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Abstract

We present an approach for detecting and matching
building facades between aerial view and street-view im-
ages. We exploit the regularity of urban scene facades
as captured by their lattice structures and deduced from
median-tiles’ shape context, color, texture and spatial sim-
ilarities. Our experimental results demonstrate effective
matching of oblique and partially-occluded facades be-
tween aerial and ground views. Quantitative comparisons
for automated urban scene facade matching from three
cities show superior performance of our method over base-
line SIFT, Root-SIFT and the more sophisticated Scale-
Selective Self-Similarity and Binary Coherent Edge descrip-
tors. We also illustrate regularity-based applications of
occlusion removal from street views and higher-resolution
texture-replacement in aerial views.

1. Introduction
With the increasing availability of Google maps and

other online mapping tools, geolocating consumer images
has become a popular yet challenging task. As a step in
this direction, we are interested in matching aerial view fa-
cades, such as those automatically detected by the method
in [19], with a set of street-view facades to identify the same
buildings. This is a challenging problem due to large differ-
ences in viewpoint and lighting (Figure 1), temporal dispar-
ities between aerial and street-level image collection, and
perspective deformations at the street-view level due to the
camera’s close proximity to each building. Occlusions also
complicate the problem – lower levels of a building may
be blocked by other buildings in aerial views, and street-
view images can be occluded by trees, street-lights, cars,
and pedestrians, as well as by other buildings.

Urban facade feature-level matching is inherently am-
biguous due to pattern regularities. Even though many ex-
isting works in computer vision and computer graphics have
exploited such regularities computationally (see Section 2),

Figure 1. Aerial-view (top-left) and street-view (top-right) images
from the same facade of an NYC building (image data provided
by Google). Our facade matching pipeline finds corresponding fa-
cades in spite of drastic variations in viewpoint and lighting. Our
method is regularity-driven, using features induced from the auto-
matically detected lattices. Bottom row shows additional matched
street-views of this facade. Note that a facade can be matched cor-
rectly even when the detected street-view lattice does not overlap
with the aerial view lattice.

matching between aerial and street views of the same fa-
cade poses technical challenges beyond generic image patch
matching and even beyond ground-level-only wide-baseline
facade matching. Furthermore, very little work (e.g. [4, 30])
has explored a regularity-driven approach for urban scene
segmentation and matching at the facade level.

We propose to use a lattice and its associated median tiles
(motifs) as the basis for matching widely differing aerial



and street-level facade views. Using a lattice tile/motif as
a novel, regularity-based descriptor for facades immedi-
ately distinguishes this work from all local descriptor-based
methods, since regularity is not a local property [21, 22].
We formulate the facade matching problem as a joint reg-
ularity optimization problem, seeking well-defined features
that reoccur across both facades to serve as match indica-
tors. Match costs based on edge shape contexts, L*a*b
color features, and Gabor filter responses are used to find
the best one-to-one matching of sampled patches between
two roughly aligned motifs, yielding an effective cost func-
tion for matching widely disparate facade views (Figure 1).

2. Related Work
It is well known that generic local features such as

HOG [8] or SIFT [23] are difficult to match across extreme
changes in illumination, viewing angle and image resolu-
tion. More robust patch matching features have been pro-
posed, based on feature descriptor normalization to reduce
descriptor variance, e.g. Root-SIFT [2] and edge contrast
normalization [36], or by methodically trying combinations
of feature transforms and binning layouts while learning pa-
rameters to maximize matching performance [33]. How-
ever, even with the use of robust generic patch descrip-
tors, matching architectural facades is inherently difficult
due to an ambiguity in finding the correct correspondence
among self-similar patches [28]. These correspondence am-
biguities lead in turn to difficulties in estimating planar ho-
mographies, fundamental matrices, camera locations, and
other quantities computed in a typical structure from mo-
tion pipeline [13, 17].

