
Multiple View Semantic Segmentation for Street View Images

Jianxiong Xiao Long Quan
The Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{csxjx, quan}@cse.ust.hk

Abstract

We propose a simple but powerful multi-view semantic
segmentation framework for images captured by a camera
mounted on a car driving along streets. In our approach,
a pair-wise Markov Random Field (MRF) is laid out across
multiple views. Both 2D and 3D features are extracted at
a super-pixel level to train classifiers for the unary data
terms of MRF. For smoothness terms, our approach makes
use of color differences in the same image to identify accu-
rate segmentation boundaries, and dense pixel-to-pixel cor-
respondences to enforce consistency across different views.
To speed up training and to improve the recognition quality,
our approach adaptively selects the most similar training
data for each scene from the label pool. Furthermore, we
also propose a powerful approach within the same frame-
work to enable large-scale labeling in both the 3D space
and 2D images. We demonstrate our approach on more than
10,000 images from Google Maps Street View.

1. Introduction

Understanding the semantic content of images is a fun-

damental and challenging problem in computer vision. In

this work, we are especially interested in simultaneously

learning object class models and performing segmentation

on multi-view images captured along streets in outdoor en-

vironments. This problem has many potential applications,

such as to automatic vehicles in the DARPA Urban Chal-

lenge, extensions to earth maps, and city modeling [37, 30].

1.1. Related works

In recent years, many methods have been proposed for

simultaneous single-view multi-class object classification

and segmentation, such as [5, 6, 20, 27, 26, 28, 39, 29]. In

our setting, we have multi-view images of the same scene

to improve the performance.

For object recognition tasks, several multi-view systems

have been proposed such as [31, 24, 16, 36, 13]. In these

methods, either multi-view or 3D information is utilized

during training. However, all of these methods focus on sin-

gle view recognition during testing, while our problem is to

recognize and segment multiple views during both training

and testing.

[4] proposed a system making use of multi-view infor-

mation during testing for instance-level retrieval. However,

they focus on distributed systems in which the computa-

tion power and transmission bandwidth are limited. [38]

proposed a joint affinity propagation method for both auto-

matic segmentation and interactive refinement. Although

multi-view information is used, this clustering-based ap-

proach cannot infer semantic meaning for object classes.

The work most related to this paper is probably [3],

where Brostow et al. proposed to utilize 3D information

for street image segmentation. Compared with [3], our ap-

proach differs in the following aspects. First, we propose a

graph-based optimization approach to enforce consistency

of the segmentation result across multiple views. Second,

we adaptively select the training data from a large label

pool. Furthermore, we propose a simple yet powerful ap-

proach for data labeling tasks, while [3] releases a high-

quality labeled data set. Our approach works on practical

data collected by Google Street View without human in-

tervention. The data are very noisy and have strong glare.

Posner et al. [19] also worked on similar problems although

using range data.

1.2. Overview

We propose a multi-view semantic segmentation frame-

work for images captured by a camera mounted on a car

driving along the street. In Section 2, we illustrate how to

set up the image capturing system. The pixel correspon-

dences are then obtained across multiple views. Structure

from Motion is used to reconstruct the scene geometry and

prune incorrect correspondences. With both 2D and 3D

information available, in Section 3, we lay out a Markov

Random Field (MRF) across multiple images. Nodes in

MRF represent superpixels from images, while edges rep-

resent smoothness across either neighboring superpixels in

686

2009 IEEE 12th International Conference on Computer Vision (ICCV)
978-1-4244-4419-9/09/$25.00 ©2009 IEEE

buildingbuilding

street

car

camera

camera mounted on a car

Figure 1. Top view of the camera motion. The car drives along

the street and makes a 90-degree turn at the corner. Therefore, we

break the sequence down into two different sequences, denoted in

red and blue at the turn.

the same images or from different images linked by pixel

correspondences. Section 3.1 gives the definition of the

unary data term, while Section 3.2 defines the smoothness

term. To improve performance by scene alignment, Sec-

tion 3.3 illustrate the organization of the label pool to ease

similar context and learning transference. In Section 4, we

propose a approach to enable labeling of many images at

the same time using the available geometry and color infor-

mation. Finally, we demonstrate our approach in Section

5.

