caused by drift of the visual
odometry. Combination of the two sensors allows the method to accurately
map even with rapid motion and in undesirable lighting conditions.

at a high frequency as the image frame rate (60Hz) to
estimate motion. The second uses lidar odometry at a low
frequency (1 Hz) to refine motion estimates and remove
distortion in the point clouds caused by drift of the visual
odometry. The distortion-free point clouds are matched and
registered to incrementally build maps. The result is that
the visual odometry handles rapid motion, and the lidar
odometry warrants low-drift and robustness in undesirable
lighting conditions. Our finding is that the maps are often
accurate without the need for post-processing. Although
loop closure can further improve the maps, we intentionally
choose not to do so since the emphasis of this work is to
push the limit of accurate odometry estimation.

The basic algorithm of V-LOAM is general enough that it
can be adapted to use range sensors of different kinds, e.g.
a time-of-fly camera. The method can also be configured to
provide localization only, if a prior map is available.

In addition to evaluation on the KITTI odometry bench-
mark [1], we further experiment with a wide-angle camera
and a fisheye camera. Our conclusion is that the fisheye
camera brings in more robustness but less accuracy because
of its larger field of view and higher image distortion.
However, after the scan matching refinement, the final motion
estimation reaches the same level of accuracy. Our experi-
ment results can be seen in a publicly available video.1.

II. RELATED WORK

Vision and lidar based methods are common for state
estimation [2]. With stereo cameras [3], [4], the baseline
provides a reference to help determine scale of the motion.
However, if a monocular camera is used [5]–[7], scale of the
motion is generally unsolvable without aiding from other
sensors or assumptions about motion. The introduction of
RGB-D cameras provides an efficient way to associate visual
images with depth. Motion estimation with RGB-D cameras

1www.youtube.com/watch?v=-6cwhPMAap8
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[8], [9] can be conducted easily with scale. A number of
RGB-D visual odometry methods are also proposed showing
promising results [10]–[12]. However, these methods only
utilize imaged areas where depth is available, possibly wast-
ing large areas in visual images without depth coverage. The
visual odometry method used in our system is similar to [8]–
[12] in the sense that all use visual images with additionally
provided depth. However, our method is designed to utilize
sparse depth information from a lidar. It involves features
both with and without depth in solving for motion.

For 3D mapping, a typical sensor is a (2-axis) 3D lidar
[13]. However, usage of these lidars is difficult as motion
distortion is present in point clouds as the lidar continu-
ally ranges and moves. One way to remove the distortion
is incorporating other sensors to recover the motion. For
example, Scherer et al.’s navigation system [14] uses stereo
visual odometry integrated with an IMU to estimate the
motion of a micro-aerial vehicle. Lidar clouds are registered
by the estimated motion. Droeschel et al.’s method [15]
employs multi-camera visual odometry followed by a scan
matching method based on a multi-resolution point cloud
representation. In comparison to [14], [15], our method
differs in that it tightly couples a camera and a lidar such that
only one camera is needed for motion recovery. Our method
also takes into account point cloud distortion caused by drift
of the visual odometry, i.e. we model the drift as linear
motion within a short time (1s) and correct the distortion
with a linear motion model during scan matching.

It has also shown that state estimation can be made with
3D lidars only. For example, Tong et al. match visual features
in intensity images created by stacking laser scans from a 2-
axis lidar to solve for the motion [16]. The motion is modeled
with constant velocity and Gaussian processes. However,
since this method extracts visual features from laser images,
dense point clouds are required. Another method is from
Bosse and Zlot [17], [18]. The method matches geometric
structures of local point clusters. They use a hand-held
mapping device composed of a 2D lidar and an IMU attached
to a hand-bar through a spring [17]. They also use multiple 2-
axis lidars to map an underground mine [18]. In this method,
the trajectory is recovered by batch optimization processing
segmented data with boundary constraints connecting in
between the segments. The method is appropriate for offline
survey but unsuitable for online real-time applications.