Approaches to wide-baseline facade matching in the lit-
erature can be broken roughly into three strategies. The first
strategy is to correct for the differences in viewing angle,
allowing view-dependent matching using traditional local
features to proceed. This is commonly achieved by ap-
plying an orthorectification preprocessing step that trans-
forms an arbitrary perspective view of a planar facade into
a frontal view where repetition of pattern elements occurs
along the horizontal and vertical image axes [4, 17, 34].
This can be done by discovering vertical and horizontal van-
ishing points and solving for the camera rotation that un-
warps the view [34]. The vanishing line of a planar surface
can also be estimated from change of scale of repeated pat-
tern elements in the image [7], allowing affine rectification,
while rotation and reflection among the elements introduces
further constraints that allow solving for a true frontal view
(up to similarity transform) [26].

More generally, the authors of [35] note that repeated
patterns form low-rank textures and present an algorithm
called TILT that performs automatic orthorectification of
intensity patterns in user-defined regions. Orthorectifica-
tion greatly simplifies subsequent translation and reflection

symmetry analysis [34], allows the use of more discrimina-
tive local features such as upright SIFT [3], and reduces the
degrees of freedom needed to align two facade views [17].

An alternative to orthorectification is to warp one view
into approximate alignment with another oblique view,
prior to matching. In [31], ground based multi-view stereo
is used to produce texture-mapped depth maps that are then
re-rendered based on known camera pose information to
synthesize the approximate appearance of the building as
seen in the target aerial view. The work of [1] aligns a dom-
inant plane between two oblique aerial views by introduc-
ing into the patch matching process an explicit search over
affine transformations that simulate the range of patch dis-
tortions expected due to viewpoint changes. A recent paper
by [18] uses range data and camera parameters from Google
street views to warp the dominant building surface plane to
appear approximately like a 45% aerial view in order to col-
lect a cross-view patch dataset for deep learning.

A second broad strategy for wide-baseline facade match-
ing is to form feature descriptors specialized for describ-
ing self-similar symmetric patterns. A Scale-Selective Self-
Similarity (S4) descriptor is developed in [4] to capture lo-
cal self-similarity of a patch to its surrounding region, com-
puted at an intrinsic scale proportional to the spatial wave-
length of repetition of the pattern. The similarity descriptor
for an image patch is formed as a binned log-polar repre-
sentation of its local autocorrelation surface, computed at
the intrinsic scale. Computed over a grid of patches, these
descriptors are clustered to detect and segment facades, and
to form a set of visual words for naive Bayes matching of fa-
cades. The work of [12] densely scores local horizontal and
vertical reflection symmetries and local 2n-fold rotational
symmetries at all locations and scales in an image. Being
based on local symmetry rather than photometry, the result-
ing descriptors can match facades across large changes of
image appearance (e.g. day vs night, drawing vs photo, and
modern vs historical view).

The third strategy for facade matching is to explicitly
treat the facade as a near-regular texture and to isolate and
match unique tiles representing the underlying translated
pattern element. One-dimensional frieze patterns and two-
dimensional wallpaper patterns are generated when a fun-
damental pattern element is shifted by integer multiples of
one (frieze) or two (wallpaper) generator vectors to form a
lattice. However, any translational offset of the lattice de-
fines an equally good partition of the facade pattern into
repeating elements, thus there is an inherent ambiguity in
determining a unique tile for matching.

Recent work by Ceylan et al. [6] requires a user to out-
line the fundamental repeating element of a pattern, while
our application requires an automated solution. In [9],
unique tiles are defined by finding the lattice offset such that
the Fourier transform of the repeated pattern has phase co-



Figure 2. Flowchart showing the overall process of the proposed method on the NYC dataset. a) Lattices are extracted from a street-view
(bottom) database and the aerial facade (top) in question. Detected lattices are pruned based on their estimated world-coordinate normal
vector to keep only vertical facades. b) Each lattice is represented by the median tile of its translational symmetry. c) A cost matrix is
computed from all potential point correspondences for each street-to-aerial pair. Each motif pair will have a cost matrix for each of the
four feature costs (shape context, color information gain, texture, spatial smoothness). d) A match cost for each street to aerial facade pair
is computed as the sum of its optimal point correspondence set costs. Positive/negative matches are determined by a threshold, learned by
maximizing precision/recall on a separate training set.

efficients of zero at its fundamental frequencies in the hori-
zontal and vertical directions. Extracted mean tiles are then
matched based on similarity of their grayscale patterns and
of the largest two peaks in their RGB color histograms. The
work of [20] defines a motif of a repeated pattern as a tile
that locally exhibits the same rotation and reflection sym-
metries that characterize the entire periodic pattern. This
idea is used in [30] to match facades based on normalized
cross-correlation of their respective motifs.

