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Abstract—This paper presents a method for learning an And-Or model to represent context and occlusion for car detection and

viewpoint estimation. The learned And-Or model represents car-to-car context and occlusion configurations at three levels:

(i) spatially-aligned cars, (ii) single car under different occlusion configurations, and (iii) a small number of parts. The And-Or model

embeds a grammar for representing large structural and appearance variations in a reconfigurable hierarchy. The learning process

consists of two stages in a weakly supervised way (i.e., only bounding boxes of single cars are annotated). First, the structure of the

And-Or model is learned with three components: (a) mining multi-car contextual patterns based on layouts of annotated single car

bounding boxes, (b) mining occlusion configurations between single cars, and (c) learning different combinations of part visibility based

on CAD simulations. The And-Or model is organized in a directed and acyclic graph which can be inferred by Dynamic Programming.

Second, the model parameters (for appearance, deformation and bias) are jointly trained using Weak-Label Structural SVM. In

experiments, we test our model on four car detection datasets—the KITTI dataset [1], the PASCAL VOC2007 car dataset [2], and two

self-collected car datasets, namely the Street-Parking car dataset and the Parking-Lot car dataset, and three datasets for car viewpoint

estimation—the PASCAL VOC2006 car dataset [2], the 3D car dataset [3], and the PASCAL3D+ car dataset [4]. Compared with

state-of-the-art variants of deformable part-based models and other methods, our model achieves significant improvement

consistently on the four detection datasets, and comparable performance on car viewpoint estimation.

Index Terms—Car detection, car viewpoint estimation, and-or graph, hierarchical model, context, occlusion modeling

Ç

1 INTRODUCTION

1.1 Motivation and Objective

CAR is one of the most frequently seen object category in
every day scenes. Car detection and viewpoint estima-

tion by a computer vision system has broad applications
such as autonomous driving and parking management.
Fig. 1 shows a few examples with varying complexities
in car detection from four datasets. Car detection and view-
point estimation are challenging problems due to the large
structural and appearance variations, especially ubiquitous
occlusions which further increase the intra-class variations
significantly. In this paper, we are interested in learning a
unified model which can detect cars in the four datasets and
estimate car viewpoints. We aim to address two main issues
in the following.

The first is to explicitly represent occlusion. Occlusion is
a critical aspect in object detection for several reasons: (i) we
do not know ahead of time what portion of an object (e.g.,

car) will be visible in a test image; (ii) we also do not know
the occluded areas in weakly-labeled training data (i.e.,
only bounding boxes of single cars are given, as considered
in this paper); and (iii) object occlusions in testing data
could be very different from those in training data. Han-
dling occlusions entails models capable of capturing the
underlying regularities of occlusions at part level (i.e., dif-
ferent occlusion configurations).

The second is to explicitly exploit contextual information
co-occurring with occlusions (see examples in Figs. 1b, 1c,
and 1d), which goes beyond single-car detection. We focus
on car-to-car contextual patterns (e.g., different multi-car
configurations such as 2; 3 or 4 cars), which will be utilized
in detection and viewpoint estimation and naturally inte-
grated with occlusion configurations.

To represent both occlusion and context, we propose to
learn an And-Or model which takes into account structural
and appearance variations at multi-car, single-car and part
levels jointly. Our And-Or model belongs to grammar
models [8], [9] embedded in a hierarchical graph structure,
which can express a large number of configurations (occlu-
sion configurations and multi-car configurations) in a com-
positional and reconfigurable manner. Fig. 3 illustrates our
And-Or model. By reconfigurable, it means that we learn
appearance templates and deformation models for single
cars and parts, and the composed appearance templates
for a multi-car contextual pattern is inferred on-the-fly in
detection according to the selections of their child single car
Or-nodes. So, our model can express a large number of
multi-car contextual patterns with different compatible
occlusion configurations of single cars. Reconfigurability is

� T. Wu is with the Department of Statistics, University of California, LA.
E-mail: tfwu@stat.ucla.edu.

� B. Li is with the Beijing Lab of Intelligent Information Technology, Beijing
Institute of Technology, China, and a visiting student at the University of
California, LA. E-mail: boli86@bit.edu.cn.

� S.-C. Zhu is with the Department of Statistics and Computer Science,
University of California, LA. E-mail: sczhu@stat.ucla.edu.

Manuscript received 29 Jan. 2015; revised 8 Sept. 2015; accepted 19 Oct. 2015.
Date of publication 3 Nov. 2015; date of current version 11 Aug. 2016.
Recommended for acceptance by D. Ramanan.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2015.2497699

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 9, SEPTEMBER 2016 1829

0162-8828� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:


one of the most desired property in hierarchical models,
which plays the main role in boosting the performance in
our experiments, and also distinguishes the proposed
method to other models such as the visual phrase model [10]
and different object-pair models [11], [12], [13], [14].

1.2 Method Overview

1.2.1 Data Preparation with Simulation Study

Manually annotating car views, parts and part occlusions
on real images are time-consuming and usually error-
prone. One innovation in this paper is that we generate a
large set of occlusion configurations and multi-car configu-
rations by CAD models1 and a publicly available graphics
rendering engine, the SketchUp SDK.2 In the CAD simula-
tion, the occlusion configurations and multi-car contextual
patterns reflect variations in four factors: car type, orienta-
tion, relative position and camera view. We decompose a car
into 17 semantic parts as shown in different colors in the
left side of Fig. 2. We then generate a large number of
examples by placing three cars in a 3� 3 grid (resembling
the regularities of cars in parking lots or on the road, see
the middle of Fig. 2). For the cars in the center, we com-
pare their part visibilities from different viewpoints (as
illustrated by the camera icons), and obtain the part occlu-
sion data matrix (each row represents an example and each
entry takes a binary value, 0/1, representing occluded or
not for a part under a viewpoint). The data matrix is used
to learn the occlusion configurations. Similarly, we learn
different multi-car contextual patterns based on the geo-
metric configurations (see some examples in the right side
of Fig. 2). Note that the semantic part annotations in the
synthetic examples are used to learn the structure of our
And-Or model and the parts are treated as latent variables
in weakly-annotated training data of real images. We do
not evaluate the performance of part localization and

instead evaluate the viewpoint estimation based on the
inferred part configurations.

In the simulation, we place three cars in a 3� 3 grid with
three considerations: (i) It can generate different occlusion
configurations for the car in the center under different cam-
era viewpoints, as well as different multi-car contextual pat-
terns (2-car or 3-car pattern), which is easier than using two
cars in processing the data in simulation. (ii) It can generate
the synthetic dataset in which the occlusion configurations
and multi-car contextual patterns are generic enough to
cover the four situations in Fig. 1. (iii) It can also reduce the
gap between the synthetic data and real data when learning
the initial appearance parameters for parts with the car in
the back instead of the white background (see more details
in Section 5).

1.2.2 The And-Or Model

There are three types of nodes in the And-Or model: an
And-node represents decomposition (e.g., a car is composed
of a small number of parts), an Or-node represents alterna-
tive ways of decomposition accounting for structural varia-
tions (e.g., different part configurations of a single car due
to occlusions), and a Terminal-node captures appearance var-
iations to ground a car or a part to image data.

