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Abstract

Robust perception-action models should be learned from
training data with diverse visual appearances and realistic
behaviors, yet current approaches to deep visuomotor pol-
icy learning have been generally limited to in-situ models
learned from a single vehicle or a simulation environment.
We advocate learning a generic vehicle motion model from
large scale crowd-sourced video data, and develop an end-
to-end trainable architecture for learning to predict a dis-
tribution over future vehicle egomotion from instantaneous
monocular camera observations and previous vehicle state.
Our model incorporates a novel FCN-LSTM architecture,
which can be learned from large-scale crowd-sourced vehi-
cle action data, and leverages available scene segmentation
side tasks to improve performance under a privileged learn-
ing paradigm.

1. Introduction

Learning perception-based policies to support complex
autonomous behaviors, including driving, is an ongoing
challenge for computer vision and machine learning. While
recent advances that use rule-based methods have achieved
some success, we believe that learning-based approaches
will be ultimately needed to handle complex or rare sce-
narios, and scenarios that involve multi-agent interplay with
other human agents.

The recent success of deep learning methods for visual
perception tasks have increased interest in their efficacy
for learning action policies. Recent demonstration systems
[1] [2] have shown that simple tasks, such as a vehicle
lane-following policy, can be driven by a neural net; this
echoed the seminal work by Dean Pomerleau with the CMU
NavLab, whose ALVINN network was among the earliest
successful deep learning models [16].

These prior efforts generally formulate the problem as
learning a mapping from pixels to actuation. This end-
to-end optimization is appealing as it directly mimics the
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Figure 1: Autonomous driving is formulated as a future
egomotion prediction problem. Given a large-scale driving
video dataset, an end-to-end FCN-LSTM network is trained
to predict multi-modal discrete and continuous driving be-
haviors. Using semantic segmentation as a side task further
improves the model.

demonstrated performance, but is limiting in that it can only
be performed on data collected with the specific calibrated
actuation setup, or in corresponding simulations (e.g., as
was done in [16], and more recently in [22] [19] [4]). The
success of robot learning-based methods is typically gov-
erned by the availability of training data, and typical pub-
licly available datasets only contain limited hours of col-
lected experience.

We explore an alternative paradigm, which follows the
successful practice in most computer vision settings, of ex-
ploiting large scale online and/or crowdsourced datasets.
We advocate learning a driving model or policy from large
scale uncalibrated sources, and specifically collect and
optimize models based on crowdsourced dashcam video
sources.

To learn a model from this data, we propose a novel
deep learning architecture for learning-to-drive from uncal-
ibrated large-scale video data. We formulate the problem as
learning a generic driving model/policy; our learned model
is generic in that it learns a predictive future motion path
given the present agent state. Presently we learn our model
from a corpus of demonstrated behavior, and also evaluate it
on (held out) data from the same corpus. Our driving model
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is akin to a language model, which scores the likelihood of
character or word sequences given a certain corpora; our
model similarly is trained and evaluated in terms of its abil-
ity to score as highly likely the observed behavior of the
held out driving sequence. It is also a policy in that it de-
fines a probability distribution over actions conditioned on
a state, with the limitation that the policy is never actually
executed in the real world or simulation.

Our paper offers several novel contributions. First, we
introduce a generic motion approach to learning a deep vi-
suomotor action policy, where actuator independent motion
plans are learned based on current visual observations and
previous vehicle state. Second, we develop a novel FCN-
LSTM which can learn jointly from demonstration loss
and segmentation loss, and can output multimodal predic-
tions. Finally, we report experimental results confirming
that “privileged” training with side task (semantic segmen-
tation) loss learns egomotion prediction tasks faster than
from motion prediction task loss alone.

We evaluate our model and compare to various base-
lines in terms of the ability of the model to predict held-out
video examples; our task can be thought of that of predict-
ing future egomotion given present observation and previ-
ous agent state history.

While future work includes extending our model to drive
a real car, and addressing issues therein involving policy
coverage across undemonstrated regions of the policy space
(c.f. [17]), we nonetheless believe that effective driving
models learned from large scale datasets using the class of
methods we propose will be a key element in learning a ro-
bust policy for a future driving agent.

2. Related Work
ALVINN [16] was among the very first attempts to use

a neural network for autonomous vehicle navigation. The
approach was simple, comprising a shallow network that
predicted actions from pixel inputs applied to simple driv-
ing scenarios with few obstacles; nevertheless, its success
suggested the potential of neural networks for autonomous
navigation.