Our proposed approach in this paper is also based on ex-
tracting the motif of a lattice to use as a descriptor for fa-
cade matching. However, unlike [9] and [30], our match-
ing is based on filtering out candidates using a progres-
sively more discriminative pipeline of features, starting with
coarse lattice-structure (geometric) filtering, followed by
filtering based on illumination/shadow insensitive color dis-
tributions, and finishing with filtering based on features that
capture the spatial layout of motif pattern edges.

3. Regularity-based Matching Approach

We propose a regularity-based matching pipeline to iden-
tify corresponding facades across aerial and street-level
views (Figure 2). High resolution aerial views are first pro-
cessed by the method in [19] to extract a set of near-regular
building facades. Lattices are extracted for each aerial fa-
cade and for a set of candidate street-view images that are
potential matches, using the translational symmetry detec-
tion algorithm developed in [25]. To reduce computational
complexity when searching for corresponding street-view
images for a detected aerial facade, approximate camera
pose information available with both aerial and street-view
images is used. Specifically, by backprojecting viewing

rays into a UTM ground coordinate system to estimate the
approximate ground location for the aerial facade, we select
one hundred street-view camera locations that are in close
proximity to the estimated aerial facade location. Each
street view location yields eight camera shot directions, giv-
ing a total of 800 candidate images which are further pruned
by the orthogonality between the estimated normal vectors
of the corresponding lattice and that of the ground plane.

These lattices facilitate ortho-rectification of the aerial
and street-view facades and provide a basis for extracting
motifs summarizing their appearance. Each lattice parti-
tions an image region into tiles, which are brought into
alignment and then fused by computing the pixel-wise me-
dian [20]. This median tile or motif summarizes the scene
facade in terms of regularity and appearance. However, dif-
ferent views of the same facade will still result in orthorec-
tified tiles with slightly different appearances due to projec-
tive distortion and differences in scene illumination. One
way to look at our method is to consider each computed me-
dian tile to be a sample from the entire facade distribution
generated under different geometry and lighting conditions.
The median tile, as a representative of that distribution, al-
lows us to compare local distributions generated from aerial
and street-view samples to identify whether they belong to
the same whole-facade distribution.

The main technical contribution of our work is to define
a matching cost function to compare a street-view motif to
an aerial-view motif based on similarity of color, texture
and edge-based context features. The remainder of this sec-
tion describes in detail this cost function, the features that
comprise it, and the sample-based matching procedure that
produces a final motif-pair matching score.



Figure 3. Each motif’s edge image is sampled, and patches around each sample are described by shape context, color and texture features.
The first two features are illustrated here. (a) Each sampled point is described by its own log-polar histogram and shape context scores.
For each attempted match, a cost matrix is formed from the SSD scores between all pairs of possible point correspondences between the
two motifs. (b) The color cost term is computed from the information gain score between the two equalized LAB color-spaces. A 32x32
patch at each of the sampled points is used to obtain each distribution. The motif shown is from the NYC dataset.

3.1. Motif Cost Function

We characterize a motif by randomly sampling at most
400 points from its high-gradient (edge) pixels. Given two
motifs extracted from two facades, we compute their simi-
larity in the form of a pairwise, point-to-point cost function
formed as a weighted combination of four terms: (1) lo-
cal shape context [5], (2) color, (3) texture, and (4) location
proximity:
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Since any offset in the translational lattice yields a valid
motif tile, we first roughly align each street-view facade
motif with the aerial motif before comparison by circularly
shifting it to the offset that yields the maximum normalized
cross correlation (NCC) score.