Fig. 3 illustrates the learned And-Or model. The hierar-
chy consists of a layer of multi-car contextual patterns (top)
and several layers of occlusion configurations of single cars
(bottom). The overall structure is as-follows:

i) The root Or-node represents different multi-car con-
figurations which capture both viewpoints and car-
to-car contextual patterns. Each multi-car contextual
pattern is then represented by an And-node (e.g., car
pairs and car triples shown in the figure). The con-
textual information reflect the layout regularities of a
small number,N (e.g.,N 2 f2; 3g), of cars in real sita-
tions (such as cars in a parking lot).

ii) A multi-car And-node is decomposed into nodes repre-
senting single cars. Each single car is represented by
an Or-node (e.g., the first car and the second car),
since we have different combinations of car types,
viewpoints and occlusion configurations. Here, a
multi-car And-node embeds the reconfigurable com-
positional grammar of a multi-car configuration (e.g.,
the three 2-car configurations in the right-top of
Fig. 2) in which the single cars are reconfigurable w.r.
t. viewpoint and occlusion configuration (up to some
extend), and car type. This reconfigurability gives our
model expressive power to handle the large varia-
tions of multi-car configurations in real situations.

iii) Each occlusion configuration is represented by an And-
nodewhich is further decomposed into parts. Parts are
learned using CAD simulation (i.e., the 17 semantic
parts) and are organized into consistently visible parts
and optional part clusters (see the example in the
right-bottom of Fig. 3). Then, a single car can be repre-
sented by the consistently visible parts (i.e., And) and
one of the optional part clusters (i.e., Or). The green
dashed bounding boxes show some examples corre-
sponding to different occlusion configurations (i.e.,
visible parts) from the same viewpoint.

Fig. 1. Illustration of varying complexities in car detection from four data-
sets. (a) The PASCAL VOC2007 car dataset [2] consists of single cars
under different viewpoints but with less occlusion as pointed out in [5].
(b) The KITTI car benchmark [1] includes on-road cars captured by a
camera mounted upon a driving car which have more occlusions but
restricted viewpoints. (c) The Street-Parking car dataset [6] includes
cars with heavy occlusions but less multi-car context and (d) The Park-
ing-Lot car dataset [7] consists of cars with heavy occlusions and rich
multi-car context. The proposed And-Or model is learned for car detec-
tion in all four datasets.

1. we used 40 CAD models selected from www.doschdesign.com
and Google 3D warehouse.

2. www.sketchup.com
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1.2.3 Weakly-Supervised Learning of the And-Or Model

Using weakly-annotated real image training data and the
synthetic data, we learn the And-Or model in two stages:

i) Learning the structure of the hierarchical And-Or model.
Both the multi-car contextual patterns and occlusion
configurations of single cars are learned automati-
cally based on the annotated single car bounding
boxes in training data together with the synthetic

examples generated from CAD simulations. The
multi-car contextual patterns are mined or clustered
from the geometric layout features. The occlusion
configurations are learned by a clustering method
using the part visibility data matrix. The learned
structure is a directed and acyclic graph (DAG)
since we have both single-car-sharing and part-
sharing, thus Dynamic Programming (DP) can be
applied in inference.

Fig. 2. Illustration of the statistical regularities of car occlusions and multi-car contextual patterns by CAD simulation. We represent car-to-car occlu-
sion at semantic part level (left) and generate a large number of synthetic occlusion configurations (middle) w.r.t. four factors (car type, orientation,
relative position and camera view). We represent the regularities of different combinations of part visibilities (i.e., occlusion configurations) by a hier-
archical And-Or model. This model also represents multi-car contextual patterns (right) based on the geometric configurations of single cars.

Fig. 3. Illustration of our And-Or model for car detection. It represents multi-car contextual patterns and occlusion configurations jointly by modeling
spatially-aligned multi-cars together and composing visible parts explicitly for single cars. (Best viewed in color).
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ii) Learning the parameters for appearance, deformation and
bias. Given the learned structure of the And-Or
model, we jointly train the parameters in the struc-
tural SVM framework and adopt the Weak-Label
Structural SVM (WLSSVM) method [15], [16] in
implementation.

1.2.4 Experiments

In experiments, we evaluate the detection performance of
our model on four car datasets: the KITTI dataset [1], the
PASCAL VOC2007 car dataset [2] and two self-collected
datasets—the Street-Parking dataset [6] and the Parking Lot
dataset [7] (which are released with this paper). Our model
outperforms different state-of-the-art variants of DPM [17]
(including the latest implementation [18]) on all the four
datasets, as well as other state-of-the-art models [6], [14],
[19], [20] on the KITTI and the Street-Parking datasets. We
evaluate viewpoint estimation performance on three car
datasets: the PASCAL VOC2006 car dataset [2], the 3D car
dataset [3], and the PASCAL3D+ car dataset [4]. Our model
achieves comparable performance with the state-of-the-art
methods (significantly better than the method using deep
learning features [21]). The detection code and data are available
on the author’s homepage.3

Paper organization. The remaining of this paper is orga-
nized as follows. Section 2 overviews the related work and
summarizes our contributions. Section 3 presents the And-
Or model and defines its scoring functions. Section 4
presents the method of mining multi-car contextual patterns
and occlusion configurations of single cars in weakly-
labeled training data. Section 5 discusses the learning of
model parameters using WLSSVM, as well as details of the
DP inference algorithm. Section 6 presents the experimental
results and comparisons of the proposed model on the four
car detection datasets and the three viewpoint estimation
datasets. Section 7 concludes the paper with discussions.

2 RELATED WORK AND OUR CONTRIBUTIONS

Over the last decade, object detection has made much prog-
ress in various vision tasks such as face detection [22],
pedestrian detection [23], and generic object detection [2],
[17], [24] and scene categorization [25]. In this section we
focus on occlusion and context modeling in object detection,
and classify the recent literature into three research streams.
For a full review of contemporary approaches, we refer the
reader to recent survey articles [26], [27], [28].

i) Single object modeling and occlusion modeling. Hierarchi-
cal models are widely used in the recent literature of object
detection and most existing approaches are devoted to
learning a single object model. Many work extended the
deformable part-based model [17] (which has a two-layer
structure) by exploring deeper hierarchy and global part
configurations [15], [24], [29], using strong manually-
annotated parts [30] or CAD models [31], or keeping human
in-the-loop [32]. To address the occlusion problem, various
occlusion models estimate the visibilities of parts from
image appearance, using assumptions that the visibility of a
part is (a) independent from other parts [33], [34], [35], [36],

