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Monocular Visual Scene Understanding:
Understanding Multi-Object Traffic Scenes
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Abstract—Following recent advances in detection, context modeling and tracking, scene understanding has been the focus of renewed

interest in computer vision research. This paper presents a novel probabilistic 3D scene model that integrates state-of-the-art multi-

class object detection, object tracking and scene labeling together with geometric 3D reasoning. Our model is able to represent complex

object interactions such as inter-object occlusion, physical exclusion between objects, and geometric context. Inference in this model

allows to jointly recover the 3D scene context and perform 3D multi-object tracking from a mobile observer, for objects of multiple

categories, using only monocular video as input. Contrary to many other approaches our system performs explicit occlusion reasoning

and is therefore capable of tracking objects that are partially occluded for extended periods of time, or objects that have never been

observed to their full extent. In addition, we show that a joint scene tracklet model for the evidence collected over multiple frames

substantially improves performance. The approach is evaluated for different types of challenging onboard sequences. We first show

a substantial improvement to the state-of-the-art in 3D multi-people tracking. Moreover, a similar performance gain is achieved for

multi-class 3D tracking of cars and trucks on a challenging dataset.

Index Terms—Scene Understanding, Tracking, Scene Tracklets, Tracking-by-Detection, MCMC

✦

1 INTRODUCTION

Robustly tracking objects from a moving observer is an active

research area due to its importance for driver assistance,

traffic safety, and autonomous navigation [1, 2]. Dynamically

changing cluttered backgrounds, varying lighting conditions

in the outdoor environment, (partial) object occlusion and the

low viewpoint of vehicle-mounted cameras all contribute to the

difficulty of the problem. Furthermore, to support navigation,

object locations should be estimated in a global 3D coordinate

frame rather than in image coordinates.

The main goal of this paper is to address this important

and challenging problem by proposing a new probabilistic

3D scene model (see Fig. 2 for an overview). Our model

builds upon several important lessons from previous research:

(1) robust tracking performance is currently best achieved

with a tracking-by-detection framework [2–4]; (2) short term

evidence aggregation, typically termed tracklets [4–6], allows

for increased tracking robustness; (3) the objects should not

be modeled in isolation, but in their 3D scene context, which

puts strong constraints on the position and motion of tracked

objects [1, 7]; (4) multi-cue combination of scene labels and

object detectors allows to strengthen weak detections, but

also to prune inconsistent false detections [7]. While all these

different components have been shown to boost performance

individually, it appears that these components have not yet

been integrated in a single system.

Having a full 3D scene model allows us to determine

the visibility of each individual object in the scene, which
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Fig. 1: Example results with our multi-frame 3D inference and explicit
occlusion reasoning for onboard vehicle and pedestrian tracking with overlaid
horizon estimate for different public state-of-the-art datasets (all results at 0.1
FPPI).

in turn enables to predict which parts of the object are

sufficiently visible and thus detectable. This allows us to define

a complete 3D scene likelihood that tightly integrates full and

partial human detectors within a 3D scene tracking framework.

Thus, our model is capable of reasoning about object-object

occlusion and can recognize objects when they are partially

occluded for extended periods of time and even when they

have never been fully visible.

As our experiments show, the proposed probabilistic 3D

scene model significantly outperforms the current state-of-the-

art. Fig. 1 shows example results for two different types of

challenging onboard sequences. Our system is able to robustly

track a varying number of targets in 3D world coordinates in
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Fig. 2: Overview on our system. For each input frame we run an object
detector and extract semantic scene labels. Object hypotheses are fused to
short-term tracklets and put into a strong 3D scene model with explicit occlu-
sion reasoning. MCMC inference allows tractable inference in our Bayesian
scene model while HMM scene tracking ensures long-term associations.

highly dynamic scenes. This enables us to use a single camera

only instead of relying on stereo cameras as in previous work

(e.g., [1, 2]). Additionally, we improve performance under full

and partial object-object occlusion, which occurs frequently

in scenes of realistic complexity and still severely challenges

state-of-the-art systems.

Despite using only monocular input, the proposed model

allows to constrain object detections to geometrically feasible

locations and enforces physically plausible 3D dynamics.

This improves object detection results by pruning physically

implausible false positives and strengthening weak detections

along an object’s trajectory. We demonstrate that accumulating

scene evidence over a small number of frames with help of a

3D scene model significantly improves performance. As exact

inference is intractable we employ reversible-jump Markov

Chain Monte Carlo (RJMCMC) sampling for approximate

inference. Finally, we show that further improvement can be

achieved by performing long-term data association with a

Hidden Markov Model (HMM).

2 RELATED WORK

Our work builds on recent advances in scene understanding

by pixel-wise labeling, 3D scene analysis and tracking.

The use of scene context has been investigated in the com-

puter vision literature in several ways. Torralba [8] proposes to

employ Gabor filter-bank responses in a bottom-up fashion in

order to gain prior information on likely 2D object positions.

More recently, Shotton et al. [9] use a strong joint-boosting

classifier with context reasoning based on a CRF framework

to provide a local, per-pixel classification of image content.

Tu et al. [10] use MCMC sampling techniques to combine

top-down discriminative classifiers with bottom-up generative

models for 2D image understanding.

For traffic scene understanding Ess et al. [11] and Bros-

tow et al. [12] particularly address the use of context. [11]

uses 2D Walsh-Hadamard filter-bank responses together with

stereo depth information to infer traffic situations, while [12]

leverages 3D point clouds to improve 2D scene segmentation.

Common to these approaches is the goal of 2D image under-

standing. Our work includes scene labeling as a cue, but its

ultimate goal is to obtain a 3D model of the observed world.

Similar to our work Hoiem et al. [7] and Ess et al. [1] em-

ploy a 3D scene model. [7] combines image segmentation and

object detections in order to infer the objects’ positions in 3D.

Gupta et al. [13] advance Hoiem’s work by adding physical

constraints to yield a blocks world model. Both works, how-

ever, are limited to single images and do not exploit temporal

information available in video. [1] extends [7] for video input,

but requires a stereo camera setup to achieve robust tracking

of pedestrians from a mobile platform. Similarly, [2] tracks

pedestrians for driver assistance applications and employs a

stereo camera to find regions of interest and to suppress false

detections. Franke et al. [14] employ 6D scene flow computed

from a stereo setup to model the vicinity for applications in

mobile traffic safety while Geiger et al. [15] use a mobile

stereo setup to infer the layout of urban traffic junctions. Note,

however, that stereo will yield only little improvement in the

far field, because a stereo rig with a realistic baseline will have

negligible disparity. Thus, further constraints are needed, since

appearance-based object detection is unreliable at very small

scales. Therefore, we investigate the feasibility of a monocular

camera setup for mobile scene understanding. Other systems

that use monocular sequences are Shashua et al. [16] and Choi

and Savarese [17]. Contrary to their work, we tightly couple

our scene model and the hypothesized positions of objects

with the notion of scene tracklets, and exploit constraints

given by a-priori information (e.g., approximate object heights

and camera pitch). Our experiments show that these short-

term associations substantially stabilize 3D inference and

improve robustness beyond what has previously been reported.