3.1.1 Shape Context

Spatial edge layout is a useful measure for discriminating
between different window shapes/sizes, as well as weakly
discriminating between buildings with different surface tex-
tures, e.g. uniform texture vs. brick texture. Each sam-
pled edge point is characterized by a local shape context
[5], using a normalized log-polar histogram, as shown in
Figure 3a. The normalized cost of matching two sampled
points, i and j, is given by
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where k is a bin belonging to a log-polar histogram, h.

3.1.2 Color

We characterize the color appearance of a building by the
color distribution of the motif of the repeated facade pattern.
Color distribution of the motif is measured in CIELab color
space to account for potential differences in lighting or the
presence of shadows. Work done in [10, 11, 29] shows that
the CIELab color space is effective at detecting/segmenting
despite shadows, since the presence of a shadow will lin-
early shift each of the three CIELab color space dimensions
by a proportional amount depending on the strength of the
shadow. We describe the overall texture of a motif by its L,
a*, and b* distributions, f

L

(x), f

a⇤(x), and f

b⇤(x) respec-
tively.

When comparing two motifs, we first shift the L space
distribution of the street-view motif so that its mean value
matches the mean of the aerial-view motif. We then shift the
a* and b* distributions by the L space shift, �L, multiplied
by a corresponding proportionality constant, �, effectively
obtaining a shadow-invariant color space. The shifting pro-
cess is described by the equation
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f

d
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d

�L) (3)

where d is the color dimension, either a* or b*. In our exper-
iments we set �

a

=.135 and �

b

=.435, learned from a training
set of street-to-aerial facade matches separate from the ones
used for evaluating the PR curves.

To compare color distributions, our approach uses in-
formation gain, also known as the Kullback-Leibler diver-
gence, D

KL

[16]. Information gain effectively measures
the overall difference between two distributions by measur-
ing the loss of information that occurs when one probability
distribution is used to approximate another. In our case, we
use information gain to measure how well the aerial-view



Figure 4. Sample images selected from positive/negative matching results as determined by our matching pipeline (green/red borders,
respectively) on the NYC dataset. Matched facades within the positive images are colored blue. Sample motifs from the aerial and
matched street view facades are also shown.

patch describes the street-view patch, as given by
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To obtain the cost associated with the color similarity, we
apply the Kullback-Leibler divergence to a 32x32 image
patch at pixels i and j for each of the color spaces, as shown
by Figure 3b. The cost ˆ

D

i,j

is the average divergence over
the three CIELab color dimensions.

3.1.3 Texture

Gabor filter bank responses have been shown to be effective
descriptors for many datasets [24, 27]. While urban facade
datasets are not as sparse as previously tested datasets, tex-
ture features can be useful discriminators for building fa-
cades.

When comparing two motifs, we apply four 1-
wavelength Gabor filters to each motif at 0�, 45�, 90�, and

135�. The texture cost ˆ

T

i,j

for each pair of sampled points
associated with matching two motifs is the sum of each fil-
ter response’s SSD (sum squared difference).

3.1.4 Location Proximity

Due to the rigid structure of building facades, relative lo-
cations of corresponding motif pixels are expected to vary
smoothly, e.g. according to affine deformations due to view-
point. Therefore, we include an additional location change
cost in order to bias the overall solution by this smoothness
constraint. The cost is given by ˆ

L

i,j

, which is the relative
distance between the two matched points as a ratio to the
maximum possible distance (diagonal of motif).

3.2. Matching by Cost Minimization

Optimal correspondences between the sets of sampled
points from two motifs are solved by minimizing the cost
function of Equation 1 over all 1-1 point correspondences,
solved as a bipartite matching problem using the Hungarian
algorithm [15]. Weights for the four component cost ma-
trices are W

E

= W

D

= W

T

= 0.3167 and W

L

= 0.05.
This gives edge-based, color-based and texture-based ap-
pearance features equal weighting, while spatial similarity
has a lower weight that adds a slight smoothing bias. An