The proposed method is based on our work in [19], [20],
where a visual odometry method, DEMO, and a lidar odome-
try method, LOAM, are proposed separately. LOAM requires
smooth motion and relies on an IMU to compensate for high
frequency motion. In this paper, LOAM is modified such
that the new method, V-LOAM, takes the visual odometry
output as motion prior followed by the lidar odometry. The
camera model in the visual odometry is also modified and
compatible with fisheye cameras. A new set of experiments
are conducted and results show V-LOAM delivers lower drift.
Incorporating high-frequency visual odometry and a fisheye
camera also enables the system to handle rapid motion.

III. COORDINATE SYSTEMS AND TASK

The problem addressed in this paper is to estimate the
motion of a camera and lidar system and build a map of
the traversed environment with the estimated motion. We
assume that the camera is modeled by a general central
camera model [21]. With such a camera model, our sys-
tem is able to use both regular and fisheye cameras (see
experiment section). We assume that the camera intrinsic
parameters are known. The extrinsic parameters between the
camera and lidar are also calibrated. This allows us to use a
single coordinate system for both sensors, namely the sensor
coordinate system. For simplicity of calculation, we choose
the sensor coordinate system to coincide with the camera
coordinate system – all laser points are projected into the
camera coordinate system upon receiving. As a convention
of this paper, we use left uppercase superscription to indicate
coordinate systems. In the following, let us define
• Sensor coordinate system {S} is originated at the

camera optical center. The x-axis points to the left,
the y-axis points upward, and the z-axis points forward
coinciding with the camera principal axis.

• World coordinate system {W} is the coordinate system
coinciding with {S} at the starting position.

With assumptions and coordinate systems defined, our
odometry and mapping problem is stated as

Problem: Given visual images and lidar clouds perceived
in {S}, determine poses of {S} with respect to {W} and
build a map of the traversed environment in {W}.

IV. SYSTEM OVERVIEW

Fig. 2 shows a diagram of the software system. The overall
system is divided into two sections. The visual odometry
section estimates frame to frame motion of the sensor at
the image frame rate, using visual images with assistance
from lidar clouds. In this section, the feature tracking block
extracts and matches visual features between consecutive
images. The depth map registration block registers lidar
clouds on a local depthmap, and associates depth to the visual
features. The frame to frame motion estimation block takes
the visual features to compute motion estimates.

To summarize the lidar odometry section, let us define
a sweep as the 3D lidar completes one time of full scan
coverage. If the slow axis of the lidar spins continuously,
a sweep is typically a full-spherical rotation. However, if
the slow axis rotates back-and-forth, a sweep is a clockwise
or counter-clockwise rotation toward the same orientation.
In our system, a sweep lasts for 1s. The lidar odometry
section is executed once per sweep, processing point clouds
perceived within entire sweeps. First, the sweep to sweep
refinement block matches point clouds between consecutive
sweeps to refine motion estimates and remove distortion in
the point clouds. Then, the sweep to map registration block
matches and registers point clouds on the currently built map,
and publishes sensor poses with respect to the map. The
sensor pose outputs are integration of the transforms from
both sections, at the high frequency image frame rate.
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Fig. 2. Block diagram of the odometry and mapping software system.

V. VISUAL ODOMETRY

This section summarizes the visual odometry method.
With lidar clouds, the method registers and maintains a
depthmap using estimated motion of the visual odometry.
When computing motion, it involves three types of visu-
al features in terms of the source of depth: depth from
the depthmap, depth by triangulation using the previously
estimated motion, and depth unavailable. However, to use
fisheye cameras with over 180◦ field of view, let us use
the term “distance” from now on (a feature’s depth is the
projection of its distance in Sz direction). Let us use right
superscript k, k ∈ Z+ to indicate image frames, and I to
indicate the set of visual features. For a feature i, i ∈ I,
that is associated with distance, its coordinates in {Sk} are
denoted as SXk

i = [Sxk
i ,

Syki ,
Szki ]T . For a feature with

unknown distance, we use its normalized coordinates instead,
SX̄k

i = [S x̄k
i ,

S ȳki ,
S z̄ki ]T , where ||SX̄k

i || = 1. We model the
sensor motion as rigid body transformation. Let R and T be a
3×3 rotation matrix and a 3×1 translation vector describing
the frame to frame motion. We formulate the motion as

SXk
i = R SXk−1

i + T. (1)