2. Preprocessing

We use a camera that usually faces the building façade

and moves laterally along streets. The camera should be

preferably held straight and the neighboring two views

should have sufficient overlapping. The top view of the

camera motion is illustrated in Figure 1. With the captured

images, we first compute pixel-to-pixel correspondences

between two adjacent images using a robust uncalibrated

matching algorithm [15, 35]. Taking an image in sequence

as a bridge, we can obtain feature tracks of three neigh-

boring views for projective reconstruction. We merge all

the triplets by estimating the transformation between those

with two common images [38, 36] and metrically upgrade

to Euclidian space. In each step, bundle adjustment is used

to minimize the geometric errors, and feature tracks are

merged and linked to cover more views.

Figure 2 shows an example of feature tracks across mul-

tiple view images and corresponding 3D reconstruction. We

not only recover a set of 3D points representing the scene,

but also all camera poses and parameters. We denote a

feature track as t = 〈x, (xi, yi, i) , (xj , yj , j) , . . . 〉, where

x = (x, y, z) is the coordinate for the corresponding 3D

point, and (xi, yi, i) is the 2D projection (xi, yi) on the i-th
image, Ii.

We work on sequences with about 100 images and break

down at the turn in the driving path as exemplified in Fig-

ure 1. To ease the description of the 3D geometry, the right-

hand coordinate system is rotated to align with the average

down vector of all reconstructed cameras to be in the y di-

rection, and the camera path is roughly on the x axis, while

(a) Tracks across multiple views. (b) Superpixel segmentation.

(c) 3D reconstruction by Structure from Motion. The x, y and z axes are

indicated in red, green and blue, respectively.

Figure 2. Preprocessing.

the orientations of the cameras are roughly the same as the

+z direction. To improve the segmentation accuracy and

speed up the process, we over-segment [21, 17] each input

image, Ii, into about 200 superpixels {pj}.

3. Multi-view semantic segmentation
Since street view data usually contain multiple images,

we define a Markov Random Field for the entire sequence

to improve the segmentation consistency across different

views. For each image, Ii, we build a graph, Gi = 〈Vi, Ei〉,
on the over-segmentation results. Each vertex, p ∈ Vi,

in the graph is one superpixel in the over-segmentation,

while the edges, Ei, denote the neighboring relationship

between superpixels. The graphs {Gi} from multiple im-

ages in the same sequence are merged into a large graph,

G = 〈V, E〉, by adding the edges between two superpix-

els in correspondence across different views. The super-

pixels, pi and pj , from images Ii and Ij are in correspon-

dence if and only if there is at least one feature track, t =
〈x, (xi, yi, i) , (xj , yj , j) , . . . 〉, with projection (xi, yi) ly-

ing inside superpixel pi in image Ii, and projection (xj , yj)
lying inside superpixel pj in image Ij . To limit the graph

size, there is at most only one edge, eij , between any super-

pixel, pi and pj , in the final graph, G.

The labeling problem is to assign a unique label, li, to

each node, pi ∈ V . The solution, L = {li}, can be obtained

by minimizing a Gibbs energy [10]

E (L) =
∑
pi∈V

ψi (li) + ρ
∑

eij∈E
ψij (li, lj) . (1)

Since the smoothness costs defined in Section 3.2 satisfy

the metric requirement, after the cost has been computed,

GraphCut-based alpha expansion [2] can be used to obtain

a local optimized label configuration, L.

687

3.1. Unary potential

To define the unary potential function, ψi (·), we extract

features for superpixels to train discriminative classifiers.

3.1.1 2D features

For each superpixel, pi, we compute a 192-dimensional fea-

ture description vector, fA
i , based on the 2D image-based

appearance. Built on [1, 11, 34, 27], for each superpixel,

pi, the feature vector, fA
i , contains the median, deviation,

skewness and kurtosis statistics over the superpixel, pi, of

the RGB and Lab color-space components, as well as the

texture features drawn from filter bank responses. The filter

bank we used is made of three Gaussians, four Laplacians

of Gaussians and four first-order derivatives of Gaussians.

This filter bank has been shown to achieve good perfor-

mance in [34] among a number of different filter combi-

nations of derivatives of Gaussians and Gabor kernels. In

addition, following [1], we compute the size and shape of

each superpixel. The shape features consist of the ratio of

the region area to the perimeter square, the moment of in-

ertia about the center of the mass, and the ratio of the area

to the bounding rectangle area. As in [11], we also append

to the description vector the average of the descriptor over

the neighbors for each superpixel weighted by the number

of pixels for the neighbors.