Figure 5. Evaluation of street-view facades matched to 120 different aerial-view facades (40 NYC, 10 SF, 70 Rome). We show the
Precision-Recall curves for our proposed method against (1) a baseline approach using SIFT descriptor matching in orthorectified views,
(2) Root-SIFT [2], a renormalization of SIFT that outperforms SIFT for retrieving building facades across large view changes, (3) Binary
Coherent Edge Descriptors [36], a generic patch matching descriptor applied to our extracted motifs, and (4) S4 [4], a sophisticated
symmetry-based feature designed for facade matching between aerial and ground-level views. The far right panel shows results of our
method using different combinations of the 3 major feature spaces (shape context, color, texture) used in our motif matching cost function.

overall matching score for the pair of motifs is given by
the sum of the costs returned by the Hungarian algorithm
with the optimal point-match set. All potential pairs of mo-
tif matches are ranked based on their matching scores, from
which positive/negative matches are then determined.

4. Experimental Results
Figure 4 shows qualitative matching results for an aerial

facade. Given an aerial facade and its automatically de-
tected lattice, samples of some of the candidate street-view
images are shown.

A quantitative evaluation of our method is carried out
on a set of 120 aerial facades. Each facade is visible in
10-15 street images, giving us over 1000 total potential fa-
cade matches. We have hand labeled all street-view facades
corresponding to each aerial facade in the dataset. These
labeled facades are treated as the ground truth during our
evaluation. A true positive match from a street-view fa-
cade to an aerial facade occurs when their motifs achieve
the highest ranking matching score and they are from the
same scene facade. Such a motif-based match can occur
even in cases where the two detected facade lattices do not
have any spatial overlap. This type of match is still 1-to-1
(albeit not pixel to pixel) since only the best-scoring lat-
tice/motif pair is chosen, one from an aerial view image and
one from a street-view image, and thus the Precision-Recall
curve is well-defined.

Figure 5 shows a quantitative evaluation based on 120
aerial facade examples. Four different sets of precision-
recall curves are shown. The first three show our method
compared with other matching methods on 40 NYC, 10
SF, and 70 Rome facades, respectively. To make this com-
parison fair, street view and aerial view facades were first
orthorectified using their detected lattices before comput-
ing SIFT descriptors, since it is known that SIFT features
are not able to match well across large, oblique viewpoint
changes. Even with that help, SIFT and Root-SIFT match-

ing are not as effective at matching facades as our proposed
method, or the other sophisticated methods. Finally, we
compare the average results of different combinations of
our cost function feature spaces across all three cities. Al-
though color alone is not an effective tool for discriminating
between different facades, it still adds improvement when
used in conjunction with other features. In Figure 6, a 3D
cost space is shown for the shape, color, and texture feature
costs computed when matching to a particular NYC aerial
facade. Blue/red stars are used to indicate whether a street
facade is a ground truth match/non-match to the reference
aerial facade. The decision made by our matching process
is depicted by a green or red dashed line for a match or non-
match, respectively.

5. Applications
In this section we show two potential applications for

regularity-based matching by using the 2D lattice informa-
tion for image enhancement in both aerial and street-level
views. The first application removes foreground objects
that occlude an architectural facade of interest (inpainting)
and the second replaces low-resolution facade texture with
a higher-resolution version (superresolution). Both inpaint-
ing [14] and superresolution [25] of a repeated facade pat-
tern have been addressed previously, but those works syn-
thesize a virtual new texture assuming a perfectly repeating
pattern, whereas our approach copies actually observed pat-
tern data from a different unoccluded or higher-resolution
view. Inpainting work such as [32], also copies information
from other views, but the region to be inpainted is chosen
by a user. Our approach automatically detects the region of
occlusion by analyzing the facade pattern.