Interestingly, even though 3D scene information is available in

many of the above systems, only Ess et al. [18] (an extension

to [1]) uses stereo disparity to extend tracks under occlusion

using occlusion maps. [17] only models track interaction but

does not perform occlusion reasoning. As our experiments

show, the proposed tightly integrated scene tracklet model

with explicit occlusion handling outperforms these approaches

[1, 17], and is able to detect and associate also partially visible

objects.

Most tracking-by-detection systems for full scene under-

standing mentioned above use full-object detectors, which

allow to deal with occlusions only when the object is visible

enough to be detectable by the respective full-object detector.

In many scenes, however, certain objects are never fully visible

making these approaches prone to fail. To address this, we

propose to use multiple partial detectors that allow to also

detect and track objects that are never fully visible. To our

knowledge, the only other work that uses partial detectors for

tracking from a mobile observer is by Xing et al. [19], which

uses only two partial and one full detector without a strong 3D

scene model to infer expected occlusion. For tracking humans

in a static camera surveillance setting, Shet et al. [20] and Wu

and Nevatia [21] employ a combination of body part detectors

supported by a 2D scene model. In contrast, this paper uses

six partial detectors for explicit occlusion reasoning to infer
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the 3D scenes recorded from a moving monocular camera with

the goal to eventually support autonomous navigation.

A larger number of approaches for explicit occlusion han-

dling is reported in the object detection literature. Enzweiler

et al. [22] learned local head, torso and leg detectors combined

in a mixture-of-experts framework and leveraging stereo and

flow cues. Wang et al. [23] performed occlusion handling in

a modified SVM framework, while Lin et al. [24] adapted

a boosting cascade to cope with partial occlusion. Kwak

et al. [25] infer occluded regions with a patch classifier

and improve tracking performance. Winn and Shotton [26]

employed CRFs to couple segmentation and detection under

partial occlusion. Finally, Vedaldi and Zisserman [27] em-

ployed structured output regression to detect partially truncated

and misaligned multi-aspect objects. Similarly, Gao et al. [28]

leverage segmentation-based reasoning in a structured output

framework to disable occluded parts of a bounding box. For

human pose estimation, Sigal and Black [29] proposed an

approach to model self-occlusion of body-parts. However,

none of these approaches models the interaction of different

objects. The goal in our work, in contrast, is an explicit

model that builds on 3D scene analysis to address complex

object-object occlusions. By explicitly leveraging 3D scene

information for occlusion reasoning our approach is able to

improve in challenging scenes with partial and full occlusions,

which are a major error source for tracking in many systems.

Tracking-by-detection, with an offline learned appearance

model, is a popular approach for tracking objects in chal-

lenging environments. Breitenstein et al. [30], for instance,

track humans based on a number of different detectors in

image coordinates. Similarly, Okuma et al. [3] track hockey

players in television broadcasts. Huang et al. [6] track people

in a surveillance scenario from a static camera, grouping

detections in neighboring frames into tracklets. Similar ideas

have been exploited by Kaucic et al. [5] to track vehicles from

a helicopter, and by Li et al. [31] to track pedestrians with

a static surveillance camera. Kaucic et al. [5] even leverage

scene segmentation to predict occlusion. Nonetheless, their

approach only allows to temporally extend tracks of fully

visible objects, but does not allow to detect and track objects

that are only partially visible. Moreover, none of these tracklet

approaches exploit the strong constraints given by the size

and position of other objects, and instead build up individual

tracks for each object. Others [32–35] propose to use network

flows or phrase tracking as a linear optimization problem to

overcome challanges such as occlusion. These works however

are usually targeted at offline or batch processing. Due to the

resulting lag these methods are less favoured for processing

on a mobile observer.

In this paper we contribute a probabilistic scene model

that allows to jointly infer the camera parameters and the

position of all objects in 3D world coordinates by using

only monocular video and odometry information. Increased

robustness is achieved by extending the tracklet idea to entire

scenes toward the inference of a global scene model.

Realistic, but complex models for tracking including ours

are often not amenable to closed-form inference. Thus, several

approaches resort to MCMC sampling. Khan et al. [36] track

Fig. 3: Visualization of the 3D scene state X in the world coordinate system.
Note that the camera is mounted to the vehicle on the right.

ants and incorporate their social behavior by means of an MRF.

Zhao et al. [37] use MCMC sampling to track people from

a static camera. Isard and MacCormick [38] track people in

front of relatively uncluttered backgrounds from a static indoor

camera. All three approaches use rather weak appearance

models, which prove sufficient for static cameras. Our model

employs a strong object detector and pixel-wise scene labeling

to cope with highly dynamic scenes recorded from a moving

platform.

3 SINGLE-FRAME 3D SCENE MODEL

We begin by describing our 3D scene model for a single

image, which aims at combining available prior knowledge

with image evidence in order to reconstruct the 3D positions

of all objects in the scene. For clarity, the time index t is

omitted when referring to a single time step only. Variables in

image coordinates are printed in lower case, variables in 3D

world coordinates in upper case; vectors are printed in bold

face.

The posterior distribution for the 3D scene state X given

image evidence E is defined in the usual way, in terms of a

prior and an observation model:

P (X|E) ∝ P (E|X)P (X) (1)

The 3D state X consists of the individual states of all objects

O
i, described by their relative 3D position (Oix, O

i
y, O

i
z)

⊤,

speed (V ix , V
i
y , V

i
z )

⊤ w.r.t. the observer and by their height

Hi. For the single-frame model described in this section we

are not able to estimate speed and thus we drop the according

state vector entries. Moreover, X includes the internal camera

parameters K and the camera orientation R.

The goal of this work is to infer the 3D state X from video

data of a monocular, forward facing camera (see Fig. 3). While

in general this is an under-constrained problem, in robotic

and automotive applications we can make the following as-

sumptions that are expressed in the prior P (X): The camera

undergoes no roll and yaw w.r.t. the platform (cf. Fig. 4), its

intrinsics K are constant and have been calibrated off-line,

and the speed and turn rate of the platform are estimated

from odometer readings. Furthermore, the platform as well

as all objects of interest are constrained to stand on a com-

mon ground plane (i.e., Oiz = 0 and V iz = 0). Note that

under these assumptions the ground plane in camera-centric

coordinates is fully determined by the pitch angle Θ. As the

camera is rigidly mounted to the vehicle, it can only pitch



4 SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Fig. 4: For applications in robotics and automotive safety the rotation angles
of a vehicle mounted camera with respect to the environment are heavily
constrained.

a few degrees. To avoid degenerate camera configurations,

the pitch angle is therefore modeled as normally distributed

around the pitch of the resting platform as observed during

calibration: N (Θ;µΘ, σΘ). We note that the choice of the

normal distribution is likely to be inaccurate in particular due

to the bounded range of angles. However, as realistic values of

σΘ are relativly small this is no practical limitation. This prior

allows deviations arising from acceleration and braking of the

observer. This is particularly important for the estimation of

distant objects as, due to the low camera viewpoint, even

minor changes in the pitch may cause a large error for distance

estimation in the far field.