(a) Sample Image

sky

ground

building

person

vehicle

tree

recycle bin

occurence

(b) Distribution

Figure 3. Pixel location statistics.

Because of the way we captured images, we can roughly

learn the location for each class of objects. For example,

the sky is always in the upper part of the image, while the

ground is always in the lower part. Since our camera moves

laterally along the street, each pixel position at the same

height in the image space should have the same chance to

be a specific class. To illustrate the idea, we compute the

accumulated frequency of different classes from all labeled

data and plot the distribution in Figure 3. Based on this ob-

servation, we only use the vertical position of the superpixel

as the one-dimensional feature vector, fP
i .

3.1.2 3D features

We define the superpixel orientation and the 3D point den-

sity as our geometric features, fG
i . We do not use the abso-

lute height above the camera and the absolute distance to the

camera path as in [3], because an extra setup for the captur-

ing system to measure the absolute dimensions is needed.

We also do not use the back projection residual since it

strongly depends on the implementation of Structure from

Motion.

(a) Superpixel (b) Density (c) Direction

Figure 4. An example of 3D geometric features.

Let Ti denote all tracks that have projection in pi, and

let mi be the medians of three components of all 3D points

in Ti. For each superpixel, pi, the patch normal, ni, is pro-

vided by the symmetric 3 × 3 positive semidefinite matrix,∑
x∈Ti

(x − mi)⊗(x − mi). Among the eigenvectors, v1,

v2 and v3, associated with the eigenvalues, λ1 ≥ λ2 ≥ λ3,

respectively, we choose ni to be either v3 or −v3. The sign

is chosen to have a greater than 180-degree angle between

ni and the camera orientation. In the experiments, we only

estimate the normal direction for regions containing at least

five 3D points. The estimated normal direction, ni, is pro-

jected onto the yz-plane. The dot product of the normalized

unit projected vector and the −y direction is defined to be

the orientation descriptor. For diluted regions without suffi-

cient points for normal estimation, we let this feature value

to be 0.5. This definition of the geometric features is very

useful for classification between the ground with normals

roughly the same as −y, and other objects such as build-

ings. For objects that are textureless, such as the sky, we

use the density |Ti| of the feature tracks to distinguish them.

3.1.3 The boosting classifier

The collection of all feature descriptors are then whitened

to give a zero mean and unit covariance. We learn a series

of one-vs-all AdaBoost classifiers [25] for each class label

l. Here, we take as positive examples the superpixels that

belong to that class in the ground-truth labeling and as neg-

ative examples all superpixels with ground-truth labels of

different classes. We apply the AdaBoost classifier that we

have learned for each class, l, to the descriptors. The esti-

mated confidence value can be reinterpreted as a probability

distribution using softmax transformation:

Pi

(
li|fA

i , fP
i , fG

i

)
=

exp
(
H

(
li, fA

i , fP
i , fG

i

))
∑

l exp
(
H

(
l, fA

i , fP
i , fG

i

)) , (2)

688

Sequence A
Sequence B

Sequence C

Figure 5. Affinity clustering in the label pool.

where H
(
l, fA

i , fP
i , fG

i

)
is the output of the AdaBoost clas-

sifier for class l. We then define the unary potential as

ψi (li) = − log Pi

(
li|fA

i , fP
i , fG

i

)
.

3.2. Smoothness

For edge eij ∈ Ek in the same image, Ik, the smoothness

cost is defined as

ψij (li, lj) = [li �= lj] · g (i, j) , (3)

where

g (i, j) =
1

ζ ‖ci − cj‖2 + 1
(4)

and ‖ci − cj‖2
is the L2-Norm of the RGB color difference

of two superpixels, pi and pj . Note that [li �= lj] allows us

to capture the gradient information only along the segmen-

tation boundary. In other words, ψij is a penalty term when

adjacent nodes are assigned with different labels. The more

similar the colors of the two nodes are, the larger ψij is, and

thus the less likely the edge is on the segmentation bound-

ary.