[37], (b) consistent with neighboring parts [15], [38], or (c)
consistent with its parent or child parts describing object
appearance at different scales [39]. Another essential prob-
lem is to organize part configurations. Recently, [6], [15],
[35] explored different ways to deal with this problem. In
particular, [35] modeled different part configurations by the
local part mixtures. [15] used a more flexible grammar
model to infer both the occluder and visible parts of an
occluded person. [6] regularized parts into consistently visi-
ble parts and optional part clusters, which is more efficient
to represent occlusion configurations. Recent work [40],
[41], [42], [43], [44] proposed to enumerate possible occlu-
sion configurations and model each occlusion configuration
as a specific component. [45] proposed a 2D model to learn
discriminative subcategories, and [46] further integrated it
with an explicit 3D occlusion model, both showing excellent
performance on the KITTI dataset. Though those models
were successful in some heavily occluded cases, they did
not represent contextual information, and usually learned
another separate context model using the detection scores
as input features. Recently, an And-Or quantization method
was proposed to learn And-Or tree models [24], [47] for
generic object detection in PASCAL VOC [2] and learn 3D
And-Or models [48] respectively, which could be useful in
occlusion modeling.

ii) Object-pair and visual phrase models. To account for the
strong co-occurrence, object-pair [11], [12], [13], [14] and
visual phrase [10] methods modeled occlusions and
interactions using a X-to-X or X-to-Y composite template
that spans both one object (i.e., “X” such as a person or a
car) and another interacting object (i.e., “X” or “Y” such
as the other car in a car-pair in parking lots or a bicycle
on which a person is riding). Although these models can
handle occlusion better than single object models, the
object-pair or visual phrase modeled occlusion implicitly,
and they were often manually designed with fixed struc-
tures (i.e., not reconfigurable in inference). They per-
formed worse than original DPM in the KITTI dataset as
evaluated by [14].

iii) Context models. Many context models have been
exploited in object detection with improved perfor-
mance [49], [50], [51], [52], [53]. Hoiem et al. [51] explored a
scene context, Desai et al. [50] improved object detectors by
incorporating the multi-class context on the pascal dataset
[2] in a max-margin framework. In [52], Tu and Bai inte-
grated the detector responses with background pixels to
determine the foreground pixels. In [53], Chen et. al. pro-
posed a multi-order context representation to take advan-
tage of the co-occurrence of different objects. Recently, [54]
explored geographic contextual information to facilitate car
detection, and [55] explored a 3D panoramic context in
object detection. Although these work verified that context
is crucial in object detection, most of them modeled objects
and context separately, not in a unified framework.

This paper is extended from our two previous confer-
ence papers [6], [7] in the following aspects: (i) A unified
representation is learned for integrating occlusion and con-
text; (ii) More details on the learning algorithm and the
detection algorithm are presented; (iii) More analyses and
comparisons on the experimental results are added with
improved performance.3. http://www.stat.ucla.edu/�tfwu/projects.htm
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This paper makes three contributions to the literature of
car detection.

i) It proposes an And-Or model to represent multi-car
context and occlusion configurations. The proposed
model is multi-scale and reconfigurable to account for
large structure, viewpoint and occlusion variations.

ii) It presents a simple, yet effective, approach to mine
context and occlusion configurations from weakly-
labeled training data.

iii) It introduces two datasets for evaluating occlusion
and multi-car context, and obtains performance com-
parable to or better than state-of-the-art car detection
methods in four challenging datasets.

3 REPRESENTATION AND INFERENCE

3.1 The And-Or Model and Scoring Functions

In this section, we introduce the notations in defining the
And-Or model and its scoring functions.

An And-Or model is defined by a 3-tuple, G ¼ ðV; E;QÞ;
where V ¼ VAnd [ VOr [ VT ; represents the nodes in three
subsets: And-nodes VAnd, Or-nodes VOr and Terminal-nodes
VT ; E is the set of edges organizing all the nodes in a

directed and acyclic graph; Q ¼ ðQapp;Qdef ;QbiasÞ; is the set
of parameters (for appearance, deformation and bias respec-
tively, to be defined later).

A Parse Tree is an instantiation of the And-Or model by
selecting the best child (according to the scoring functions
to be defined) for each encountered Or-node. The green
arrows in Fig. 3 show an example of parse tree.

Appearance features. We adopt the Histogram of Oriented
Gradients (HOG) feature [17], [56] to describe appearance.
Let I be an image defined on an image lattice. Denote by H
the HOG feature pyramid computed for I using � levels per
octave, and by L the lattice of the whole pyramid. Let
p ¼ ðl; x; yÞ 2 L specify a position ðx; yÞ in the lth level of the
pyramidH. Denote byFappðH; ptÞ the extractedHOG features
for a Terminal-node t placing at position pt in the pyramid.

Deformation features. We allow local deformation when
composing the child nodes into a parent node. In our model,
parts are placed at twice the spatial resolution w.r.t. single
cars, while single cars and composite multi-cars are at the
same spatial resolution. We penalize the displacements
between the anchor locations of child nodes (w.r.t. the
placed parent node) and their actual deformed locations.
Denote by d ¼ ½dx; dy� the displacement. The deformation
feature is defined by,

FdefðdÞ ¼ ½dx2; dx; dy2; dy�0:

A Terminal-node t 2 VT grounds a single car or a part to
image data (see Layer 3 and 4 in Fig. 3). Given a parent
node A, the model for t is defined by a 4-tuple

ðuappt ; st; atjA; u
def
tjA Þ;

where uappt � Qapp is the appearance template, st 2 f0; 1g the
scale factor for placing node t w.r.t. its parent node, atjA a

two-dimensional vector specifying an anchor position rela-

tive to the position of parent node A, and u
def
tjA � Qdef the

deformation parameters. Given the position pA ¼ ðlA; xA; yAÞ

of the parent node A, the scoring function of a Terminal-
node t is defined by,

scoreðtjA; pAÞ ¼ max
d2D

ð < u
app
t ;FappðH; ptÞ > �

< u
def
tjA ;F

defðdÞ > Þ;
(1)

where D is the space of deformation (i.e., the lattice of the
corresponding level in the feature pyramid), pt ¼ ðlt; xt; ytÞ
with lt ¼ lA � st� and ðxt; ytÞ ¼ 2stðxA; yAÞ þ atjA þ d where

st ¼ 0means the object and parts are placed at the same res-
olution and st ¼ 1 means parts are placed at twice the reso-
lution of the object templates, and < �; � > denotes the
inner product. Fig. 3 shows some learned appearance
templates.

An And-node A 2 VAnd represents a decomposition of a
large entity (e.g., a multi-car layout at Layer 1 or a single
car at Layer 3 in Fig. 3) into its constituents (e.g., two or
three single cars or a small number of parts). Single car
And-nodes are associated with viewpoints. Unlike the Ter-
minal-nodes, single car And-nodes are not allowed to be
deformable in a multi-car configuration in this paper (we
implemented it in experiments and did not observe perfor-
mance improvement, so for simplicity we make them not
deformable). Denote by chðvÞ the set of child nodes of a
node v 2 VAnd [ VOr. The position pA of an And-node A is
inherited from its parent Or-node, and then the scoring
function is defined by,

scoreðA; pAÞ ¼
X

v2chðAÞ
scoreðvjA; pAÞ þ bA; (2)

where bA 2 Qbias is the bias term. Each single car And-
node (at Layer 3) can be treated as the DPM [17] or the
And-Or structure proposed in [6]. So, our model is flexi-
ble to integrate state-of-the-art single object models. For
multi-car And-nodes (at Layer 1), their child nodes are
Or-nodes and the scoring function scoreðvjA; pAÞ is
defined below.