Moreover, we assume the height of all scene objects to

follow a normal distribution N (Hi;µciH , σ
ci
H) around a known

mean value µciH , which is specific for the respective object class

ci. This helps to prune false detections that are consistent with

the ground plane, but are of the wrong height (e.g., background

structures such as street lights). We note that for the height of

people a normal distribution is likely to be inaccurate but use

it nevertheless with manually set parameters due to the lack

of better data. The overall prior is thus given as:

P (X) ∝ N (Θ;µΘ, σΘ) ·
∏

i

N (Hi;µciH , σ
ci
H) (2)

Next, we turn to the observation model P (E|X). The image

evidence E is comprised of a set of potential object detections

and a scene labeling, i.e., category labels densely estimated for

every pixel. As we will see in the experiments, the combination

of these two types of image evidence is beneficial, because

object detections give reliable but rather coarse bounding

boxes, and low level cues enable more fine-grained data asso-

ciation by penalizing inconsistent associations and supporting

consistent, but weak detections.

For each object i our model fuses object appearance given

by the object detector confidence, geometric constraints, and

local evidence from bottom-up pixel-wise labeling:

P (E|X) ∝
∏

i

ΨG
(

O
i,Θ;da(i)

)

·ΨD
(

d
a(i)

)

·ΨiL
(

X; l
)

(3)

Here, a(i) denotes the association function, which assigns a

candidate object detection d
a(i) to every 3D object hypothesis

O
i. Note that the associations between objects and detections

are not fixed in advance, but established as part of the MCMC

sampling procedure (see Sec. 4.1). The following subsections

will discuss ΨG,ΨD and ΨiL in more detail.

(a) 3D scene with severe

object-object occlusions

(b) 2D projection onto the camera’s image

plane

Fig. 5: We approximate objects by their bounding boxes and project them
onto the image. By leveraging the depth order obtained from the 3D scene
model we are able to estimate occluded object regions. Only partial detectors
belonging to visible regions contribute to the mixture model (cf. Eqn. 7).

3.1 Scene geometry

The geometry potential ΨG models how well the estimated

3D state O
i satisfies the geometric constraints due to the

ground plane specified by the camera pitch Θ. Denoting the

projection of the 3D position O
i to the image plane as o

i, the

distance between o
i and the associated detection d

a(i) in x-y-

scale-space serves as a measure of how much the geometric

constraints are violated. We model ΨG using a Gaussian

ΨG(O
i,Θ;da(i)) = N (oi;da(i),σG + σ̄G) , (4)

where we split the kernel bandwidth into a constant component

σG and a scale-dependent component σ̄G to account for

inaccuracies that arise from the scanning stride of the sliding-

window detectors.

3.2 Detector appearance

For the detector appearance potential we will explore one

variant with explicit occlusion reasoning and one without.

Our formulation with occlusion reasoning requires several

different partial object detectors while the formulation without

occlusion reasoning only requires a full object detector and

is therefore faster to compute. We will first introduce our

model without occlusion reasoning [39] and then extend the

formulation to the more complex and richer model [40].

3.2.1 Without explicit occlusion reasoning

When we build our model on a single full object detector the

appearance potential ΨD appearance score of detection d
a(i)

for object i into the positive range. Contrary to our previous

work [39] we consistently use a hard-clipping function that

clips the score to a minimum value ξ:

ΨD
(

d
a(i)

)

=

{

score(da(i)) if score(da(i)) ≥ ξ
ξ if score(da(i)) < ξ

(5)

Hard-clipping the scores in the above way yields the same or

better performance than previously used soft-clipping [41] or

sigmoid [42] mappings.

3.2.2 Explicit occlusion reasoning

To perform explicit occlusion reasoning that can cope with

partial object visibility, we will use a bank of detectors,
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Algorithm 1 Efficient visible area computation for rectangular

regions: r - rectangle for which the number of visible pixels

is computed; m - maximum tested object depth.

Since the intersection and AREA can be computed quickly for

rectangles, this algorithm is faster in practice than a dense

pixel-wise occlusion map which is often used for arbitrary

shapes.

Require: O
1, . . . ,Om sorted in increasing depth

1: function VISIBLEAREA(r, m)

2: vr ←AREA(r)

3: for k = 1 . . .m− 1 do

4: o
k ←PROJECT(Ok)

5: if r ∩ o
k 6= ∅ then

6: if k 6= 1 then

7: vr ← vr−VISIBLEAREA(r ∩ o
k, k)

8: else

9: vr ← vr−AREA(r ∩ o
k)

10: end if

11: end if

12: end for

13: return vr

14: end function

15:

16: vip ← VISIBLEAREA(oip, i)/AREA(oip)

each trained to detect parts of the objects of interest (see

Section 6 for details), in addition to the full-object detector

above. To incorporate these local part detections robustly we

perform occlusion handling by explicitly leveraging 3D scene

information. Thus, we rephrase the above definition of Eqn. 3

to incorporate object visibility. For each part p (we also refer to

the full object detector as a part in the following) we compute

its projection’s expected visibility vip based on the global 3D

scene model (cf. Fig. 5). Assuming that the camera views the

scene along the x-axis (cf. Fig. 3) and that the objects are

sorted with increasing depth, we can formally express a part’s

visibility as:

vip =AREA

(

o
i
p\

⋃

j<i

o
j

)

/AREA(oip), s.t. ∀jO
j
x<O

i
x (6)

where AREA(oip) denotes the image area in pixels covered by

the projection of the pth part of Oi. Alg. 1 gives an efficient

algorithm for obtaining vip for rectangular projections o
i
p. As

detectors tend not to respond for parts with low visibility due

to the lack of occluded samples in the training data, we discard

part detections when the visible area vip is below a certain

threshold vmin
1. We define our multi-detector observation

likelihood with explicit occlusion handling as a mixture-of-

experts [43] where the experts are the part detectors and the

1. In our implementation we use vmin = 0.75.

weights are proportional to the visible area vip of those parts:

P (E|X) ∝
∏

i

1
∑

q[v
i
q > vmin] · viq

·
∑

p

(

[vip > vmin]· (7)

vip ·ΨG
(

O
i,Θ;da(i,p)p

)

·ΨD
(

d
a(i,p)
p

)

)

·ΨiL
(

X; l
)

Now, a(i, p) is an association function that assigns candidate

part detections d
a(i,p)
p (at most one for each part p) to every

3D object hypothesis O
i. [expr] denotes the Iverson bracket

([expr]=1 if expr is true, and 0 otherwise) and is used here

to enable and disable partial detectors based on their expected

visibility. In case a detector is not firing despite a sufficiently

large estimated visibility (vip > vmin) we use a minimum

appearance score to compensate missing evidence. ΨD and

ΨG are defined as for the single detector likelihood (cf. Eqn. 5

and Eqn. 4), but use the associated part detector’s estimate for

the full object extent instead of the full object detector. As an

alternative for the (visibility) weighted mixture model above

we have also tried an unweighted mixture model, a mixture

model based on learned weights for the partial detectors

and a model that assumes independent partial detectors and

thus computes the geometric mean, but found the mixture-

of-experts model above to perform best or equally well. In

particular the option that assumes independent partial detectors

suffered from missing detections or low scores of a single

detector.