For edge eij ∈ E across two images, the smoothness cost

is defined as

ψij (li, lj) = [li �= lj] · λ |Tij | g (i, j) (5)

where Tij = {t = 〈x, (xi, yi, i) , (xj , yj , j) , . . . 〉} is the

set of all feature tracks with projection (xi, yi) lying inside

the superpixel, pi, in image Ii, and projection (xj , yj) lying

inside the superpixel, pj , in image Ij . This definition en-

courages two superpixels with more feature track connec-

tions to have the same semantic segmentation label, since

the cost to have different labels is high due to large |Tij |.

3.3. Adaptive training

For each testing sequence, we only select a subset of la-

beled images that are similar with the input sequence as the

training data for that sequence [7]. We define the distance

between two images as the distance between their respective

(a) Strokes (b) Segment regions

P (c|MR)

P

⎛
⎝c|MIk−R

⎞
⎠

(c) Info source likelihood

Figure 6. Labeling in 2D. Color code: � sky, � vehicle.

Gist descriptors [18]. The Gist descriptor is used because it

has been shown to work well for retrieving semantically and

structurally similar scenes. We create a Gist descriptor for

each image with 4 by 4 spatial resolution where each bin

contains that image region’s average response to Steerable

filters at 4 scales with 8,8,4 and 4 orientations, respectively.

To speed up the training and prediction process, we clus-

ter the labeled sequences in the pool based on affinity. As

shown in Figure 5, we regard each label sequence as one

node in a graph. The weight of the edge between each pair

of sequences is defined to be the minimal Gist distance be-

tween any image in a sequence and any image in another

sequence. Given this graph, we use Affinity Propagation

[9] to cluster 40 labeled sequences into 7 clusters. We then

learn 7 models respectively by first training the AdaBoost

classifier in Section 3.1.3, and learning ρ in Equation 1, ζ in

Equation 4, and λ in Equation 5 by piecewise training [27].

Given a testing sequence, we can compute all the dis-

tances between the labeled images and each image in the

input sequence. We may define the distance between the

testing sequence and one cluster as the minimal Gist dis-

tance between any image in the testing sequence and any

image from the cluster. However, this process is very time

consuming. Therefore, we approximate by using the mid-

dle image in each sequence. In this way, we only need to

compute 40 distances between the Gist of the middle image

in the testing sequence, and the pre-computed Gist descrip-

tors for images at the middle positions of the 40 labeled

sequences. We find the most similar cluster for the testing

sequence and use the corresponding model for prediction.

4. Large-scale labeling
Labeling a sufficient number of examples is a fundamen-

tal requirement for any supervised learning method. Many

researchers in this field have proposed methods to ease la-

beling tasks, such as LabelMe [23], ESP game [32] and

Peekaboom [33]. However, most of these methods tried to

make the labeling become interesting and online to encour-

age people to do more labeling, while the efficiency has not

yet been greatly addressed, possibly due to the single image

nature of these tasks. In our multiple view setting, it is pos-

sible to enable large-scale labeling with little interaction.

689

(a) Labeling at the front view. (b) Labeling at the top view.

Figure 7. Labeling in 3D. Color code: � ground, � building, � vehicle, � tree.

We first reconstruct the 3D scene for each sequence with

about 100 images, and let the user label the 3D points in the

3D space. Using labels of 3D points, we are able to seg-

ment the 2D images at the same time. In this way, labeling

once gives us about 100 labeled images. This significantly

improves the efficiency.

In detail, after the 3D scene is reconstructed, as shown

in Figure 7, the user can draw rectangular or polygonal re-

gions to indicate the semantic meaning of the point clouds.

Note that the user may not want to, or may not be able to,

identify and label all 3D points. The task is to use these non-

perfect labeled 3D points to segment multiple view images.

The same framework that we proposed previously can be

naturally used in our labeling task. In Equation 1, the same

smoothness defined in Section 3.2 can also be used since

it involves no information gained from training data. The

unary potential is defined as follows.