In the case that a feature’s distance is available, we can
associate the distance to SXk−1

i . However, the distance of
SXk

i is always unknown. Since the motion between frames
k − 1 and k is not computed at this stage, we are not able
to retrieve the distance of SXk

i either from the depthmap or
by triangulation. Let Sdki be the unknown distance of SXk

i ,
Sdki = ||SX̄k

i ||. Substituting SXk
i with Sdki

SX̄k
i in (1) and

combining the 1st and the 2nd rows with the 3rd row, we
can eliminate Sdki . This gives us two equations as follows,

(S z̄ki R1 − S x̄k
i R3)SXk−1

i + S z̄ki T1 − S x̄k
i T3 = 0, (2)

(S z̄ki R2 − S ȳki R3)SXk−1
i + S z̄ki T2 − S ȳki T3 = 0. (3)

Here, Rl and Tl, l ∈ {1, 2, 3}, are the l-th rows of R and T.
For a feature without distance, both distances of SXk−1

i

and SXk
i are unknown. Substituting the terms in (1) with

Sdk−1i
SX̄k−1

i and Sdki
SX̄k

i , respectively, and combining all
three rows to eliminate Sdk−1i and Sdki , we can obtain, −S ȳki T3 + S z̄ki T2

S x̄k
i T3 − S z̄ki T1

−S x̄k
i T2 +S ȳki T1

R SX̄k−1
i = 0. (4)

The above procedure tells that a feature with known
distance provides two equations as (2)-(3), while a feature
with unknown distance provides one equation as (4). When
solving for motion, we stack all equations and formulate the
motion estimation problem with six unknowns representing

the 6-DOF motion. The problem is solved by the Levenberg-
Marquardt method. The motion estimation is adapted to a
robust fitting framework to handle feature tracking errors.
A weight is assigned to each feature based on its residuals
in (2)-(3) or (4). Features with larger residuals are assigned
with smaller weights, while features with residuals larger
than a threshold are considered outliers and assigned with
zero weights. The optimization terminates if convergence is
found or the maximum iteration number is met.

When maintaining the depthmap, new points are added to
the depthmap upon receiving from lidar clouds. Only points
in front of the camera are kept, and points that are received a
certain time ago are forgotten. The depthmap is downsized to
keep a constant point density, and projected to the last image
frame whose transform to the previous frame is established,
namely frame k−1. We represent points on the depthmap in
spherical coordinates using a distance and two angles. The
points are stored in a 2D KD-tree based on the two angular
coordinates. When associating distances to the features, we
find the three closest points on the depthmap from each
feature. The three points form a local planar patch, and the
distance is interpolated from the three points by projecting
a ray from the camera center to the planar patch.

Further, if the distances are unavailable from the depthmap
for some features but they are tracked more than a certain
distance, we triangulate them using the sequences of images
where the features are tracked. Fig. 3 shows an example of
reconstructed features corresponding to Fig. 1 (left image).
The green dots are features whose distances are associated
from the depthmap, and the blue dots are by triangulation
(the red dots in Fig. 1 have unknown distances).

VI. LIDAR ODOMETRY

The frame to frame motion estimated by the visual odom-
etry is further refined by the lidar odometry method. The
lidar odometry contains two major steps for coarse to fine
processing of point clouds: a sweep to sweep refinement
step matches point clouds between consecutive sweeps to

Fig. 3. An example of depthmap and reconstructed visual features
corresponding to the left image in Fig. 1. The colored points represent the
depthmap, where color codes elevation. The green dots are features whose
distances are from the depthmap, and the blue dots are obtained by structure
from motion (the red dots in Fig. 1 have unknown distances).
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Fig. 4. Illustration of visual odometry drift. The orange curve represents
nonlinear motion estimated by the visual odometry, and the blue line
represents the visual odometry drift. We model the drift as linear motion
within a sweep (lasting for 1s). The drift creates distortion in lidar clouds.
The sweep to sweep refinement step corrects the distortion by matching
lidar clouds between consecutive sweeps with a linear motion model.

refine motion estimates, and a sweep to map registration step
matches and registers point clouds on the map.