An Or-node O 2 VOr represents different structure varia-
tions (e.g., the root node and the ith car node at Layer 2 in
Fig. 3). For the root Or-node O, when placing at the position
p 2 L, the scoring function is defined by,

scoreðO; pÞ ¼ max
v2chðOÞ

scoreðv; pÞ; (3)

where chðOÞ � VAnd. For the ith car Or-node O, given a par-
ent multi-car And-node A placed at pA, the scoring function
is then defined by,

scoreðOjA; pAÞ
¼ max

v2chðOÞ
max
d2D

ðscoreðv; pvÞ� < u
def
OjA;F

defðdÞ > Þ; (4)

where pv ¼ ðlv; xv; yvÞwith lv ¼ lA and ðxv; yvÞ ¼ ðxA; yAÞ þ d.
The best child of an Or-node is computed by taking argmax
of Eqn. (3) and Eqn. (4).

3.2 The DP Algorithm in Detection

In detection, we place the And-Or model at all positions
p 2 L and retrieve the optimal parse trees for all positions at
which the scores are greater than the detection threshold.
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Thanks to the directed and acyclic structure of our And-Or
model, we can utilize the efficient DP algorithm which con-
sists of two stages:

In the bottom-up pass. Following the depth-first-search
(DFS) order of nodes in the And-Or model, the bottom-up
pass computes the matching scores of all possible parse
trees of the And-Or model at all possible positions in the
whole feature pyramid.

First of all, we compute the appearance score maps (pyr-
amid) for all Terminal-nodes (which is done by filter convo-
lution). The optimal position of a Terminal-node w.r.t. a
parent node can be computed as a function of the position
of the parent node. The quality (matching score) of the opti-
mal position for a Terminal-node w.r.t. a given position of
the parent is computed using Eqn. (1) (which yields the
deformed score map through the generalized distance
transform trick as done in the DPM [17] for efficiency), and
the optimal position can be retrieved by replacing max in
Eqn. (1) with argmax.

Then, following the DFS order of nodes, we compute the
score maps for all the And-nodes and Or-nodes using Eqn.
(2), (3) and (4) with the score maps of their child nodes hav-
ing been computed already. Similarly, we can obtain the
optimal branch for each Or-node by replacing the max in
Eqn. (3) and (4) with argmax.

In the top-down pass, we first find all detection candidates
for the root Or-node O based on its score maps, i.e., the posi-
tions P ¼ fp; scoreðO; pÞ 	 t and p 2 Lg: Then, following the
breadth-first-search (BFS) order of nodes, we retrieve the
optimal parse tree at each p 2 P: starting from the root
Or-node, we select the optimal branch of each encountered
Or-node, keep all the child nodes of each encountered And-
node, and retrieve the optimal position of each Terminal-
node. Based on the parsed sub-tree rooted at single car
And-nodes, we obtain the viewpoint estimation and the
occlusion configuration.

Post-processing. To generate the final detection results of
single cars for evaluation, we apply multi-car guided non-
maximum suppression (NMS) to deal with occlusions:

i) Some of the single cars in a multi-car detection can-
didate are highly overlapped due to occlusion, so if
we directly use conventional NMS, we will miss the
detection of the occluded cars. We enforce that all
the single car bounding boxes in a multi-car predic-
tion will not be suppressed by each other. A similar
idea is also used in [12].

ii) Overlapped multi-car detection candidates might
report multiple predictions for the same single car.
For example, if a car is shared by a 2-car detection
candidate and a 3-car detection candidate, it will be
reported twice. We will keep only the one with
higher score.

4 LEARNING AND-OR STRUCTURES

In this section, we present the methods of learning the struc-
tures of And-Or model by mining contextual patterns and
occlusion configurations in the positive training dataset.

4.1 Generating Multi-Car Training Samples

Positive samples. Denote by Dþ ¼ fðI1;B1Þ; . . . ; ðIn;BnÞg the

positive training dataset with Bi ¼ fBj
i ¼ ðxj

i ; y
j
i ; w

j
i ; h

j
iÞgkij¼1

being the set of ki annotated single car bound boxes in
image Ii. Here, ðx; yÞ is the left-top corner and ðw; hÞ the
width and height.

Denote the set ofN-car positive samples by,

Dþ
N-car ¼ fðIi; BJ

i Þ; jJ j ¼ N;BJ
i 
 Bi; i 2 ½1; n�g: (5)

where all the Ii’s have more than N annotated single cars
(i.e., ki 	 N). We have,

i) Dþ
1�car consists of all the single car bounding boxes

which do not overlap the other ones in the same

image. For N 	 2,Dþ
N�car is generated iteratively.

ii) In generating Dþ
2�car (see Fig. 4a), for each positive

image ðIi;BiÞ 2 Dþ with ki 	 2, we enumerate all

valid 2-car configurations starting from B1
i 2 Bi: we

first select the current Bj
i as the first car (1 � j � ki),

obtain all the surrounding car bounding boxes N
B
j
i

which overlap Bj
i , and then select the second car

Bk
i 2 N

B
j
i
which has the largest overlap if N

B
j
i
6¼ ;

and ðIi; BJ
i Þ =2 Dþ

2�car (J ¼ fj; kg).
iii) In generating Dþ

N�car (N > 2, see Fig. 4b), for each

positive image with ki 	 N and 9ðIi; BK
i Þ 2

Dþ
ðN�1Þ�car, we first select the current BK

i as the seed,

obtain the neighbors N BK
i
each of which overlaps at

least one bounding box in BK
i , and then select the

bounding box Bj
i 2 N BK

i
which has the largest over-

lap and add ðIi; BJ
i Þ toDþ

N�car (J ¼K [ fjg).
Negative samples. We collect negative samples in images

without cars appearing provided in the benchmark datasets
and apply the hard negative mining approach during learn-
ing parameters as done in the DPM [17].

4.2 Mining Multi-Car Contextual Patterns

This section presents the method of learning multi-car pat-
terns in Layer 0� 2 in Fig. 3. Considering N 	 2, we use the
relative positions of single cars to describe the layout of a

multi-car sample ðIi; BJ
i Þ 2 Dþ

N�car. Denote by ðcx; cyÞ the

center of a car bounding box (J ¼ f1; . . . ; Ng). Let wJ and

hJ be the width and height of the union bounding box of BJ
i

respectively. With the center of the first car being the cen-
troid, we define the layout feature by,

cx2i � cx1i
wJ

;
cy2i � cy1i

hJ
; . . . ;

cxNi � cx1i
wJ

;
cyNi � cy1i

hJ

� �
: (6)

We cluster these layout features overDþ
N�car to get T clus-

ters using k-means. The obtained clusters are used to specify the
And-nodes at Layer 1 in Fig. 3. The number of cluster T is

Fig. 4. Illustration of generating multi-car positive samples.
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specified empirically for different training datasets in our
experiments.