First of all, a superpixel, pi, has a set, Ti, of 2D projec-

tions of 3D points inside the superpixel region. The more

points in Ti that are labeled, the more confidence we gain

about the label of the region. Therefore, we define

P 3D
i (li = l) ∝

∣∣T l ∩ Ti

∣∣ +

∣∣T unknown ∩ Ti

∣∣
n

, (6)

where T l = {t|t is a track labeled as class l by the user

in 3D}, T unknown is the set of feature tracks that have no

label information from the user, and n is the total number

of all possible labels. This definition will put a uniform

uncertainty on each class if there are unlabeled 3D points

with projections in the superpixel region. However, it can-

not characterize the projection density in each superpixel

region. A superpixel region with more labeled projections

should have more influence on the neighboring regions. The

superpixel that has lower uncertainty should also contribute

more. Therefore, we define the unary potential to be

ψi (l) = −
∣∣Ti − T unknown

∣∣ + ε

H (Pi (·)) + ε
log Pi (l) , (7)

where
∣∣Ti − T unknown

∣∣ is the number of labeled feature

tracks with projections in superpixel pi, H (Pi (·)) is the

entropy of the distribution Pi (·), and ε and ε are two small

positive values to avoid 0. Pi (l) is set to be P 3D
i (l).

Ideally, this method works well to identify regions with

sufficient texture. However, for the classes lacking tex-

ture, such as the sky, where almost no 3D points are re-

constructed, it is impossible to label them in 3D. Therefore,

we also provide mechanism to draw strokes on one or more

2D images. When a superpixel in one image is covered

by the strokes drawn by the user to be class l, the corre-

sponding unary potential is set to ψi (li = l) = −∞ and

ψi (li �= l) = +∞. By adding these hard constraints, to-

gether with the definition of smoothness based on the color

difference in Section 3.2, the labeling results can be ob-

tained by MRF optimization.

In the same city block, the color distributions across

instances of the same class are quite similar, while those

across instances of different classes are always different. To

draw as few strokes as possible, we want to make use of

the strokes in one image, Ik, to segment the other images.

To integrate this idea into our framework, for a superpixel,

pi, in an image, Ij , without strokes, we first distinguish

whether the labeling information of pi should come from

2D color or 3D points. Illustrated in Figure 6, we segment

some regions in image Ik with the strokes and compute the

color statistics of the regions, R, belonging to the same set

of classes for the strokes. The color distribution of all pixels

in R is approximated by a Gaussian mixture model, MR, on

the RGB color space. Furthermore, the color distribution of

all pixels in Ik − R is approximated by another Gaussian

mixture model MIk−R. For a superpixel, pi, in an image,

Ij , without strokes, we determine the likelihood that the la-

bel information of pi with mean color ci comes from the 2D

color from

P col
i (ci) =

P (ci|MR)
P (ci|MR) + P (ci|MIk−R)

. (8)

The probability is defined accordingly by

Pi (l) = P col
i (ci) P 2D

i (l)+
(
1 − P col

i (ci)
)
P 3D

i (l) , (9)

where P 3D
i (l) is defined in Equation 6, and P 2D

i (l) is the

color likelihood computed from Gaussian mixture model of

pixel colors in the stroke-covered regions of image Ik that

belong to class l. This definition is then used in Equation

690

sk
y

g
ro

u
n

d

b
u

il
d

in
g

p
er

so
n

v
eh

ic
le

tr
ee

re
c y

cl
e

b
in

sky 94.6 - 5.1 - - - 0.1

ground - 97.6 1.0 - 1.1 0.1 0.2

building - 0.6 98.6 - 0.2 0.4 0.2

person - 6.6 85.0 8.3 - - -

vehicle - 15.5 3.8 1.6 78.7 0.2 0.2

tree 0.1 1.2 5.7 - 0.1 92.8 0.1

recycle bin - 6.1 25.7 - - - 68.1

Table 1. Accuracy of our approach to the evaluation data set in per-

centage. This confusion matrix shows the pixel-wise recall accu-

racy for each class (rows) and is row-normalized to sum to 100%.

Row labels indicate the true class and column labels the predicted

class.

7. If multiple views are labeled with 2D strokes, we just put

all the pixels from the multiple views together to define MR
and MI−R accordingly.

5. Experiment
In our experiment, we use more than 10,000 images cap-

tured in the downtown of Pittsburgh by Google Street View.

We want to segment the images into seven classes: sky,

ground, building, person, vehicle, tree and recycle bin. All

of our input images are at 640×905 resolution. We train our

models with a small computer cluster composed of seven

desktop PCs. Each sequence contains about 200,000 3D

points. It takes about 2 days for training using all labeled

sequences excluding over-segmentation. For testing, each

image takes 25.7 seconds on average in one desktop PC ex-

cluding over-segmentation.

We first manually label every image in one sequence.