Fig. 4 illustrates functionality of the sweep to sweep re-
finement step. The orange curve represents nonlinear motion
of the sensor estimated by the visual odometry. The drift of
the visual odometry is usually considered as slow motion. We
model the drift with contact velocity within a sweep (lasting
for 1s), represented by the blue line. When using motion
recovered by the visual odometry to register lidar clouds,
the drift causes distortion in the lidar clouds. The sweep to
sweep refinement step incorporates a linear motion model in
lidar cloud matching to remove the distortion.

Let us use right superscript m, m ∈ Z+ to indicate sweep-
s, and Pm to indicate the lidar cloud perceived during sweep
m. For each Pm, we extract geometric features combing
points on sharp edges, namely edge points, and points on
planar surfaces, namely planar points, by computation of the
curvature in local scans. We avoid selecting points whose
neighbor points are selected, and points on boundaries of
occluded regions or local surfaces that are roughly parallel
to the laser beams. These points are likely to contain large
noises or change positions over time. Fig. 5 gives an example
of edge points and planar points detected from a sweep when
the sensor navigates in front of a building.

Let Em and Hm be the sets of edge points and planar
points extracted from Pm. We match Em and Hm to the
lidar cloud from the previous sweep, Pm−1. Here, note that
after completion of sweep m− 1, the distortion in Pm−1 is
corrected. Hence, we only need to apply the linear motion
model for the current sweep. Define T′ as a 6 × 1 vector
describing the visual odometry drift during sweep m, and
define tm as the starting time of this sweep. For a point i,
i ∈ Em ∪ Hm, perceived at time ti, the corresponding drift
between tm and ti is linearly interpolated as,

T′i = T′(ti − tm)/(tm+1 − tm). (5)

For each point in Em, we find the two closest edge points

Fig. 5. An example of detected edge points (blue) and planar points (green)
from a sweep. The sensor points to a building during data collection.

Fig. 6. Illustration of sweep to map registration step. For each sweep m,
the lidar cloud Pm is matched with the existing map cloud Qm−1. Then,
the two point clouds are merged to form a new map cloud Qm.

in Pm−1 which form an edge line segment. For each point
in Hm, we find the three closest planar points which form a
local planar patch. This process employs two 3D KD-trees,
one storing edge points and the other storing planar points
in Pm−1. With correspondences of the edge points and the
planar points found, an equation is derived to describe the
distance between a point and its correspondence,

f(SXm
i ,T′i) = di, (6)

where SXm
i is the coordinates of point i, i ∈ Em ∪ Hm,

in {Sm}, and di is the distance to its correspondence.
Combining (5) and (6), we obtain a function of T′. The
process of solving for T′ is stacking the function of each
edge point and planar point and then minimizing the overall
distances. The nonlinear optimization uses the Levenberg-
Marquardt method adapted to a robust fitting framework.
With T′ computed, we remove the distortion in Pm.

Finally, the sweep to map registration step matches and
registers the distortion-free lidar clouds on the currently built
map. Define Qm as the map cloud at the end of sweep m.
As illustrated in Fig. 6, this step matches Pm with Qm−1

and merges the two point clouds to build a new map cloud
Qm. The same types of edge points and planar points are
extracted from Pm. Considering the density nature of the
map cloud, correspondences of the feature points are deter-
mined by examining distributions of local point clusters in
Qm−1, through computation of eigenvalues and eigenvectors.
Specifically, one large and two small eigenvalues indicate an
edge line segment, and two large and one small eigenvalues
indicate a local planar patch. The scan matching involves an
iterative closest point method [22], similar to the sweep to
sweep refinement step without the motion model.

After registration of Pm on the map, a transform is also
published regarding sensor poses on the map, in the world
coordinate system {W}. Since these transforms are only
computed once per sweep, we combine them with the high
frequency frame to frame motion transforms from the visual
odometry. As illustrated in Fig. 7, the result is high frequency
integrated pose outputs at the image frame rate.