Recently, NVIDIA demonstrated a similar idea that ben-
efited from the power of modern convolution networks to
extract features from the driving frames [1]. This frame-
work was successful in relatively simple real-world sce-
narios, such as highway lane-following and driving in flat,
obstacle-free courses.

Instead of directly learning to map from pixels to ac-
tuation, [2] proposed mapping pixels to pre-defined affor-
dance measures, such as the distance to surrounding cars.
This approach provides human-interpretable intermediate
outputs, but a complete set of such measures may be in-
tractable to define in complex, real-world scenarios. More-

over, the learned affordances need to be manually associ-
ated with car actions, which is expensive, as was the case
with older rule-based systems. Concurrent approaches in
industry have used neural network predictions from tasks
such as object detection and lane segmentation as inputs to
a rule-based control system [10].

Another line of work has treated autonomous navigation
as a visual prediction task in which future video frames are
predicted on the basis of previous frames. [20] propose to
learn a driving simulator with an approach that combines a
Variational Auto-encoder (VAE) [11] and a Generative Ad-
versarial Network (GAN) [8]. This method is a special case
of the more general task of video prediction; there are ex-
amples of video prediction models being applied to driving
scenarios [5, 14]. However, in many scenarios, video pre-
diction is ill-constrained as preceding actions are not given
as input the model. [15, 7] address this by conditioning the
prediction on the model’s previous actions. In our work, we
incorporate information about previous actions in the form
of an accumulated hidden state.

Our model also includes a side- or privileged-
information learning aspect. This occurs when a learn-
ing algorithm has additional knowledge at training time;
i.e., additional labels or meta-data. This extra information
helps training of a better model than possible using only
the view available at test time. A theoretical framework for
learning under privileged information (LUPI) was explored
in [23]; a max-margin framework for learning with side-
information in the form of bounding boxes, image tags, and
attributes was examined in [21] within the DPM framework.
Recently [9] exploited deep learning with side tasks when
mapping from depth to intensity data. Below we exploit a
privileged/side-training paradigm for learning to drive, us-
ing semantic segmentation side labels.

Recent advances in recurrent neural network modeling
for sequential image data are also related to our work. The
Long-term Recurrent Convolutional Network (LRCN) [6]
model investigates the use of deep visual features for se-
quence modeling tasks by applying a long short-term mem-
ory (LSTM) recurrent neural network to the output of a
convolutional neural network. We take this approach, but
use the novel combination of a fully-convolutional network
(FCN) [13] and an LSTM. A different approach is taken
by [24], as they introduce a convolutional long short-term
memory (LSTM) network that directly incorporates convo-
lution operations into the cell updates.

3. Deep Generic Driving Networks

We first describe our overall paradigm for learning a
generic driving model from large-scale driving behavior
datasets, and then propose a specific novel architecture for
learning a deep driving network.



3.1. Generic Driving Models

We propose a generic approach to learn a driving policy
from demonstrated behaviors, and formulate the problem
as predicting future feasible actions. Our driving model is
defined the admissibility of which next motion is plausible
given the current observed world configuration. Note that
the world configuration incorporates prevision observation
and vehicle state. Formally, a driving model F is a function
defined as:

F (s, a) : S ×A→ R (1)

where s denotes states, a represents a potential motion ac-
tion and F (s, a) measures the feasibility score of operating
motion action a under the circumstance s.

Our approach is generic in that it predicts egomotion,
rather than actuation of a specific vehicle. This allows us to
learn from observed sequences of dashcam videos, and not
be limited to learning a policy specific to individual vehicle
dynamics. In this paper we limit the scope of our work to
predicting future motion.2

Our generic models take as input raw pixels and current
and prior vehicle state signals, and compute a likelihood
over future motion actions. The can be defined over a range
of action or motion granularity, and we consider both dis-
crete and continuous settings in this paper.3 For example,
the motion action set A could be a set of coarse actions:

A = {straight, stop, left-turn, right-turn} (2)

One could also define finer actions based on the car ego-
motion heading in the future 0.1 second. In that case, the
possible motion action set is:

A = {~v|~v ∈ R2} (3)

where, ~v denotes the future egomotion on the ground plane.
We refer to F (s, a) as a driving model inspired by its

similarity to the classical N-gram language model in Nat-
ural Language Processing. Both of them takes in the se-
quence of prior events, such as what the driver has seen in
the driving model, or the previously observed tokens in the
language model, and predicts plausible future events, such
as the viable physical actions or the coherent words. Our
driving model can equivalently be thought of as a policy
from a robotics perspective, but we presently only train and
test our model from fixed existing datasets, as explained be-
low, and consequently we feel the language model analogy
is the more suitable one.