In Fig. 5 (top), we visualize the clustering results for

Dþ
2�car on the KITTI [1] and the Parking Lot datasets. Each

set of color points represents a 2-car context pattern. In the
KITTI dataset, we can observe there are some car-to-car
“peak” modes in the dataset (similar to the analyses in [14]),
while the context patterns are more diverse in the Parking
Lot dataset.

4.3 Mining Occlusion Configurations

In this section we present the method of learning occlusion
configurations for single cars in Layer 3 and 4 in Fig. 3.
We learn the occlusion configurations automatically from
a large number of occlusion configurations generated by
CAD simulations. Note that the synthetic data are used to
learn the occlusion configurations, while the appearance
and geometry parameters are still learned from real data.

4.3.1 Generating Occlusion Configurations

As mentioned in Section 1.2.1, we choose to put three cars in
generating occlusion configurations. Specifically, we choose
the center and two other randomly selected positions on a
3� 3 grid, and put cars around these grid points to simulate
occlusions. See some examples in Fig. 2.

The occlusion configurations reflect the four factors: car
type t, orientation r , relative position r and camera view P. To
generate an occlusion configuration, we randomly assign
values for these factors, where for each car with type i, ri 2
ffrontal,rearg, ri ¼ r

ð0Þ
i þ dr, where r

ð0Þ
i is the nominated

position for the ith car on the 3� 3 grid, and dr ¼ ðdx; dyÞ is
the relative distance (along x axis and y axis) between sam-
pled position and nominated position of the ith car. The
camera view is in the range of azimuth 2 ½0; 2p� and
elevation 2 ½0;p=4�, we discretize the view space into B
view bins uniformly along the azimuth angle. In the synthe-
sized configurations, a part is treated as occluded if 60 per-
cent of its area is not visible.

4.3.2 Constructing the Initial And-Or model of Single

Cars

With the part-level visibility information, we compute two
vectors for each occlusion configuration: The first is a (17
parts�B camera views) dimension binary valued vector~v for
the visibilities of parts; and the second is a real valued (( 1 root

þ17 parts) �B camera views�4) dimension vector ~b for the
bounding boxes and parts. In both vectors, entries corre-
sponding to invisible parts are set to 0.

Denoting M as the dimension of the vector vecv, and by
stacking vecv for N occlusion configurations, we can get an
N �M occlusion matrix D, where the first few rows of this
matrix for B ¼ 8 is shown in the right side in Fig. 6. Note
that we have partitioned the view space into B views, so for
each row, the visible parts always concentrate in a segment
of the vector representing that view.

In learning an initial And-Or model, each row in D corre-
sponds to a small subtree of the root OR node. In particular,
each subtree consists of an And-node as the root and a set of
terminal nodes as its children. An example of the data matrix
and corresponding initial And-Ormodel is shown in themid-
dle in Fig. 6.

4.3.3 Refining the And-Or Structure

The initial And-Or model is large and redundant, since it
has many duplicated occlusion configurations (i.e., dupli-
cated rows in D) and a combinatorial number of part
compositions. In the following, we will pursue a compact
And-Or structure. The problem can be formulated as:

min
XN
i

j vi � viðGÞ j 22 þ � j G j ; (7)

where vi is the ith row of the data matrix D, vðGÞ returns
its most approximate occlusion configuration generated by
the And-Or graph (AOG), jGj is the number of nodes and
edges in the structure, and � is the trade-off parameter bal-
ancing the model precision and complexity. In each view,
we assume the number of occlusion branches is not greater
than Kð¼ 4Þ.

Fig. 5. Left-Top: 2-car context patterns on the KITTI dataset [1] and self-collected Parking Lot dataset. Each context pattern is represented by a spe-
cific color set, and each circle stands for the center of each cluster. Left-Bottom: Overlap ratio histograms of the KITTI dataset and the Parking Lot
dataset (we show the occluded cases only). Right: some cropped examples with different occlusions. The two bounding boxes in a car pair are shown
in red and blue respectively. (Best viewed in color).
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We solve Eqn. (7) using a modified graph compression
algorithm similar to [57]. As illustrated in the right side in
Fig. 6, the algorithm starts from the initial And-Or model,
and iteratively combines branches if the introduced loss
was smaller than the decrements in complexity term �jGj.
This process is equivalent to iteratively finding large blocks
of 1s on the corresponding data matrix through row and
column permutations, where an example is shown in the
bottom in Fig. 6. As there are consistently visible parts for
each view, the algorithm will quickly converge to the struc-
ture shown in Fig. 3.

With the refined And-Or model, we compute occlusion
configurations (i.e., the consistently visible parts and optional
occluded parts) in each view. In addition, the bounding box
size and nominal position of eachTerminal-nodew.r.t. its par-
ent And-node can also be estimated by geometric means of
corresponding values in the vector ~b. These information will
be used to initialize the latent variables of our model in learn-
ing the parameters.

Variants of and-or models. We will test our model using
two types of specifications to be consistent with our two
previous conference papers, one is called And-Or Struc-
ture [6] for occlusion modeling based on CAD simulation
without multi-car context components, and the other
called Hierarchical And-Or Model [7] for occlusion and con-
text. We also compare two methods of part selection in
hierarchical And-Or model, one is based on the greedy
parts as done in the DPM [17], denoted by AOG+Greedy,
and the other based on the proposed CAD simulation,
denoted by AOG+CAD.

5 LEARNING PARAMETERS

With the learned And-Or structure, we adopt the WLSSVM
method [15] in learning the parameters Q ¼ ðQapp;Qdef ;

QbiasÞ (for appearance, deformation and bias). When the
occlusion configurations are mined by CAD simulations
(i.e., for the two model specifications, And-Or Structure and
AOG+CAD), we will use both the Step 0 and Step 1 below in

learning parameters, otherwise we use Step 1 only (i.e., for
AOG+Greedy).

Step 0: Initializing parameters with synthetic training data.
We learn the initial parameters Q with synthetic training
data (see Fig. 10). We randomly superimpose the synthetic
positive samples on some randomly selected real images
without cars appearing (instead of using white back-
ground directly, see Fig. 10) to reduce the appearance gap
between the synthetic samples and real car samples. In
the synthetic data, the parse tree pt for each multi-car posi-
tive sample is known except that the positions of parts are
allowed to deform.

Step 1: Learning parameters with real training data. In the
real training data, we only have annotated bounding boxes
for single cars. The parse tree pt for each multi-car positive
sample is hidden except for the multi-car configuration
which can be computed based on the annotated bounding
boxes of single cars as stated in Section 4.2. Then, we initial-
ize the parse tree for each positive sample either based on
the initial parameters learned in step 0 (for the And-Or
structure and AOG+CAD) or using a similar idea as done in
learning the mixture of DPMs [17] to initialize the single-car
And-nodes for AOG+Greedy. After the initialization, the
parameters Q are learned iteratively under the WLSSVM
framework. During learning, we run the DP inference to
assign the optimal parse trees for multi-car positive samples.