Hypotheses clustering. To enable efficient inference we

cluster a(i, p) agglomeratively into groups of possible associ-

ations. Starting from an association function a(i, p) that only

associates full object detections, we iteratively add associa-

tions to part detections when those overlap sufficiently for

the respective object part. In each iteration we add the part

detection with the highest overlap that has previously not been

matched. Part detections that cannot be matched to an existing

cluster lead to an additional, new cluster.

Regarding the comparability of detector scores we found

empirically that SVM margins and boosting likelihoods on

true positive detections tend to be larger for better performing

detectors. For SVMs this is probably due to the fact that we

train all detectors on the same training set, and thus scores

are implicitly normalized by scaling the SVM margin to 1.

Therefore an implicit detector weighting is learned during

SVM training and no further provision to balance SVM scores

is required. For boosting we use the same number of weak

classifiers for each part detector. Due to the lower discrimina-

tive power of the partial object detectors the estimated weak

classifiers’ weights are lower and thus the scores of weaker

partial detectors are implicitly down-weighted.

3.3 Semantic scene labels

The scene labeling potential ΨiL describes how well the projec-

tion o
i matches the bottom-up pixel labeling. For each pixel

j and each class c the labeling yields a classification score

lj(c). Here the labeling scores obtained from boosting [44] are

normalized pixel-wise by means of a softmax transformation

in order to obtain positive values (cf. Fig. 6).



6 SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

(a) Input image (b) Normalized scene labeling

likelihood for pedestrian

Fig. 6: Scene labeling likelihoods are normalized locally with a softmax
transform to yield positive values.

It is important to note that this cue demands 3D scene

modeling: To determine the set of pixels that belong to

each potential object, one needs to account for inter-object

occlusions, and hence know the objects’ depth ordering. Given

that ordering, we proceed as follows: each object is back-

projected to a bounding box o
i, and that box is split into a

visible region δ
i and an occluded region ωi (see Alg. 1 for a

fast algorithm when object projections are approximated with

bounding boxes). The object likelihood is then defined as the

ratio between the cumulative score for the expected label e
and the cumulative score of the pixel-wise highest scoring

background class label k 6= e, evaluated over the visible part

of oi:

ΨiL(X; l) =

( ∑
j∈δi

lj(e)+τ

ǫ|ωi|+
∑

j∈δi
lj(k)+τ

)α

, (8)

where the constant τ corresponds to a weak Dirichlet prior;

ǫ|ωi| avoids highly occluded objects to have a large influence

with little available evidence; and α balances the relative

importance of detector score, scene geometry consistence and

pixel label likelihood.

4 INFERENCE FRAMEWORK

To perform inference in the above model, we simulate the pos-

terior distribution P (X|E) in a Metropolis-Hastings MCMC

framework [45]. At each iteration s new scene samples X
′

are proposed by different moves from the proposal density

Q(X′;X(s)). The proposal’s posterior is evaluated and the

acceptance ratio is computed as

r =
P (X′|E)

P (X(s)|E)

Q(X(s);X′)

Q(X′;X(s))
. (9)

The proposal is accepted with probability min(1; r). We assign

X
(s+1)←X

′ if the proposal is accepted; otherwise the last

state is retained, X(s+1)←X
(s). Since our goal is to sample

from the equilibrium distribution, we discard the samples from

an initial burn-in phase. Note that the normalization of the

posterior does not have to be known, since it is independent of

X and therefore cancels out in the posterior ratio. Importantly,

P (X|E) is not comparable across scene configurations with

different numbers of objects. We address this with a reversible

jump MCMC framework [46].

Fig. 7: Employing the theorem of intersecting lines we can derive the distance

to object i along the ground plane Oi
x in viewing direction as Oi

x = H
i
Fx

hi cos(θ)
.

For small pitch values Θ, cos(Θ) can be discarded and thus Oi
x ≈

H
i
Fx

hi .

Here, Fx denotes the focal length in x-direction which is assumed to be
calibrated off-line while hi is object i’s projection height on the image plane.

4.1 Proposal moves

Proposal moves change the current state of the Markov chain.

We employ three different move types: diffusion moves to

update the last state’s variables, add moves and delete moves

to change the state’s dimensionality by adding or removing

objects from the scene. Add and delete moves are mutually

reversible and trans-dimensional. At each iteration, the move

type is selected randomly with fixed probabilities qAdd, qDel

and qDif.

Diffusion moves change the current state by sampling new

values for the state variables. At each diffusion move, object

variables are updated with a probability of qO, while Θ is

updated with a probability of qΘ.

To update objects we draw the index i of the object to update

from a uniform distribution and then update either Oi or Vi.

Proposals are drawn from a multi-variate normal distribution

with diagonal covariance centered at the previous state.

To update the camera pitch Θ, proposals are generated from

a mixture model. The first mixture component is a broad

normal distribution centered at the calibrated pitch for the

motionless platform. For the remaining mixture components,

we assume distant objects associated with detections at small

scales to have the class’ mean height and use d
a(i) to compute

their distance by means of the theorem of intersecting lines

(cf. Fig. 7). Then the deviation between the detected bounding

box and the object’s projection in the image allows one to

estimate the camera pitch. This relationship can directly be

derived from the perspective projection equation. Note that

one property of this relationship is that uncertainty in the

distance estimate (arising from the deviation in height from the

class mean) for distant cars translates to a lower uncertainty

in the pitch value than for close cars. We place one mixture

component around each pitch computed this way and assign

mixture weights proportional to the detection scores to put

more weight on more likely objects.