2Future work will comprise how to take such a prediction and cause
the desired motion to occur on a specific actuation platform. The latter
problem has been long studied in the robotics and control literature and
both conventional and deep-learning based solutions are feasible (as is their
combination).

3We leave the most general setting, of predicting directly arbitrary
6DOF motion, also to future work.
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Figure 2: Comparison among novel architectures that can
fuse time-series information with visual inputs.

3.2. FCN-LSTM Architecture

Our ultimate goal is to predict the distribution over feasi-
ble future actions, conditioned on the past information, in-
cluding visual cues and object motions. To accomplish our
goal, an image encoder is necessary to learn the relevant
visual information in each input frame and a temporal net-
work to take advantage of the motion history information.
We propose a novel architecture for time-series prediction
which fuses an LSTM temporal encoder with a fully con-
volutional visual encoder. Our model is able to jointly train
motion prediction and pixel-level supervised tasks, and we
show below improved performance using a “privileged” in-
formation learning paradigm which combines both task loss
and semantic segmentation label side training. We describe
our proposed architecture in detail in the following subsec-
tions. Figure 2 compares our architecture FCN-LSTM with
two related architectures[6, 24].

3.2.1 Visual Encoder

Given a video frame input, a visual encoder can encode the
visual information in a discriminative manner while main-
taining the relevant spatial information. In our architec-
ture, a dilated fully convolution neural network [25, 6] is
utilized to extract the visual representations. We take the
ImageNet [18] pre-trained AlexNet [12] model, remove the
pool5 layer and use dilated convolutions for fc6 and fc7.
To get a more discriminative encoder, we finetune it jointly
with the temporal network described below. As we will
show in the experiment section, the dilated FCN represen-
tation is superior compared to the usual CNN architecture,
due to it containing richer spatial information.

3.2.2 Temporal Fusion

After that, we concatenate the past ground truth sensor in-
formation, such as speed and angular velocity, with the vi-
sual features we just extracted. With the visual and sensor
states at each time step, we use an LSTM to fuse all past
states into a single state, corresponding to the state s in our



driving model F (s, a). This state is complete, in the sense
that it contains all historical information about all sensors.
We could predict the physical viability from the state s us-
ing a fully connected layer.

We also investigate another temporal fusion approach
such as temporal convolution, instead of LSTM to fuse the
temporal information. A temporal convolution layer takes
in multiple visual representations and convolves on the time
dimension. However, we have to set a fixed length temporal
window and find that this approach is inferior compared to
the LSTM approach.

3.3. Driving Perplexity

Our goal is to learn a future motion action feasibility
distribution, also known as the driving model. However,
in past work [16, 2, 1], there are few explicit quantitative
evaluation metrics. In this section, we define an evaluation
metrics suitable for large-scale training, based on sequence
perplexity.

Inspired by language modeling metrics, we propose to
use perplexity to driving training and as an evaluation met-
ric. For example, a bigram model assigns a probability of:

p(w1, · · · , wm) = p(w1)p(w2|w1) · · · p(wm|wm−1)

to a held out document. Our model assign:

p(a1|s1) · · · p(at|st) = F (s1, a1) · · ·F (st, at) (4)

probability to the held out driving sequence with actions
a1 · · · at, conditioned on world states s1 · · · st. We define
the action predictive perplexity of our model on one held
out sample as:

perplexity = exp
{
− 1

t

t∑
i=1

logF (si, ai)
}

(5)

To evaluate a model, one can take the most probable ac-
tion predicted apred = argmaxaF (s, a) and compare it with
the action areal that is carried out by the driver. This is the
accuracy of the predictions from a model. Note that mod-
els generally do not achieve 100% accuracy, since a driving
model does not know the intention of the driver ahead of
time.

3.4. Discrete and Continuous Action Prediction

The output of our driving model is a probability distri-
bution over all possible actions. A driving model should
have correct motion action predictions despite encounter-
ing complicated scenes such as an intersection, traffic light,
and/or pedestrians. We first consider the case of discrete
motion actions, and then investigate continuous prediction
tasks, in both cases taking into account the prediction of
multiple modes in a distribution when there are multiple
possible actions.