The objective function to be minimized is defined by,

EðQÞ ¼ 1

2
kQk2 þ C

XM
i¼1

L0ðQ; xi; yiÞ; (8)

where xi 2 Dþ
N�car represents a training sample (N 	 1) and

yi is the N bounding box(es). L0ðQ; x; yÞ is the surrogate loss
function,

L0ðQ; x; yÞ ¼ max
pt2VG

½scoreðx; pt;QÞ þ Lmarginðy; boxðptÞÞ�

� max
pt2VG

½scoreðx; pt;QÞ � Loutputðy; boxðptÞÞ�;
(9)

Fig. 6. Illustration of learning occlusion configurations. It consists of three components: (i) Generating occlusion configurations using CAD simula-
tions with 17 semantic parts in total; (ii) Learning the initial And-Or structure based on the data matrix constructed from the simulated occlusion con-
figurations. Each row of the data matrix represents an example and the columns represent the visibility of the 17 semantic parts (a white/gray entry
denotes a part is visible/invisible. Each example is represented by an And-node as one child of the root Or-node; (iii) Refining the initial And-Or struc-
ture using graph compression algorithm [57] to seek the consistently visible parts (e.g.,X) and optional part clusters (e.g., Y and Z).
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where VG is the space of all parse trees derived from the
And-Or model G, scoreðx; pt;QÞ computes the score of a
parse tree as stated in Section 3, and boxðptÞ the predicted
bounding box(es) base on the parse tree. As pointed out in
[15], the loss Lmarginðy; boxðptÞÞ encourages high-loss outputs
to “pop out” of the first term in the RHS, so that their scores
get pushed down. The loss Loutputðy; boxðptÞÞ suppresses
high-loss outputs in the second term in the right hand side,
so the score of a low-loss prediction gets pulled up. More
details are referred to [15], [16]. In general, since L0 in Eqn.
(9) is not convex, the objective function, Eqn. (8) leads to a
nonconvex optimization problem. The WLSSVM adopts the
CCCP procedure [58] in optimization, which can find a local
optima of the objective. The loss function is defined by,

L‘;tðy; boxðptÞÞ

¼

‘ if y ¼ ? and pt 6¼ ?
0 if y ¼? and pt ¼ ?
‘ if y 6¼? and 9 B 2 y

with ovðB;B0Þ < t; 8B0 2 boxðptÞ
0 if y 6¼? and ovðB;B0Þ 	 t;

8 B 2 y and 9B0 2 boxðptÞ

8>>>>>>>><
>>>>>>>>:

; (10)

where ? represents background output and ovð�; �Þ is the
intersection-union ratio of two bounding boxes. Following
the PASCAL VOC protocol we have Lmargin ¼ L1;0:5 and
Loutput ¼ L1;0:7. In practice, we modify the implementation
in [18] for our loss formulation.

6 EXPERIMENTS

In this section, we evaluate our models on four car detection
datasets and three car viewpoint estimation dataset and
present detail analyses on different aspects of our models.
We first introduce two self-collected car datasets of street-
parking cars and parking-lot cars respectively (Section 6.1),
and then evaluate the detection performance of our models
on four datasets (Section 6.2): the two self-collected datasets,
the KITTI car dataset [1] and the PASCAL VOC2007 car
dataset [2]. We further analyze the performance of our
model w.r.t. different aspects of our models (Section 6.3).
The performance of car viewpoint estimation is presented
in Section 6.4.

Training and testing time. In all experiments, we utilize a
parallel computing technique to train our model. It takes
about 9 hours to train an And-Or Structure model and 16

hours to train a hierarchical And-Or Model due to inferring
the assignments of part latent variables on positive training
examples and mining hard negatives. For detection, it takes
about 2 and 3 seconds to process an image with size of
640� 480 pixels for a And-Or structure and a hierarchical
And-Or model, respectively.

6.1 Datasets

To test our model on occlusion and context modeling, we
collected two car datasets.4

The street parking car dataset. There are several datasets
featuring a large amount of car images [2], [3], [59], [60], but
they are not suitable to evaluating occlusion handling, as
the proportion of (moderately or heavily) occluded cars
is marginal. The recently proposed KITTI dataset [1] con-
tains occluded cars parked along the streets, but it can not
fully evaluate the ability of our model since the car views
are rather fixed as the video sequences are captured from a
car driving on the road (e.g., no birdeye’s view). In addition,
the average number of cars on each image is still not large
enough (mostly three cars, see the statistics in the bottom in
Fig. 7). To provide a more challenging occlusion dataset, we
collected one emphasizing street parking cars with heavy
occlusions, diverse viewpoint changes and much larger
number of cars per image (see the last two rows in Fig. 9).
The dataset consists of 881 images. Fig. 7 shows the bound-
ing box overlapping distribution and average number of
cars per image. For the simplicity of annotation, we only
label the bounding boxes of single cars in each image. We
split the dataset into training and testing sets containing 440
and 441 images, respectively.

The parking lot dataset. Our Street Parking Car Dataset
provides more viewpoints, however, the context and occlu-
sion configurations are relatively restricted (most cars just
compose the head-to-head occlusions). To thoroughly eval-
uate our models in terms of both context and occlusions,
we collected the parking lot car dataset, which has larger
occlusion variations and larger number of cars in each
image (see the fourth and fifth rows in Fig. 9). It contains
65 training images and 63 testing images. Although the
number of images is small, the number of cars is noticeably
large, with 3;346 cars (including left-right mirrored ones)
for training and 2;015 cars for testing.

6.2 Detection

We test our hierarchical And-Or Model on four challenging
datasets.

Fig. 8. Precision-recall curves on the test subset splitted from the KITTI
trainset (Left) and the Parking Lot dataset (Right).

Fig. 7. Top: The distribution of overlap ratio and cars per image on the
Street-Parking dataset. Bottom: Comparison of the average number of
cars per image.

4. http://www.stat.ucla.edu/�boli/publication/street-parking-
release.zip and parking_lot_release.zip
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6.2.1 Results on the KITTI Dataset

The KITTI dataset [1] contains 7;481 training images and
7;518 testing images, which are captured from an autono-
mous driving platform. We follow the provided benchmark
protocol for evaluation. Since the authors of [1] have not
released the test annotations, we test our model in the fol-
lowing two settings.

Training and testing by splitting the trainset. We randomly
split the KITTI trainset into the training and testing subsets
equally.

Baseline methods. Since DPM [17] is a very competitive
model with source code publicly available, we compare
our model with the latest version of DPM (i.e., voc-release5
[18]). The number of components are set to 16 as the base-
line methods trained in [1], other parameters are set as
default.

Parameter settings. We consider multi-car contextual pat-
terns with the number of cars N ¼ 1; 2. We set the number
of context patterns and occlusion configurations to be 10
and 16, respectively. As a result, the learned hierarchical
And-Or model has 10 2-car configurations in layer 1, and 16
single car branches in layer 3 (see Fig. 3).

Detection results. The left figure in Fig. 8 shows the
precision-recall curves of DPM and our model. Our model
outperforms DPM by 9:1 percent in terms of average preci-
sion (AP). The performance gain comes from both precision
and recall, which shows the importance of context and
occlusion modeling.

Testing on the KITTI benchmark. We evaluate our model
with two different training data settings: one trained using
half training set on the KITTI testset, denoted by AOG
+Greedy-Half, and the other trained with full training set,

denoted by AOG+Greedy-Full (which has 16 context pat-
terns and 32 occlusion configurations).