Then, we label this sequence in the 3D space with a few

strokes in 2D images and learn ρ in Equation 1, ζ in Equa-

tion 4, and λ in Equation 5 for large-scale labeling by piece-

wise training [27]. Now, we use the large-scale labeling

method to randomly label another 39 sequences. Together

with the previous one, we have totally 40 labeled sequences

and 3877 labeled images in the label pool.

5.1. Evaluation

For performance evaluation, we manually label 320 im-

ages sampled uniformly from the testing data set. The seg-

mentation performance is measured as the global accuracy,

i.e., the total proportion of pixels that are correct. The

global pixel-wise prediction accuracy is 94.7% for the full

model, 91.1% for the model from a random cluster (also

below), 83.3% for the model without cross-view consis-

tency, 81.2% for the model without smoothness, 75.4% for

the model without 3D geometry features and smoothness,

69.9% for 2D appearance features together with the Ad-

aBoost classifiers. Some example results predicted by the

(a) Input Image (b) Our result (c) Detection [8] (d) Pruning

Figure 8. An example of person detection. Color code: � ground,

� building, � person, � parts of body.

full model are shown in Figure 9. Note that there may be

several images between two adjacent images not shown due

to space limits. The confusion matrix of full model is pre-

sented in Table 1 for the pixel-wise recall accuracy per class.

5.2. Discussion

We can see that the accuracy for the sky, ground, build-

ing and tree classes are very high. However, for the per-

son class, the results are unsatisfactory for several reasons.

First, objects like persons are difficult to reconstruct by

Structure from Motion, since they are dynamically deform-

ing and unclear due to small pixel coverage, or there is a

large disparity due to the close proximity to the camera.

There are very few 3D points for these objects and it is diffi-

cult for the user to label them in 3D. Hence, very few of our

labeled data contains good labels of these objects. Second,

these small objects are not suitable for our super-pixel rep-

resentation. The traditional sliding windows approach can

better encode the profile shape for such small objects.

This paper tries to propose a consistent framework for

multi-view segmentation. Although it is beyond the scope

of this paper, we can easily incorporate existing detection

methods to handle these difficult classes. For example, in

Figure 8, we use a state-of-the-art model [8] to obtain a

bounding box of the person. With our segmentation results

for background objects, such as buildings and the ground,

we can naturally put the boxes in perspective [12, 14] in

order to prune incorrect predictions. For example, a per-

son must stand on the ground and has a head usually at the

pixel-position of the building. Finally, we can obtain the sil-

houette from the bounding box by methods such as GrabCut

[22] or Active Contours.

6. Conclusion

We propose a multiple view framework for semantic ob-

ject segmentation and demonstrate our approach on large-

scale data sets from Google Street View images. Interesting

future work will consider real-time implementation for pre-

diction, better handling of small objects such as the illustra-

tion in Section 5.2, and extend the method to more general

contexts beyond Street View.

691

Acknowledgements
This work was supported by Hong Kong RGC

Grants 618908, 619107, 619006, and RGC/NSFC N-

HKUST602/05. We thank Qiang Bi for labeling some data

and the anonymous reviewers and the area chair for con-

structive comments that helped to improve this work. The

data set was kindly provided by Google.

References
[1] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D. M.

Blei, and M. I. Jordan. Matching words and pictures. JMLR,

3:1107–1135, 2003.

[2] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-

ergy minimization via graph cuts. PAMI, 23(11):1222–1239,

2001.

[3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-

mentation and recognition using structure from motion point

clouds. In ECCV, 2008.

[4] C. Christoudias, R. Urtasun, and T. Darrell. Unsupervised

feature selection via distributed coding for multi-view object

recognition. In CVPR, 2008.

[5] J. Corso, A. Yuille, and Z. Tu. Graph-shifts: Natural image

labeling by dynamic hierarchical computing. In CVPR, 2008.

[6] G. Csurka and F. Perronnin. A simple high performance ap-

proach to semantic segmentation. In BMVC, 2008.

[7] S. K. Divvala, A. A. Efros, and M. Hebert. Can similar

scenes help surface layout estimation? In IEEE Workshop
on Internet Vision at CVPR. 2008.

[8] P. F. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-

criminatively trained, multiscale, deformable part model. In

CVPR, 2008.