Mediated Perception Approach    Privileged Training Approach    Motion Reflex Approach
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Figure 3: Comparison of learning approaches. Medi-
ated Perception relies on semantic-class labels at the pixel
level alone to drive motion prediction. The Motion Re-
flex method learns a representation based on raw pixels.
Privileged Training learns from raw pixels but allows side-
training on semantic segmentation tasks.

Discrete Actions. In the discrete case, we train our net-
work by minimizing perplexity on the training set. In prac-
tice, this effectively becomes minimizing the cross entropy
loss between our prediction and the action that is carried
out. In real world of driving, it’s more prevalent to go
straight, compared to turn left or right. Thus the samples
in the training set are highly biased toward going straight.
Similar to [26], we use the weighted loss of different actions
according to the inverse of their prevalence.

Continuous Actions. To output a distribution in the con-
tinuous domain, one could either use a parametric approach,
by defining a family of parametric distribution and regress-
ing to the parameters of the distribution, or one can em-
ploy a non-parametric approach, e.g. discretizing the action
spaces into many small bins. Here we employ the second
approach, since it can be difficult to find a parametric distri-
bution family that could fit all scenarios. For example, when
driving straight, the viable angular speed is highly concen-
trated around zero. However, when facing an intersection,
it’s likely to go arbitrary directions. Choosing a distribution
family with a variable number of modes is not straightfor-
ward.

3.5. Driving with Privileged Information

Despite the large-scale nature of our training set, small
phenomena and objects may be hard to learn in a purely
end-to-end fashion. We propose to exploit privileged learn-
ing [23, 21, 9] to learn a driving policy that exploits both
task loss and available side losses. In our model, we use
semantic segmentation as the extra supervision. Figure
3 summarizes our approach and the alternatives: motion
prediction could be learned fully end to end (Motion Re-
flex Approach), or could rely fully on predicted interme-



Figure 4: Sample frames from the dataset.

diate semantic segmentation labels (Mediated Perception
Approach), in contrast, our proposed approach (Privileged
Training Approach) adopts the best of both worlds, having
the semantic segmentation as a side task to improve the rep-
resentation, which ultimately performs motion prediction.
Specifically, we add a segmentation loss after fc7, which
will enforce fc7 to learn a meaningful feature representa-
tion. Our results below confirm that even when semantic
segmentation is not the ultimate goal, learning with seman-
tic segmentation side tasks can improve performance, es-
pecially when coercing a model to attend to small relevant
scene phenomena,

4. Experiments

For our initial experiments, we use 28,738 dashboard
camera videos as training data and 1906 as testing data.
Sample frames are shown in Figure 4. Each video is ap-
proximately 40 seconds in length. Since a small portion of
the videos have duration just under 40 seconds, we trun-
cate all videos to 36 seconds. We downsample frames to
640 × 360 and temporally downsample the video to 3Hz
to avoid feeding near-duplicate frames into our model. Af-
ter all such preprocessing, we have a total of 3.1 million
frames, which is approximately 2.5 times the size of the
ILSVRC2012 dataset. Additional experimental details are
provided in the supplemental.

To train our model, we use stochastic gradient descent
(SGD) with an initial learning rate of 10−4, momentum of
0.99 and a batch size of 2. The learning rate is decayed by
0.5 whenever the training loss plateaus. Gradient clipping
of 10 is applied to avoid gradient explosion in the LSTM.

Models are evaluated using predictive perplexity and ac-

Configuration Image Temporal Speed Perplexity Accuracy
Random-Guess N.A. N.A. No 0.989 42.1%
Speed-Only N.A. LSTM Yes 0.954 68.6%
CNN-1-Frame CNN N.A. No 0.763 70.3%
TCNN CNN CNN No 0.816 69.6%
CNN-LSTM CNN LSTM No 0.688 74.4%
FCN-LSTM FCN LSTM No 0.665 75.9%
FCN-LSTM+Speed FCN LSTM Yes 0.562 81.1%

Table 1: Results on the discrete feasible action prediction
task. We investigated the influence of various image en-
coders, temporal networks and the effect of speed. Log per-
plexity (lower is better) and accuracy (higher is better) of
our prediction are reported. See Section 4.1 for details.

curacy, where the maximum likelihood action is taken as
the prediction.