The benchmark has three subsets (Easy, Moderate, Hard)
w.r.t the difficulty of object size, occlusion and truncation.
All methods are ranked based on performance in the mod-
erately difficult subset. Our entry in the benchmark is
“AOG”. Table 1 shows the detection results of our model
and other state-of-the-art models. Here, we omit CNN
based methods, as they are all anonymous submissions.
Details of the benchmark results are available at http://www.
cvlibs.net/datasets/kitti/eval_object.php.

Our AOG+Greedy-Full outperforms all the DPM-based
models. Compared with their best model, OC-DPM [14],
our model improved performance on the three subsets by
9:86, 9:99, and 6:84 percent respectively. We also compare
with the baseline DPM trained by ourselves using the voc-
release5 code [18], and obtain 7:56, 19:92 and 17:56 percent
performance gains on the three stubsets. For other DPM
based methods trained by the benchmark authors, our
model outperforms the best one–MDPM-un-BB by 13:61,
13:78 and 12:27 percent respectively.

Our model is comparable with SubCat [45], 3DVP [46]
and Regionlets [62]. We achieve slightly better performance
than Regionlets [62] on the Easy and Hard sets, but lose a bit
AP on the Moderate set. Though our method obtains better
rank than 3DVP [46] on the moderately difficult set, it per-
forms slightly worse on the easy and hard subsets, which
shows the promise of 3D occlusion modeling and subcate-
gory clustering [45], [46].

Comparing AOG+Greedy-Half and AOG+Greedy-Full,
we can observe that the major improvement (4:06 percent)
of AOG+Greedy-Full comes from the Moderate set, while on

Fig. 9. Examples of successful and failure cases by our model on the KITTI dataset (first three rows), the Parking Lot dataset (the fourth and fifth
rows) and the Street Parking dataset (the last two rows). Best viewed in color and magnification.
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the Easy and Hard sets, we obtain small improvement (0:44
and 1:43 percent, respectively). These results meet some
analyses in [63], which indicate there are still large potential
improvement on object representation, and much effort
should be devoted to improving our current hierarchical
And-Or model.

The first three rows in Fig. 9 show the qualitative results
of our model. The red bounding boxes show successful
detection, the blue ones missing detection, and the green
ones false alarms. In experiments, our model is robust to
detect cars with heavy car-to-car occlusions and back-
ground clutters. The failure cases are mainly due to extreme
occlusions, extremely low resolution, large car deformation
and/or inaccurate (or multiple) bounding box localization.

6.2.2 Results on the Parking Lot Dataset

Evaluation Protocol. We follow the PASCAL VOC evaluation
protocol [2] with the overlap of intersection over union
being greater than or equal to 60 percent (instead of original
50 percent). In practice, we set this threshold to make a com-
promise between localization accuracy and detection diffi-
culty. The detected cars with bounding box height smaller
than 25 pixels do not count as false positives as done in [1].
We compare with the latest version of DPM implementation
[18] and set the number of contextual patterns and occlusion
configurations to be 10 and 18 respectively.

Detection results. The right side in Fig. 8 shows the per-
formance comparisons between our model and DPM. Our
model obtains 55:2 percent in AP, which outperforms the
latest version of DPM by 10:9 percent. The fourth and fifth
rows in Fig. 9 show the qualitative results. Our model is
capable of detecting cars with different occlusions and
viewpoints.

6.2.3 Results on the Street Parking Dataset

To compare with the benchmark methods, we follow the
evaluation protocol provided in [6].

Results of our model and other benchmark methods are
shown in Table 2, our hierarchical And-Or model outper-
forms DPM [18] and our previous And-Or Structure [6]
by 10:1 and 4:3 percent respectively. We think the perfor-
mance is improved due to the joint representation of context
patterns and occlusion configurations. The last two rows
in Fig. 9 show some qualitative examples. Our model is

capable of detecting occluded street-parking cars, mean-
while it also has a few inaccurate detection results and
misses some cars (mainly due to low resolution).

6.3 Diagnosing the Performance of our Model

In this section, we evaluate various aspects to diagnose the
effects of each individual component in our model.

6.3.1 The Effect of Occlusion Modeling

Our And-Or Structure model is based on CAD simula-
tion. Thus in the first analysis, we test the effectiveness of
the learned And-Or structure in representing different
occlusion configurations. To this purpose, we generate a
synthetic dataset using 5,040 3-car synthetic images as
our training data, and a mixture of 3,000 3-car and 7-car
(placed in a 1� 7 grid) synthetic images as our testing
data. For each generated image, we add the background
from the category None of the TU Graz-02 dataset [64]
and apply Gaussian blur to reduce the boundary effects.
Samples of the training and testing data are shown on the
left and middle in Fig. 10. In experimental comparisons,
the best DPM has 16 components and the best And-Or
structure has eight views with 19 occlusion configura-
tions, 5 layers and 111 nodes in total. As shown in the
right side in Fig. 10, our model outperforms the DPM by
7.2 percent in AP.

6.3.2 The Effect of CAD Simulation in Real Situations

To verify the effectiveness of our And-Or Structure model in
terms of occlusion modeling, we compare it with state-of-
the-art DPM [17]. Both of these two models are based on
part-level occlusion modeling. The And-Or Structure learns
semantic visible parts based on CAD simulations. The DPM
handles occlusion implicitly by introducing a truncation fea-
ture at each HOG cell. The second and third column in
Table 2 show their performance on Street Parking dataset.
We can see the semantic visible parts learned fromCAD sim-
ulations can generalize to real datasets. By adding context,
we are interested in whether it affects the effectiveness of
occlusion modeling. To compare AOG+Greedy and AOG
+CAD fairly, they have the same number of context patterns

Fig. 10. Left and Middle: Training and testing samples from the synthetic
dataset. Right: detection results of DPM and And-Or Structure.

TABLE 1
Performance Comparison (in AP) on the KITTI Benchmark [1]

Methods Easy Moderate Hard

mBow [19] 36:02% 23:76% 18:44%
LSVM-MDPM-us [17] 66:53% 55:42% 41:04%
LSVM-MDPM-sv [17], [20] 68:02% 56:48% 44:18%
MDPM-un-BB [17] 71:19% 62:16% 48:43%
OC-DPM [14] 74:94% 65:95% 53:86%
DPM [18] (trained by us) 77:24% 56:02% 43:14%
MV-RGBD-RF [61] 76:40% 69:92% 57:47%
SubCat [45] 84:14% 75:46% 59:71%
3DVP [46] 87:46% 75:77% 65:38%
Regionlets [62] 84:75% 76:45% 59:70%
AOG+Greedy-Half 84:36% 71:88% 59:27%
AOG+Greedy-Full 84:80% 75:94% 60:70%

TABLE 2
Performance Comparison (in AP) on the Street

Parking Dataset [6]

DPM [18] And-Or Structure [6] AOG+Greedy AOG+CAD

AP 52:0% 57:8% 62:1% 65:3%
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and occlusion configurations, 8 and 16 respectively. As
shown in the fourth and fifth column in Table 2, AOG+CAD
performs better than AOG+Greedy, which shows the advan-
tage of modeling occlusion using semantic visible parts.