[9] B. J. Frey and D. Dueck. Clustering by passing messages

between data points. Science, 315:972–976, 2007.

[10] S. Geman and D. Geman. Stochastic relaxation, gibbs dis-

tributions, and the bayesian restoration of images. PAMI,
6(6):721–741, 1984.

[11] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.

Multi-class segmentation with relative location prior. IJCV,

2008.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in

perspective. In CVPR, 2006.

[13] A. P. IV, P. Mordohai, and K. Daniilidis. Object detection

from large-scale 3d datasets using bottom-up and top-down

descriptors. In ECCV, 2008.

[14] B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool. Dynamic

3d scene analysis from a moving vehicle. In CVPR, June

2007.

[15] M. Lhuillier and L. Quan. A quasi-dense approach to surface

reconstruction from uncalibrated images. PAMI, 27:418–

433, 2005.

[16] J. Liebelt, C. Schmid, and K. Schertler. Viewpoint-

independent object class detection using 3D feature maps.

In CVPR, 2008.

[17] G. Mori, X. Ren, A. A. Efros, and J. Malik. Recovering

human body configurations: combining segmentation and

recognition. In CVPR, 2004.

[18] A. Oliva and A. Torralba. Building the gist of a scene: The

role of global image features in recognition. Visual Percep-
tion, Progress in Brain Research, 155, 2006.

[19] I. Posner, D. Schroeter, and P. Newman. Describing compos-

ite urban workspaces. In ICRA, 2007.

[20] A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora,

and S. Belongie. Objects in context. In ICCV, 2007.

[21] X. Ren and J. Malik. Learning a classification model for

segmentation. ICCV, 2003.

[22] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: interac-

tive foreground extraction using iterated graph cuts. ACM
TOG, 23(3):309–314, 2004.

[23] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.

Labelme: a database and web-based tool for image annota-

tion. IJCV, 77(1-3):157–173, 2008.

[24] S. Savarese and L. Fei-Fei. 3D generic object categorization,

localization and pose estimation. In ICCV, 2007.

[25] R. E. Schapire and Y. Singer. Machine Learning, (3):297–

336, 1999.

[26] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton

forests for image categorization and segmentation. In CVPR,

2008.

[27] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost

for image understanding: Multi-class object recognition and

segmentation by jointly modeling texture, layout, and con-

text. IJCV, 81(1):2–23, 1 2009.

[28] G. Stephen, R. Jim, C. David, E. Gal, and K. Daphne.

Multi-class segmentation with relative location prior. IJCV,

80(3):300–316, 2008.

[29] E. B. Sudderth and M. I. Jordan. Shared segmentation of nat-

ural scenes using dependent pitman-yor processes. In NIPS,

2008.

[30] P. Tan, T. Fang, J. Xiao, P. Zhao, and L. Quan. Single image

tree modeling. ACM TOG, 27(5):1–7, 2008.

[31] A. Thomas, V. Ferrari, B. Leibe, T. Turtelaars, B. Schiele,

and L. V. Gool. Towards multi-view object class detection.

In CVPR, 2006.

[32] L. von Ahn and L. Dabbish. Labeling images with a com-

puter game. In ACM CHI, pages 319–326, 2004.

[33] L. von Ahn, R. Liu, and M. Blum. Peekaboom: a game for

locating objects in images. In ACM CHI, pages 55–64, 2006.

[34] J. Winn, A. Criminisi, and T. Minka. Object categorization

by learned universal visual dictionary. In ICCV, 2005.

[35] J. Xiao, J. Chen, D.-Y. Yeung, and L. Quan. Learning two-

view stereo matching. In ECCV, 2008.

[36] J. Xiao, J. Chen, D.-Y. Yeung, and L. Quan. Structuring

visual words in 3d for arbitrary-view object localization. In

ECCV, 2008.

[37] J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan.

Image-based façade modeling. ACM TOG, 27(5):1–10,

2008.

[38] J. Xiao, J. Wang, P. Tan, and L. Quan. Joint affinity propa-

gation for multiple view segmentation. In ICCV, 2007.

[39] L. Zhu, Y. Chen, Y. Lin, and A. Yuille. A hierarchical image

model for polynomial-time 2d parsing. In NIPS, 2008.

692

Figure 9. Example Results. Color code: � sky, � ground, � building, � person, � vehicle, � tree, � recycle bin.

693