4.1. Discrete Action Driving Model

We first consider the discrete action case, in which we
define four actions: straight, stop, left turn, right turn.
The task is defined as predicting the feasible actions in the
next 1/3 of a second. Specifically, we have as ground truth
the vehicle’s speed and its angular velocity between the cur-
rent frame and the frame immediately following. We define
the action turning right as the event of an angular speed
larger than 1.0◦/s and turning left as an angular speed less
than −1.0◦/s. Otherwise, if the vehicle’s speed is less than
2.0m/s or the acceleration is less than −1.0m/s2, we de-
fine the action stop or slow. The stop or slow action aims
to describe when the car has to act in order to avoid, for
instance, a crash or a violation of traffic rules. In all other
cases, the car’s action is defined as go straight.

Following Section 3.2, we minimize perplexity on the
training set and evaluate perplexity and accuracy of the
maximum likelihood prediction on a set of held out videos.
In Table 1, we do an ablation study to investigate the impor-
tance of different components of our model.

For all following models, we used 64 output channels
of temporal convolution and 64 hidden units in the LSTM
module. We used only a single layer in the LSTM network,
since [6] report that multiple layers do not make a consider-
able difference.

Table 1 shows the comparison among a few variants of
our method. The Random Guess baseline predicts randomly
based on the input distribution. In the speed-only condition,
we only use the speed of the previous frame as input, ig-
noring the image input completely. It achieves decent per-
formance, since the driving behavior is largely predictable
from the speed in previous moment. In the “1-Frame” con-
figuration, we only feed in a single image at each timestep
and using CNN as the visual encoder. It achieves much bet-
ter performance than the two baseline models (random and
speed-only). This is intuitive, since human drivers can get a



(a) go at yellow light (b) stop at red light

(c) stop & go equal weight at
medium distance

(d) stop when too close to vehicle
ahead

Figure 5: Discrete actions predicted by our FCN-LSTM
model. Each row of 2 images show how the prediction
changes by time. The green bars shows the probability of
doing that action at that time. The red bars are the driver’s
action. The four actions from top to bottom are going
straight, slow or stop, turn left and turn right.

good, but not perfect, sense of feasible motions from a sin-
gle frame. In the TCNN configuration we study using tem-
poral convolution as the temporal fusion mechanism. We
used a fixed length window of 9, which is 3 seconds in time.
However, it performs worse than the single frame approach,
likely due to over-fitting. We also explore the CNN-LSTM
approach, and it gives a performance boost compared to the
methods above. When changing the visual encoder from
CNN to FCN, we obtain a further performance improve-
ment; adding speed history provides a similar boost.

In Figure. 5, we show some predictions made by our
model. In the first pair of images (subfig. a&b), the car is
going through an intersection, when the traffic light starts to
change from yellow to red. Our model has predicted to go
straight when the light is yellow, and the prediction changes
to stop when the traffic light is red. This indicates that our
model has learned how human drivers often react to traffic
light colors. In the second pair (c&d), the car is approaching
an stopped car in the front. In (c), there is still empty space
ahead, and our model predicts to go or stop roughly equally.
However, when the driver moves closer to the front car, our
model predicts stop instead. This shows that our model has
learned the concept of distance and automatically map it to
the feasible driving action.

4.2. Continuous Action Driving Model

In this section, we investigate the continuous action pre-
diction problem, in particular, lane following. We define
the lane following problem as predicting the angular speed
of the vehicle in the future 1/3 second. As proposed above,

Configuration Angle Perplexity
Random Guess 1.86
Linear Bins -1.24
Log Bins -1.81
Hybrid Bins -2.28

Table 2: Continuous lane following experiment. See Sec-
tion 4.2 for details.

we discretize the prediction domain into bins and turn the
problem into a multi-nominal prediction task.

We evaluated three different kinds of binning methods
(Table 2). First we tried a linear binning method, where we
discretize [−90◦, 90◦] into 180 bins of width 1◦ . The linear
binning method is reasonable under the assumption that one
needs constant controlling accuracy to drive well. Another
reasonable assumption might be that one needs constant rel-
ative accuracy to control the turns. This corresponds to the
log bins method. We use a total of 22 bins that is evenly dis-
tributed in logspace(−90◦,−1◦) and logspace(1◦, 90◦).
We also tried a hybrid assumption, where we use 11 log-
arithm bins for angles in [−20◦, 20◦] and 11 linear bins for
the rest. This assumes a constant relative control accuracy at
small angles and the angular accuracy necessary is at least
some constant. During training we use a Gaussian smooth-
ing with standard deviation of 0.5 to smooth the training
labels in nearby bins. We also weighted the training loss of
each bin by the inverse of their empirical distribution. I.e.
if p[b] is the proportion of the bin b in the training data, we
weight bin b’s loss by (p[b] + ε)−1, where ε is some small
number to guard the inverse from being too large and we
set it to 1E-2. Results are shown in Table 2; The hybrid bin-
ning method performs the best among all of them, while the
linear binning perform worst, which is consistent with our
intuitions.