Fig. 11 shows the inferred part bounding boxes by AOG
+Greedy and AOG+CAD. We can observe that the semantic
parts in AOG+CAD are meaningful, although they may be
not accurate enough in some examples.

6.3.3 The Effect of Multi-Car Context Modeling

The state-of-the-art models are mainly based on single car
modeling. To evaluate the effectiveness of context, we com-
pare our hierarchical And-Or model with other non-context
models in Table 1. We can see that our model outperforms
all other models in different occlusion settings. Specifically,
our model outperforms DPM by a large margin (above 10
percent in AP) on the “Moderate” and “Hard” KITTI test
data, which shows context is very important to object detec-
tion especially in heavily occluded car-to-car situations.

On the Street Parking dataset, we observe the same
results. In Table 2, both AOG+Greedy and AOG+CAD out-
perform DPM and And-Or Structure by a large margin.
Here, AOG+Greedy and AOG+CAD jointly model context
and occlusions, while DPM and And-Or Structure model
occlusions only.

6.3.4 Performance on General Occlusion Settings

Our model is generalizable in terms of context and occlu-
sion modeling, it can cope with both occlusion and non-
occlusion situations. To verify our model on less occluded
settings, we use the PASCAL VOC 2007 Car dataset as a
testbed. As analyzed by Hoiem, et. al. in [5], cars in the
PASCAL VOC dataset do not have much occlusions and
car-to-car context.

We first show that our And-Or Structure is capable to
detect cars on the PASCAL VOC 2007 as well as the DPM

method [18]. To approximate the occlusion configurations
observed on this dataset, we generate synthetic images with
car-to-car occlusions and car self-occlusions. For the car-
to-car occlusions, we use the full 3� 3 grid instead of the
special case in the street parking dataset. Correspondingly,
the learned And-Or structure contains branches for self-
occlusions as well as those for car-to-car occlusions. On this
dataset, the DPM has 6 components and the And-Or struc-
ture has six views with 10 occlusion configurations, five
layers and 109 nodes.

The third column in Table 3 shows the performance of our
And-Or structure model and the DPM. Our model achieves
slightly better recall than DPM, which meets the analysis
in [5]. This experiment shows that our And-Or structure
method does not lose performance in general datasets.

Then, we verify our hierarchical And-Or model is capa-
ble to detect cars on the PASCAL VOC 2007 as well as other
single object models. We compare with the latest version of
DPM [18]. The APs are 60.6 percent (our model) and 58.2
percent (DPM) respectively (Table 3).

6.4 View Estimation

With the help of CAD simulations, our And-Or Structure
model can compute the viewpoints of detected cars. To
verify the capability of view estimation, we perform two
experiments.

First, we report the mean precision in pose estimation
(MPPE), equivalent to the means of confusion matrix

Fig. 11. Visualization of part layouts output by our AOG+Greedy (Top) and AOG+CAD (Bottom). Best viewed in color and magnification.

TABLE 3
Performance Comparison (in AP) on the

PASCAL VOC 2007[2]

car DPM [18] And-Or Structure [6] AOG+Greedy

AP 58:2% 58:7% 60:6%

TABLE 4
View Estimation on Pascal VOC 2006 Car Dataset [2]

and 3D Car Dataset [3]

Pascal VOC 2006 Car Dataset[2]

DPM [65] [66] [67] ours

MPPE 0:69 0:73 0:86 0:57 0:73

3D Car Dataset [3]

DPM [65] [68] [69] [31]1 [31]2 ours

AP 99:6 96 76:7 99:2 99:9 99:7 99:9
MPPE 86:3 89 70 85:3 97:9 96:3 94

[31]1 and [31]2 refer to DPM-VOC+VP and DPM-3D-Constraints,
respectively.
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diagonals, on both the Pascal VOC 2006 car dataset [70] and
the 3D Object dataset [3]. The 3D Object Classes dataset [3]
is introduced in 2007. For each class, it has images of 10 dif-
ferent object instances with eight different poses. We follow
the evaluation protocol described in [3]: seven randomly
selected car instances are used for training, and three instan-
ces for testing. The 2D car bounding boxes are computed
from the annotated segmentation masks. The negative
examples are collected from the PASCAL VOC 2007 car
dataset. For the VOC 2006 car database [70], there are 469
cars with viewpoint labels (frontal, rear, left and right). We
only use these labeled images with the standard training/
test split. The detection performance is evaluated through
precision-recall (PR) curve. For view estimation, the two
datasets emphasize visible cars. Our And-Or structure has
eight views with eight (self-occlusion) branches, five layers
and 90 nodes. Table 4 shows the comparison of our model
with the state-of-the-art methods on these two datasets. Our
model is comparable to or better than some recently pro-
posed models [31], [65], [66].

Second, we compare our model with the state-of-the-art
models on the recently proposed PASCAL3D+ Dataset [4].
This dataset augments 12 rigid categories in the PASCAL
VOC 2012 [2] with 3D annotations by fitting CAD models
with 2D images semi-manually. It is a challenging dataset
for 3D object detection and pose estimation. We test on
the car category. We use the metric–Average Viewpoint
Precision (AVP) [4] to simultaneously evaluate 2D bound-
ing box localization and viewpoint estimation. In comput-
ing the AVP, a candidate detection is considered to be a
true positive if and only if the bounding box overlap is
larger than 50 percent and the viewpoint is correct.

Table 5 shows the results of our model and the state-
of-the-art methods. Our method is better than VDPM [4]
and a deep-cnn-feature-based model (decaf) [21]. Our
And-Or Structure is comparable with [31], which also
used CAD models to learn viewpoints and part-level car
geometry.

7 CONCLUSION

In this paper, we present an And-Or model to represent
context and occlusion for car detection and viewpoint esti-
mation. The model structure is learned by mining multi-
car contextual patterns and occlusion configurations at
three levels: a) multi-car layouts, b) single car and c) parts.
Our model is organized in a directed and acyclic graph
structure so the efficient DP algorithm can be used in infer-
ence. The model parameters are learned by WLSSVM[15].
Experimental results show that our model is effective in
modeling context and occlusion information in complex

situations, and achieves better performance over state-of-
the-art car detection methods and comparable performance
on viewpoint estimation.

There are two main limitations in our current imple-
mentation. The first one is that we exploited the multi-car
contextual patterns using 2-car composite only. In the sce-
narios similar to street parking cars and parking lot cars,
we could explore multi-car context with more than two
spatially-aligned cars, as well as 3D scene parsing con-
text [71]. The second one is that we utilized only the HOG
features for appearance. Based on the recent progress on
feature learning by convolutional neural network (CNN)
[72], [73], we can also substitute the HOG by the CNN fea-
tures. Both aspects are addressed in our on-going work
and may potentially improve the performance.

Meanwhile, we are applying the proposed method to
other object categories and studying different ways of min-
ing contextual patterns and occlusion configurations (e.g.,
integrating with the And-Or quantization methods for 2D
object modeling [24] and 3D car modeling [48]).
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