Fig. 7. Illustration of transform integration. The blue segment represents
transforms published by the lidar odometry at a low frequency, regarding
sensor poses in the world coordinate system {W}. The orange segment
represents transforms published by the visual odometry at a high frequency
containing frame to frame motion. The two transforms are integrated to
generate high frequency sensor pose outputs at the image frame rate.
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VII. EXPERIMENTS

The study of this paper is validated on two sensor systems,
one using a custom-built camera and lidar sensor as shown
in Fig. 8, and the other using configuration of the KITTI
benchmark datasets [1]. Through the paper, we have used
data collected from the custom-built sensor to illustrate the
method. The camera is a uEye monochrome camera config-
ured at 60Hz frame rate. The 3D lidar is based on a Hokuyo
UTM-30LX laser scanner. The laser scanner has 180◦ field
of view and 0.25◦ resolution with 40 lines/sec scanning rate.
A motor actuates the laser scanner for rotational motion to
realize 3D scan. The motor is controlled to rotate at 180◦/s
angular speed between −90◦ and 90◦ with the horizontal
orientation of the laser scanner as zero. An encoder measures
the motor rotation angle with 0.25◦ resolution.

The software program processing author-collected data
runs on a laptop computer with 2.5GHz quad cores in Linux.
The method consumes about two and a half cores: the visual
odometry takes two cores, and the lidar odometry takes half
of a core as it is only executed once per sweep. The method
tracks maximally 300 Harris corners using the Kanade Lucas
Tomasi (KLT) method [23]. To evenly distribute the visual
features, an image is separated into 5×6 identical subregions,
while each subregion provides up to 10 features.

When evaluating on the KITTI odometry benchmark [1],
the method uses data from a single camera and a Velodyne
lidar. It outperforms other methods irrespective of sensing
modality, including the lidar only method, LOAM [20]. This
is mostly because V-LOAM uses images to compute motion
prior for scan matching, while LOAM only processes laser
data. Our results for both methods are publicly available2.

A. Accuracy Tests

We first conduct accuracy tests using two camera setups,
one with a wide-angle lens (76◦ horizontal field of view) and
the other with a fisheye lens (185◦ horizontal field of view).
To acquire both images at the same time, another camera is
mounted underneath the original camera in Fig. 8, and set
at the same configuration except the resolution is slightly
different. The original camera is at 752 × 480 pixels while
the second camera is at 640×480 pixels. This is because the
fisheye lens provides pixel information in a circular region
(see examples in Fig. 9(a)) and further extending the camera
horizontal resolution only enlarges the black region.

2www.cvlibs.net/datasets/kitti/eval_odometry.php

Fig. 8. Custom-built camera and lidar sensor. The camera is a uEye
monochrome camera configured at 60Hz frame rate. The 3D lidar consists of
a Hokuyo UTM-30LX laser scanner driven by a motor and an encoder that
measures the rotation angle. The motor rotates back-and-forth at 180◦/s.

Fig. 9 and Fig. 10 show results of accuracy tests in an
indoor and an outdoor environments. In both tests, the sensor
is held by a person who walks at 0.7m/s. Fig. 9-10(a) present
sample images from the tests. In Fig. 9(a), the first row is
from the wide-angle camera, and the second row is corre-
sponding images from the fisheye camera. In Fig. 10(a), we
only show images from the wide-angle camera due to limited
space. Fig. 9-10(b) show results of motion estimation. We
compare four trajectories: two from the visual odometry with
the wide-angle camera and the fisheye camera, respectively,
and the other two refined by the lidar odometry. We see
the fisheye camera results in faster drift (green curves) than
the wide-angle camera (red curves) as a result of heavier
image distortion. However, the trajectories refined by the
lidar odometry (blue and black curves) have little difference,
indicating that the lidar odometry is able to correct the visual
odometry drift regardless of the drift amount. Fig. 9-10(c)
show maps built corresponding to the blue curves in Fig. 9-
10(b). The images in Fig. 9-10(a) labeled with numbers 1-4
are respectively taken at locations 1-4 in Fig. 9-10(c).