Add moves add a new object ON+1 to the chain’s last

state, where N is the number of objects contained in X
(s). As

this move is trans-dimensional (i.e., the number of dimensions

of X
(s) and X

′ do not match) special consideration needs to

be taken when the posterior ratio
P (X′|E)
P (X(s)|E)

is evaluated. In

particular, P (X(s)|E) needs to be made comparable in the

state space of P (X′|E). To this end, we assume a constant

probability P̄ (ON+1) for each object to be part of the back-

ground. Hence, posteriors of states with different numbers of
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objects can be compared in the higher dimensional state space

by transforming P (X(s)|E) to

P̂ (X(s)|E) = P (X(s)|E)P̄ (ON+1) (10)

To efficiently explore high density regions of the posterior

we use the detection scores in the proposal distribution. A

new object index n is drawn from the discrete set of all K
detections {d̄}, which are not yet associated with an object in

the scene, according to Q(X′;X(s)) = ψD(d̄n)
∑

k
ψD(d̄k)

. The data

association function is updated by letting a(N + 1) associate

the new object with the selected detection. For distant objects

(i.e., detections at small scales) we instantiate the new object

at a distance given through the theorem of intersecting lines

and the height prior (cf. Fig. 7), whereas for objects in the

near-field a more accurate 3D position and object height can

be estimated from the ground plane and camera calibration.

In order to avoid discontinuities in choosing one of these

two instantiation methods we use a sigmoid-like weighting

function to softly blend the two cases.

Delete moves remove an object On from the last state and

move the associated detection d
a(n) back to pool of unclaimed

detections {d̄}. Similar to the add move, the proposed lower

dimensional state X
′ needs to be transformed. The object in-

dex n to be removed from the scene is drawn uniformly among

all objects currently in the scene, thus Q(X′;X(s)) = 1
N

.

Consequently, the acceptance ratios for add and delete moves

are:

rAdd =
P (X′|E)

P̂ (X(s)|E)

qDel

qAdd

∑

k ψD(d̄
k)

ψD(d̄n)(N + 1)
(11)

rDel =
P̂ (X′|E)

P (X(s)|E)

qAdd

qDel

NψD(d
a(n))

ψD(da(n)) +
∑

k ψD(d̄
k)

(12)

4.2 Projective 3D to 2D marginalization

In order to obtain a score for a 2D position u (including

scale) from our 3D scene model, the probabilistic framework

suggests marginalizing over all possible 3D scenes X that

contain an object that projects to that 2D position:

P (u|E) =

∫

max
i

([

u = o
i
])

P (X|E) dX , (13)

with [expr] being the Iverson bracket: [expr] = 1 if the

enclosed expression is true, and 0 otherwise. Hence, the binary

function maxi ([·]) detects whether there exists any 3D object

in the scene that projects to image position u. The marginal

is approximated with samples X
(s) drawn using MCMC:

P (u|E) ≈
1

S

S
∑

s=1

max
i

([

u = o
i,(s)

])

, (14)

where o
i,(s) denotes the projection of object O

i of sample

s to the image, and S is the number of samples. In practice

maxi ([·]) checks whether any of the 3D objects of sample s
projects into a small neighborhood of the image position u.

5 MULTI-FRAME MODEL AND INFERENCE

So far we have described our scene model for a single image

in static scenes only. For the extension to video streams we

pursue a two-stage tracking approach. First, we extend the

model to neighboring frames by using greedy data association.

Second, the resulting scene tracklets are used to extend our

model towards long-term data association by performing scene

tracking with an HMM.

5.1 Multi-frame 3D scene tracklet model

To apply our model to multiple frames, we first use the

observer’s estimated speed Vego and turn (yaw) rate to roughly

compensate the camera’s ego-motion. Next, we use a coarse

dynamic model for all moving objects to locally perform

association, which is refined during tracking. For initial data

associations objects that move substantially slower than the

camera (e.g., people) are modeled as standing still, Vi = 0.

For objects with a similar speed (e.g., cars and trucks), we

distinguish those moving in the same direction as the observers

from the oncoming traffic with the help of the detector’s class

label. The former are expected to move with a similar speed

as the observer, V ix = Vego, whereas the latter are expected

to move with a similar speed, but in opposite direction,

V ix =−Vego. The camera pitch Θt can be assumed constant

for small time intervals.

For a given frame t we associate objects and detections

as described in Sec. 4.1. In adjacent frames we perform data

association by finding the detection with maximum overlap

to each predicted object while requiring a minimum overlap.

Missing evidence is compensated by choosing a small constant

as minimal detection likelihood anywhere in the image. Due

to the potentially fast moving camera and our very coarse

dynamic model associations can only be established very

locally within a few frames. In this setting the overlap of

estimated and detected object bounding box proved to be

sufficient. We note that for other applications more elaborate

schemes are certainly possible (e.g. [31]). We define the scene

tracklet posterior as

P (Xt|E−δt+t:t+δt) ∝
t+δt
∏

r=t−δt

P (X̂r|Er), (15)

where X̂r denotes the predicted scene configuration using the

initial dynamic model just explained. Note, that our definition

of tracklet uses evidence from a constant number of neigh-

boring frames to instantiate tracklets of constant length 2δt.
These tracklets are then used as evidence for inference at time

t. However, note that at time t+1 new tracklets are instatiated

and thus associations in between a pair of frames may vary.

This deviates from previous work (e.g. [5, 6, 31, 47–50]) that

typically builds tracklets of varying length from stable tracks

in a first step and links those to long-term tracks in a second

step.

5.2 Long term data association with scene tracking

While the above model extension to scene tracklets is feasible

for small time intervals, it does not scale well to longer

sequences, because greedy data association in combination

with a simplistic motion model will eventually fail. Moreover,
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the greedy formalism cannot handle objects leaving or entering

the scene.

We therefore introduce an explicit data association variable

At, which assigns objects to detections in frame t. With this

explicit mapping, long-term tracking is performed by modeling

associations over time in a hidden Markov model (HMM).

Inference is performed in a sliding window of length w to

avoid latency as required by an online setting:

P (X1:w,A1:w|E−δt+1:w+δt) = P (X1|A1, E−δt+1:1+δt)
w
∏

k=2

P (Ak|Ak−1)P (Xk|Ak, E−δt+k:k+δt) (16)

The emission model is the scene tracklet model from Sec. 5.1,

but with explicit data association Ak. The transition prob-

abilities are defined as P (Ak|Ak−1) ∝ Pe
ηPl

λ. Thus, Pe
is the uniform probability for an object to enter the scene,

while Pl denotes the uniform probability for an object to leave

the scene. To determine the number η of objects entering

the scene, respectively the number λ of objects leaving the

scene, we again perform frame-by-frame greedy maximum

overlap matching (see Sec. 5.1 for details). In Eq. (16) the

marginals P (Xk,Ak|E−δt+1:w+δt) can be computed with the

sum-product algorithm. Finally, the probability of an object

being part of the scene is computed by marginalization over

all other variables (cf. Sec. 4.2):

P (uk|E−δt+1:w+δt) =
∑

Ak

∫

max
i

([

uk = o
i
k

])

P (Xk,Ak|E−δt+1:w+δt) dXk (17)

In practice we approximate the integral with MCMC samples

as above, however this time only using those that correspond

to the data association Ak. Note that the summation over Ak
only requires to consider associations that occur in the sample

set.