Figure 6 shows examples of our prediction on video
frames. Sub-figure (a) & (b) shows that our models could
follow the curving lane accurately. The prediction has a
longer tail towards the direction of turning, which is ex-
pected since it’s fine to have different degrees of turns. Sub-
figure (c) shows the prediction when a car is starting to turn
left at an intersection. It assigns a higher probability to con-
tinue turning left, while still assigning a small probability to
go straight. The probability in the middle is close to zero,
since the car should not hit the wall. Close to the completion
of the turn (sub-figure (d)), the car could only go along the
road and thus the other direction disappears. This shows
that we could predict a variable number of modalities ap-
propriately. In sub-figure (e), when the car is going close to
the sidewalk on its right, our model assigns zero probabil-
ity to turn right. When going to the intersection, the model
has correctly assigned non-zero probability to turning right,
since it’s clear by that time.



(a) lane following left (b) lane following right

(c) multiple possible actions:
turn left or go straight

(d) collapsed to single action af-
ter the turn

(e) single sided prediction due to
side walk

(f) right turn becomes available at
intersection

Figure 6: Continuous actions predicted by our model. The
green sector with different darkness shows the probability
map of going to a particular direction. The blue line shows
our maximum likelihood angle prediction and the red line
is the driver’s action.

method perplexity accuracy
Motion Reflex Approach 0.7576 73.46
Mediated Perception Approach 0.8887 61.66
Privileged Training Approach 0.7218 74.70

Table 3: Comparison of the privileged training with other
methods.

4.3. Learning with Privileged Supervision

In this section, we demonstrate our LUPI approach on
the discrete action prediction task. Following Section 3.5,
we designed three approaches: The Motion Reflex Ap-
proach refers to the FCN-LSTM approach above. The Priv-
ileged Training approach takes the FCN-LSTM architecture
and adds an extra segmentation loss after the fc7 layer. We
used Cityscapes[3] segmentation masks as the extra super-
vision. Since the dataset only contains the car egomotion
and the Cityscapes dataset only contains the segmentation,
we pair each video clip with 10 Cityscapes images dur-
ing training. The motion prediction loss (or driving loss)
and the semantic segmentation loss are weighted equally.
For the Mediated Perception Approach, we first compute

(a) 

(b) 

(c) 

Figure 7: We show one example result in each column from
each of the three models. (a) is the Behavior Reflex Ap-
proach. (b) is the Mediated Perception Approach and (c)
the Privileged Training Approach

the segmentation output of every frame in the videos using
the Multi-Scale Context Aggregation approach described in
[25]. We then feed the segmentation results into an LSTM
and train the LSTM independently from the segmentation
part, mimicing stage-by-stage training.

As shown in Table 3, the Privileged Training approach
achieves the best performance in both perplexity and accu-
racy. These observations align well with our intuition that
training on side tasks in an end-to-end fashion improves per-
formance. Figure 7 shows an example in which Privileged
Training provides a benefit. In the first column, there is a
red light far ahead in the intersection. The Privileged Train-
ing approach has successfully identified that and predicted
stop in (c), while the other two methods fail. In the sec-
ond column, the car is waiting behind another car. In the
frame immediately previous to these frames, the vehicle in
front had an illuminated brake light. The second column of
images shows the prediction of the three methods when the
brake light of the car goes out but the vehicle has not yet
started to move. The Privileged Training approach in (c)
predicts stop with high probability. The other two methods
behave more aggressively and predict going straight with
high probability.

The Mediated Perception Approach performs poorly be-
cause the semantic segmentation bottleneck ignores impor-
tant visual details of the input, such as the color of a traffic
light. The Motion Reflex approach performs well in gen-
eral, but occasionally misses important fine-grained details.
Our Privileged Training approach provides a more seman-
tically meaningful feature representation and improved per-
formance.



5. Conclusion
In this paper, we introduce a generic egomotion predic-

tion approach for deep visuomotor learning. We propose a
novel FCN-LSTM architecture that can learn jointly from
the segmentation loss and the driving demonstration loss.
It outputs a multimodal prediction and we have proven the
usefulness of having a side task as the extra supervision.
The model shows good performance on the driving task.
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