Additionally, we conduct one test including indoor and
outdoor environments. As shown in Fig. 11, the path starts
in front of a building, passes through the building and exits
to the outside, traverses two staircases and follows a small

(a)

(b)

(c)

Fig. 9. Result of Test 1: indoor accuracy. (a) Sample images from the test.
The top row is from the wide-angle camera and the bottom row is from the
fisheye camera. (b) The red and green trajectories are outputs from the visual
odometry (1st section in Fig. 2) with different camera setups, and the blue
and black trajectories are refined motion estimates by the lidar odometry
(2st section in Fig. 2). The black dot is the starting position. Although using
the fisheye camera leads to larger drift (green) than the wide-angle camera
(red), the refined trajectories by the lidar odometry (blue and black) have
little difference. (c) Map built corresponding to the blue curve in (b). The
images in (a) labeled with 1-4 are taken at locations 1-4 in (c).
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road to come back to the starting position after 538m of
travel. Due to space issue, we eliminate the trajectories and
only show the map built. The images in Fig. 11(a) are taken
at corresponding locations 1-6 in Fig. 11(b).

Table I compare motion estimation accuracy for the three
tests. The accuracy is calculated based on 3D coordinates.
For Test 1, the path contains two loops. We measure gaps on
the trajectories at loop closures to determine relative position
errors as fractions of the distance traveled along the loops.
For Test 2, the lidar perceives the same objects at the start
and the end of the path. We manually extract and correlate 15
points in lidar clouds to calculate the position error. For Test
3, the position error is measured between the starting and
the ending positions. From Table I, we conclude that even
though the visual odometry is less accurate with the fisheye
camera than the wide-angle camera, the lidar odometry is
able to boost the accuracy to the same level.

(a)

(b)

(c)

Fig. 10. Result of Test 2: outdoor accuracy. (a)-(c) are in the same
arrangement as Fig. 9. Similar to Test 1 (Fig. 9), using the fisheye camera
(green curve) results in larger visual odometry drift than the wide-angle
camera (red curve). However, the lidar odometry is able to correct the drift
and generate trajectories with little difference (blue and black curves). The
images in (a) labeled with 1-4 are taken at locations 1-4 in (c).

TABLE I
RELATIVE POSITION ERRORS IN ACCURACY TESTS

W: WIDE-ANGLE, F: FISHEYE, V: VISUAL ODOM (1ST SECTION IN

FIG. 2), VL: VISUAL ODOM + LIDAR ODOM (BOTH SECTIONS IN FIG. 2).

Relative Position Error
Test No. Dist. W-V F-V W-VL F-VL

Test 1 (Loop 1) 49m 1.1% 1.8% 0.31% 0.31%
Test 1 (Loop 2) 47m 1.0% 2.1% 0.37% 0.37%

Test 2 186m 1.3% 2.7% 0.63% 0.64%
Test 3 538m 1.4% 3.1% 0.71% 0.73%

B. Robustness Tests

We further conduct experiments to inspect robustness of
the method with respect to fast motion. We first choose a
staircase environment as in Fig. 12, which includes seven

(a)

(b) (c)

(d)

(e)

Fig. 12. Result of Test 4: robustness w.r.t. fast rotation. The test contains
two trials, one in slow motion and the other in fast motion, following the
same path. (a) shows estimated trajectories. The red and the green curves
are from the same trial in slow motion, while the blue curve is from the
other trial in fast motion. When using the wide-angle camera in fast motion,
the motion estimation fails due to visual features loose tracking during fast
turnings. The trajectory is removed. (b)-(c) are maps built corresponding to
the green and the blue curves, respectively. Careful comparison finds that
the point cloud in (c) is blurred as an effect of fast motion. (d)-(e) present
distributions of angular speed and linear speed for the two trials.
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(a) (b)
Fig. 11. Result of Test 3: indoor and outdoor accuracy. The path starts in front of a building, passes through the building and exits to the outside, traverses
two staircases and follows a small road to come back to the starting position. The images in (a) are taken at corresponding locations 1-6 in (b).