6 DATASETS AND IMPLEMENTATION DETAILS

For our experiments we use four datasets: (1) ETH-

Loewenplatz, ETH-Linthescher, ETH-PedCross2 were intro-

duced by [1] and [51] respectively to benchmark pedestrian

tracking from a moving observer; and (2) a multi-class dataset

we recorded in [39] with an onboard camera to specifically

evaluate the challenges targeted by our work including realistic

traffic scenarios with a large number of small objects, objects

of interest from different categories, and higher driving speed.

ETH datasets. These publicly available pedestrian bench-

marks2 were recorded with a moving stereo camera in densely

populated pedestrian zones and originally published by Ess

et al. [1, 51]. Fig. 11 shows some examples. All three

sequences are recorded with a resolution of 640×480 pixels

at ≈15 fps. As our system with explicit occlusion reasoning is

capable of detecting severely occluded pedestrians that are not

contained in the original annotation, we manually extended

the annotations (by all pedestrians which are at least 20%

visible) to obtain a fair evaluation. ETH-Loewenplatz has been

2. http://www.vision.ee.ethz.ch/˜aess/dataset/

(a) Left-half detector (b) Full-object detector

Fig. 8: Sample detections for models trained on the left half of a pedestrian and
for the full-object detector. While the models for partial views do not perform
as well overall, they are able to provide the scene model with hypotheses for
partially occluded pedestrians.

recorded from a driving car in urban traffic and contains 802

frames overall of which every 4th frame is annotated resulting

in a total of 2665 annotated bounding boxes (2631 original

annotations). ETH-Linthescher is comprised of 1209 stereo im-

age pairs with a total of 3018 pedestrians of which 2606 were

annotated in the original annotation. ETH-PedCross2 consists

of 840 frames recorded at a pedestrian crossing and along

a rather narrow sidewalk with frequent occlusions among

pedestrians. As this sequence comes without annotations, we

annotated pedestrians in every 4th frame similar to ETH-

Linthescher and ETH-Loewenplatz, and included instances that

are truncated by the image boundaries. Overall our annotations

contain 1635 pedestrians.

For our experiments we only use the left camera’s images

as input to our monocular system, and simulate yaw and

speed sensor readings based on structure-from-motion results

kindly provided by the authors of [1]. For the evaluation we

follow their protocol, which only considers pedestrians with

an annotation height of at least 60 pixels. Smaller annotations

and detections are discarded by post-filtering [52].

Multi-class test set. As the above datasets are restricted

to pedestrians observed at low driving speeds, we recorded a

new multi-class test set in [39] consisting of 674 images. The

data is subdivided into 5 sequences and has been recorded

at a resolution of 752×480 pixels from a driving car at ≈15

fps. Additionally, ego-speed and turn rate are obtained from

the car’s ESP module. See Fig. 13 for example images. 1331

front view of cars, 156 rear view of cars, and 394 front views

of trucks were annotated in the original set [39] which we

extended as well for this paper to include instances which are

up to 80% occluded. Thus, the annotation for this analysis

contains 1420 front views of cars, 156 rear view of cars and

403 front views of trucks. Vehicles appear over a large range

of scales from as small as 20 pixels to as large as 270 pixels.

45% of the objects have a height of ≤ 30 pixels, and are thus

hard to detect3.

Object detectors. To detect potential object instances, we

use state-of-the-art object detectors. For pedestrian detection

we use our motion feature enhanced variant of the HOG frame-

work [53] and partial detectors trained on the same features

as well as the deformable part model (DPM) by Felzenszwalb

et al. [54] along with partial HOG [55] detectors. These partial

3. Data available at http://www.d2.mpi-inf.mpg.de/
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(a) Left (b) Right (c) Top (d) Top-HR (e) Mid-HR (f) Bot-HR

Fig. 9: Detector regions.

HOG detectors differ from [55] by an intersection kernel

SVM instead of a linear SVM [56], using multiple rounds

of retraining to make the training procedure stable [54], and

an improved non-maximum suppression scheme [57].

All detectors are trained on pedestrians that are scale nor-

malized for a 128× 64 pixel detection window and evaluated

on images that are upscaled by a factor of 2 to detect

smaller instances. The DPM detector and the six partial HOG

detectors that are used in combination with DPM are trained

on the INRIA Person dataset [55], while the motion enhanced

detectors are trained on TUD-MotionPairs [57]. Overall, we

train six kinds of partial detectors as depicted in Fig. 9. The

SVM for three of the detectors is trained on the upper, left and

right halves of the block grids (rounded up). The upper-body

detector uses the top 8× 7 blocks, and the left- and right-half

body detectors the 15 × 4 left and right blocks, respectively

(for an illustration see Fig. 9(a)–(c)). We also employ three

models using a higher resolution detection window (256×128
pixels, resulting in a grid of 31 × 15 blocks), trained using

only rows 3–12 (Top-HR), 11–20 (Mid-HR) and 20–29 (Bot-

HR) (see Fig. 9(d)-(f)). These are motivated by the fact that

in crowded scenes such as in ETH-Linthescher and ETH-

Pedcross2 pedestrians are often quite close to the camera, and

thus cannot be detected with a sliding-window detector for

the full object. Due to the relatively low average pedestrian

height on ETH-Loewenplatz we only use the full object and

low-resolution partial detectors (Fig. 9(a)-(c)) for this dataset.

It is important to note that training a classifier on parts,

i.e. subsets of blocks, is different from using the model

learned for the full object and only evaluating on the “visible”

subset (which would be theoretically possible for additive

kernels or boosted classifiers), especially because during the

bootstrapping phase of training the detector finds hard samples

for the partial-view models instead of hard samples for the

full-object model. Even though a bank of detectors increases

the computational load, we stress that the low-level feature

representation can be shared among detectors and therefore

only the classifiers need to be evaluated. To further reduce the

load it may also be possible to adapt the DPM formulation

to allow a tighter integration of our partial detectors; this

is left for future work. Fig. 8 shows detection examples for

the left-half and full-object models. The full-object detector

(Fig. 8(b)) is good at spotting fully visible pedestrians, but has

problems finding pedestrians that are partially occluded. For

these cases partial-view detectors can be beneficial, as they can

spot partially occluded pedestrians (Fig. 8(a)). However, they

typically also produce more false positives (as in Fig. 8(a)).

As these tend to be inconsistent with the 3D scene model, our

method can discard them.