5.1. Removal of Street-Level Occlusion
From our set of matched street-view lattices, a central

lattice is built that collects and associates patches from
each facade across all images in which that facade is vis-



Figure 6. NYC 3D Feature-Cost Space for the three major features used in our proposed method. Blue star = ground truth positive, red
star = ground truth negative. Green dashed line = selected as a match by our matching process, red dashed line = selected as non-match.
a, h show facades that are matched with low cost to the aerial facade. b, g are examples of facades with similar appearances according
to our feature space but are considered false positives, while c is an image that our method does not match well due to significant affine
deformations and changes in the window reflection colors. Quantitative results shown in Figure 5

ible. Cross-view matching is performed by correlating each
lattice patch set over the patch sets of other images while
maintaining the alignments of the two patch sets. The cor-
relation offset location with the highest score is selected as
the best matched lattice alignment. That is,

locQ = argmax

i,j

NCC

i,j

(P,Q) (6)

where Q is the set of lattice patches currently being con-
sidered, P is the current central lattice patch set, i,j is the
offset of Q with respect to the origin of P, and NCC com-
putes the mean normalized cross correlation score between

two lattice patch sets at an offset of i,j (correlation scores
between one or more null patches are not included in the
mean score). We leverage the initial aerial view facade by
restricting the offset location from causing the central lattice
to exceed the aerial-view lattice patch set dimensions. At
the end of this process, the central lattice patch set contains
patch samples from all matched facades, in their appropri-
ate relative positions with respect to each facade. Note that
multiple sample patches may be available for the same rela-
tive facade location, when that location is visible in multiple
matched street views.



Figure 7. Occlusion removal is performed on this NYC street-
view by replacing missing/obstructed lattice patches with available
patches from another viewpoint. This is facilitated by construction
of a central lattice patch set that brings into alignment correspond-
ing patches from all of the matched street views.

After building a central lattice that contains all visible
street-view patches, we are able to automatically remove
both major and minor occlusions from a given viewpoint
(Figure 7). Minor occlusions are defined as objects that
are small and thus minimally affect the occluded lattice
patch. Examples include street lamps, sign poles, or elec-
trical wires. These types of occlusions can be automatically
detected by comparing the difference to the median patch
of this patch to its corresponding median differences from
other viewing angles. Patches with minor occlusions are
considered those with difference energies several standard
deviations above the mean difference energy.

Major occlusions occur when an object obstructs a large
portion of the building from some views, affecting the per-
ceived regularity. We can detect these by finding patches in
the central lattice patch set that are present in some images,
but not present in others even though they fall within that
image’s field of view.

To correct/replace occluded patches, a mapping of the
coordinates from one patch to another, F , is defined by
determining the projective transformation between the four
corner locations of the occluded patch and the corner loca-
tions of a corresponding matched patch. The pixels of the
occluded patch are replaced using the mapping F

p

o

(i, j) = p

m

(F{i, j}) (7)

where p

o

is a pixel in the obstructed patch, p
m

is a pixel
in a matched patch. We select the image for the patch re-
placement as the image in closest proximity to the image
containing the occlusion in order to minimize perspective
distortion.

Figure 8. Six aerial lattice patches (from NYC dataset) replaced
with corresponding street-view lattice patches after automatically
adjusting for lighting differences in CIELab space

5.2. Aerial-Level Image Enhancement through Tex-
ture Replacement

As explained in Section 5.1, a central lattice patch set
containing all aligned patches detected from street-level
views is constructed and can be used to replace pattern tiles
that are occluded. Since the central lattice patch set is also
aligned with the original aerial image facade lattice, it is
also possible to perform texture replacement of patches in
the aerial view with patches extracted from the set of street
views. Since street views are often of significantly higher
resolution than the aerial imagery, this type of texture re-
placement can be used to generate higher resolution aerial
views, as shown in Figure 8.

6. Conclusion
We have addressed the scientific problem of aerial to

street-view facade matching. This application poses tech-
nical challenges beyond generic image patch matching
and even beyond ground-level-only, wide-baseline facade
matching. Our results have shown that regularity is an ef-
fective tool in extracting discriminative facade features that
can be used for matching under challenging viewpoint and
lighting changes. By analyzing facade lattice structures, we
show that color, shape, and edge-based features combine to
form an effective cost function for differentiating between
buildings when used within a framework that performs pair-
wise matching of sample patches summarizing the motif tile
of the repeated facade pattern. We also have shown two ex-
ample applications facilitated by multi-view facade match-
ing and alignment: removal of occlusion from street-level
views, and image enhancement of facade texture in aerial
views.
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