180◦ turns. Walking on the stairs introduces continuous
rotation to the sensor. Second, we choose a corridor envi-
ronment as in Fig. 13. Traveling along the corridor brings in
continuous translation. In each environment, a person holds
the sensor and follows the same path twice, one in slow
motion and the other in fast motion. In Fig. 12-13(a), we
show estimated trajectories. The red and the green curves
are from the slow motion trials, using the wide-angle camera
and the fisheye camera, respectively. The blue curves are

(a)

(b) (c)

(d)

(e)

Fig. 13. Result of Test 5: robustness w.r.t. fast translation. Same as Test
4 (Fig. 12), it contains two trials, one in slow motion and the other in fast
motion. The maps in (b) and (c) correspond to the green and the blue curves
in (a). One finds the walls in (c) are bended as a result of fast motion.

from the fast motion trials. In both tests, when using the
wide-angle camera in fast motion, we encounter issues that
visual features loose tracking during fast turnings, resulting
in failure of motion estimation. The trajectories are removed.
In Fig. 12-13(b), we present the maps corresponding to the
green curves, and in Fig. 12-13(c), we show the maps with
respect to the blue curves. When comparing carefully, one
finds that the point cloud in Fig. 12(c) is blurred and the
walls in Fig. 13(c) are bended due to fast motion.

The distributions of angular speed and linear speed are
shown in Fig. 12-13(d) and Fig. 12-13(e), respectively.
The angular speed is calculated using spatial rotation, and
the linear speed is based on 3D translation. We can see
significant difference in speed between the slow and the fast
trials. In Fig. 12(d), the angular speed covers up to 170◦/s
for the fast trial, and in Fig. 13(e), the average linear speed is
around 2.6m/s. Table II compares relative position errors. For
Test 4, the ground truth is manually calculated assuming the
walls on different floors are exactly flat and aligned. We are
able to measure how much the walls are bended and therefore
determine position error at the end of the trajectory. For Test
5, the error is calculated using the gap at loop closure. From
these results, we draw the conclusion that using the fisheye
camera looses slight accuracy compared to the wide-angle
camera, but gains more robustness in rapid motion.

Finally, we experiment on robustness of the method with
respect to dramatic lighting changes. As shown in Fig. 14(a),
the light is turned off four times. At locations 1-2, the
sensor navigates inside a room, and at locations 3-4, the
sensor moves along a corridor. When the light goes off,
the visual odometry stops working and constant velocity
prediction is used instead. The drift is corrected by the lidar
odometry once per sweep. Fig. 14(b) presents the map built.
Fig. 14(c)-(d) show the amount of corrections applied by the
lidar odometry. The four peaks represent large corrections
corresponding to the red segments in Fig. 14(a), caused by
the fact that constant velocity prediction drifts faster than the
visual odometry. The result indicates that the method is able

TABLE II
RELATIVE POSITION ERRORS IN FAST MOTION TESTS

W: WIDE-ANGLE, FI: FISHEYE, S: SLOW, FA: FAST.

Relative Position Error
Test No. Dist. W-S Fi-S W-Fa Fi-Fa

Test 4 66m 0.67% 0.68% Failed 1.3%
Test 5 54m 0.27% 0.28% Failed 0.39%
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(a)

(b)

(c)

(d)

Fig. 14. Result of Test 6: lighting changes. During the test, light is turned
off four times as indicated by the red segments in (a), each lasting for 2s.
In undesirable lighting conditions, the visual odometry stops working and
constant velocity prediction is used instead. The drift is corrected by the
lidar odometry once per sweep. (b) presents the map built in top-down view.
(c)-(d) show the amount of rotation and translation corrections applied by
the lidar odometry. The corrections become much larger when light is off
due to the fact that constant velocity prediction drifts faster than the visual
odometry. The four peaks in (c)-(d) correspond to locations 1-4 in (a).

to handle temporary light outrage (however, for continuous
darkness, the proposed method is unsuitable and readers are
recommended to use our lidar only method, LOAM [20]).

VIII. CONCLUSION

We propose a real-time method for odometry and mapping
using a camera combined with a 3D lidar. This is through a
visual odometry method that estimates ego-motion at a high
frequency and a lidar odometry method that refines motion
estimates and corrects drift at a low frequency. Cooperation
of the two components allows accurate and robust motion
estimation to be realized, i.e. the visual odometry handles
rapid motion, and the lidar odometry warrants low-drift.
The method is tested indoors and outdoors using datasets
collected in our own experiments, with a wide-angle camera
and a fisheye camera. The method is further evaluated on
the KITTI odometry benchmark with an average of %0.75
relative position drift. Our experiment results also show
robustness of the method when the sensor moves at a high
speed and is subject to significant lighting changes.
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