For our MPI-VehicleScenes test set we employ a multi-

class detector based on traditional HOG-features and joint

boosting [44] as classifier. It can efficiently detect the four

object classes car front, car back, truck front or truck back that

are in contrast to binary SVMs [55] trained jointly. Due to the

low-resolution and rigid object structures a part-based DPM

detector is unlikely to further improve performance for these

classes. Also objects are mostly moving in the same direction

as the camera, such that optic flow and motion features will

not add much information. For the full object detector we use

a 40× 40 pixel detection window, but upscale the image by a

factor of 2, which turned out to perform better than a 20× 20
pixel detection window. Additionally, we train low-resolution

left and right partial detectors similar to Fig. 9(a) and (b). Note

that for our application it is important to explicitly separate

front from back views, because the motion model is dependent

on the heading direction. Our detectors were trained on a

separate dataset recorded from a driving car, with a similar

viewpoint as in the test data.

Scene labeling. Every pixel is assigned to the classes

pedestrian, vehicle, street, lane marking, sky or void to obtain

a scene labeling. As features we use the first 16 coefficients of

the Walsh-Hadamard transform (WHT) extracted at five scales

(4-64 pixels) from each channel of the CIE-Lab color space,

along with the pixels’ (x, y)-coordinates to account for their

location in the image. The WHT is a discrete approximation

of the cosine transform and can be computed efficiently [58]

– on a modern GPU even in real-time.

The L-channel is mean/variance normalized to cope with

global lighting variations, whereas the a- and b-channels

are normalized with the gray world assumption to mitigate

color shift. We also found normalizing the transformation

coefficients with the L1-norm as in [59] to be beneficial.

We then compute mean and variance on 4×4 pixel groups

and again classify them with joint boosting. The method

directly performs multi-label classification [44], and yields

more efficient classifiers because of its capability to share

features between classes.

Experimental setup. For both datasets and all object classes

we use the same set of parameters for the MCMC sampler:

qAdd = 0.1, qDel = 0.1, qDif = 0.8, qO = 0.8, qΘ = 0.2. For

our scene tracklet formulation (cf. Sec. 5.1) we consistently

use tracklets of length three which are centered at the frame

for which we perform inference. For the HMM’s sliding

window of Eqn. 16 we choose a length of w=7 frames. The

sampler draws 3,000 samples for burn-in and 20,000 samples

to approximate the posterior and runs without parallelization

at 0.3-2 fps on recent hardware. By running multiple Markov

chains in parallel we expect a possible speed-up of 1-2 orders

of magnitude. As we do not have 3D ground truth to assess

3D performance, we project the results back to the images

and match them to ground truth annotations with the PASCAL

criterion (intersection/union > 50%).

Baselines. As baselines we report both the performance

of the object detectors as well as the result of an extended

Kalman filter (EKF) atop the detections. The EKFs track the
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objects independently, but work in 3D state space with the

same dynamic models as our MCMC sampler. To reduce false

alarms in the absence of an explicit model for new objects

entering, tracks are declared valid only after three successive

associations. Analogous to our system, the camera ego-motion

is compensated using odometry. Best results were obtained

when the last detection’s score was used as confidence mea-

sure.

7 EXPERIMENTAL RESULTS

Due to the lack of 3D ground truth we project the estimated

3D models to the image plane and employ detection metrics to

report full image performance as miss rate vs. false positives

per image (FPPI) (see Fig. 10 and Fig. 12). To perform

inference, we approximate the posterior mean using samples

and obtain the respective hypotheses scores by projective

marginalization as described in Sec. 4.2. Moreover, we use

the log-average miss rate (LAMR) for an assessment across

a large range of false positive rates. The LAMR is defined as

the average miss-rate sampled from the lowest false positive

rate to a false positive rate of 1 FPPI. Missing samples on

curve for high FPPI rates are interpolated by the highest valid

FPPI (the right-most sample on the curve). We use equally

distant samples in log-space and therefore the log-average

miss rate stresses low miss rates at high precision, which

is preferable as system output. LAMRs for each curve are

reported in parentheses in the respective legend.

We start by analyzing our models’ performance on the

ETH datasets. For all sequences we first analyze the detector

performance for the deformable part model [54] and our own

detector [53] and then build the proposed 3D scene models

on top of the better performing detector. We first discuss the

results in detail for ETH-Loewenplatz and then briefly analyze

how the results consistently transfer to ETH-Linthescher and

ETH-PedCross2.

7.1 ETH-Loewenplatz

We begin with an analysis of the 3D single-frame and scene

tracklet model for which results are shown in Fig. 10(a). On

this dataset the MultiFtr+Motion detector achieves an LAMR

of 45.0% and outperforms DPM with an LAMR of 56.1%. The

substantially worse performance of DPM on this dataset can

be explained by the fact that 70.1% of the evaluated instances

have a height of 60-100 pixels and therefore parts can not be

detected very robustly, which impacts the overall performance.

Adding the single-frame 3D scene model as described in Sec. 3

improves the performance to an LAMR of 35.4%. The 3D

scene information is able to prune scene inconsistent detec-

tions on body parts or on background clutter (cf. Fig. 11(b),(d))

and can further improve the results when temporal information

is added by the scene tracklet model, to a LAMR of 34.2%.

When we add long-term data association and tracking with a

HMM as described in Sec. 5.1 we achieve a LAMR of 45.6%

for the single frame model and an LAMR of 37.6% for the

scene tracklet model. For both models the performance seems

to already saturate when leveraging temporal consistency in

the short-term tracklets, while over longer timespans high

scoring false detections that are consistent with the scene are

reinforced in this setting.

Next, we turn to our model with explicit occlusion reasoning

(cf. Fig. 10(b)) as described in Sec. 3.2.2. Here, we use the

performance of the agglomeratively clustered detections as an

additional baseline. In this setting no 3D scene information

is used and the partial object detectors, which by themselves

perform worse than the full object detector (see [40] for de-

tails), return additional false positive detections and therefore

the LAMR increases to 68.0%. When we add our 3D inference

to prune inconsistent partial detections performance improves

considerably and the single-frame model achieves an LAMR

of 40.1% without the proposed occlusion reasoning and 34.8%

with occlusion reasoning. Scene tracklet inference additionally

aids performance further in the high precision regime and

overall the LAMR improves to 31.5%. Additionally adding

occlusion reasoning to the scene tracklet inference further

improves our results to 30.7% LAMR. Similarly, to the model

with a single full object detector adding long term data as-

sociation with tracking does not further improve performance

(38.7% LAMR for single frame model and 32.6% for scene

tracklet model).

In Fig. 10(c) we compare our results to the state-of-the-

art on this sequence. When we simply add independently

operating Kalman filters for each object, the performance

slightly decreases compared to the detector to an LAMR of

45.6%. This is due to the fact that very short tracks and tracks

with few missing detections due to partial occlusion are lost.

The stereo scene model by Ess et al. [1] performs slightly

better4 with an LAMR of 45.5%. Both the Kalman filters and

the stereo scene model, are outperformed by our models which

achieve the lowest LAMRs on this sequence. We attribute the

improved performance to the tight integration of detection and

segmentation within the 3D scene tracklet model, which is able

to enforce consistency over time, consistency of segmentation

and detections, as well as consistency with respect to object-

object occlusion.

7.2 ETH-Linthescher

Next, we turn to the results on ETH-Linthescher for which

plots are shown in Fig. 10(d)-(f). This sequence has been

recorded in a busy pedestrian zone where pedestrians fre-

quently occlude each other and tend to walk in groups (see

Fig. 11(c),(d)). Due to the large scale-variation for pedestrians

on this sequence the scene labeling algorithm yields only un-

satisfying results and can not improve the overall performance.

Therefore, we discard the respective potential ΨL for this

series of experiments. As this dataset is dominated by front and

back views of pedestrians, DPM (LAMR 42.1%) outperforms

our motion enhanced detector (LAMR 64.1%). For the setup

with a single full object DPM detector and without explicit

occlusion reasoning our scene tracklet model achieves the

best results with an LAMR of 41.6% (cf. Fig. 10(d)). With

4. The original results published in [1] were biased against Ess et al.,
because they did not allow detections slightly < 60 pixels to match true
pedestrians ≥ 60 pixels, discarding many correct detections. We therefore
regenerated all FPPI-curves.



WOJEK et al.: MONOCULAR VISUAL SCENE UNDERSTANDING: UNDERSTANDING MULTI-OBJECT TRAFFIC SCENES 11

10-2 10-1 100 101

false positives per image

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0.9
1.0

m
is

s 
ra

te
DPM; Felzenszwalb et al. (PAMI'10) (56.1%)
MultiFtr+Motion; Walk et al. (CVPR'10) (45.0%)
Single-frame scene model (35.4%)
Single-frame scene model + tracking (45.6%)
Scene tracklet model (34.2%)
Scene tracklet model + tracking (37.6%)

(a) Pedestrians on ETH-Loewenplatz [1]
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(b) Pedestrians on ETH-Loewenplatz [1]
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(d) Pedestrians on ETH-Linthescher [51]
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(e) Pedestrians on ETH-Linthescher [51]
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(f) Comparison to state-of-the-art on ETH-Linthescher
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(g) Pedestrians on ETH-Pedcross2 [51]
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(h) Pedestrians on ETH-Pedcross2 [51]
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(i) Comparison to state-of-the-art on ETH-Pedcross2

Fig. 10: Results obtained for pedestrians on ETH-Loewenplatz (first row), ETH-Linthescher (second row) and ETH-Pedcross2 (third row) and
comparison to the state-of-the-art (rightmost column). Experiments on ETH-Loewenplatz include the pixel labeling potential ΨL while it is
being discarded for ETH-Linthescher and ETH-Pedcross2 due to unsatisfying labeling performance. Log average miss rate (for definition
see Sec. 7) is reported in the according legend text. Figure best viewed in color.

this model we loose performance in particular for pedestrians

that are only fully visible for very short periods of time.

Therefore, when we additionally perform occlusion reasoning

and use a bank of detectors (cf. Fig. 10(e)), we are able to

improve performance up to an LAMR of 37.3%. We compare

our models’ performance to the state-of-the-art in Fig. 10(f).

Similar to our scene tracklet model with full object detector

only, independently running Kalman filters are not able to

track pedestrians well that are fully visible only briefly, and

lose performance compared to the detector, with a LAMR

of 50.8%. The stereo scene model by Ess et al. achieves an

LAMR of 57.1%. Choi and Savarese [17] report three points

on the recall vs. FPPI curve, which are not competitive to our

model; the miss rate is about 20% higher at the same error

rates. Moreover, we note that [17] reports performance for the

original annotations, which do not include all occluded pedes-

trians. Hence, the performance on the modified annotation set

may be slightly worse.

7.3 ETH-PedCross2

This sequence has been recorded on a very crowded side-

walk with pedestrians occluding each other and pedestrians

occurring close to the camera such that they can only be

seen partially (cf. Fig. 11(f)-(h)). Similarly to ETH-Linthescher

the scene labeling algorithm suffers from the large scale

variation of pedestrians and thus we drop the scene labeling

potential for this sequence as well. Like ETH-Linthescher

this sequence mostly contains pedestrians seen from frontal

and back views, hence our motion-enhanced detector (LAMR

80.8%) cannot outperform DPM (LAMR 65.2%). In particular

we note that the maximum achieved recall of 61.0% for the

full object detectors is not satisfactory. When we add our

scene tracklet based 3D reasoning without partial detectors

and occlusion reasoning the maximum recall becomes even

worse (41.5%) as many detections in this sequence are only

observed for single frames, which is too little evidence for
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Single full object detector Single frame 3D scene model 3D scene tracklet model [39]
3D scene tracklet model with
explicit occlusion reasoning

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 11: Sample results for ETH-Loewenplatz ((a),(b)), ETH-Linthescher ((c)-(e)) and ETH-PedCross2 ((f)-(h)). All images are displayed for
an error rate of 0.1 FPPI. The leftmost column shows the results of single-frame object detection; the second column adds the single-frame 3D
model described in Sec. 3. The third column shows results which are obtained with scene tracklets while the rightmost column additionally
adds occlusion reasoning. Our 3D scene model allows to prune scene inconsistent false detections, e.g. on body parts (see (b),(d)) and
strengthens weak object detections over time (cf. (a)). Explicit occlusion reasoning allows to track and associate objects even if they have
never been fully visible. Yellow bounding boxes indicate pedestrian hypotheses. Figure best viewed in color.
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(a) Cars front on MPI-VehicleScenes [39]
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(b) Cars front on MPI-VehicleScenes [39]
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(c) Cars front comparison to state-of-the-art on

MPI-VehicleScenes
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(d) Trucks front on MPI-VehicleScenes [39]
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(e) Trucks front on MPI-VehicleScenes [39]
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(f) Trucks front comparison to state-of-the-art on

MPI-VehicleScenes

Fig. 12: Results obtained with our system for car front (first row) and truck front (second row) on MPI-VehicleScenes. All scene models were
run with the pixel labeling potential ΨL. Log average miss rate (for definition see Sec. 7) is reported in the respective legend text. Figure
best viewed in color.

the tracklet framework (cf. Fig. 10(g)). Still, pedestrians that

are visible for several frames can be successfully tracked

and consequently performance in high precision increases and

the overall LAMR decreases to 64.1%. When we further

strengthen weak evidence by performing occlusion reasoning

and use evidence from a bank of detectors (Fig. 10(h)) an

improvement can be seen on shorter tracks – even when

they are only partially visible throughout the entire track. The

LAMR in this setting substantially improves to 56.5%, while

the maximum recall is increased to 74.0%. Similarly to the

scene tracklet model Kalman filters achieve a substantially

lower maximum recall (13.7% loss compared to DPM) with an

overall LAMR of 69.8% (cf. Fig. 10(i)). For this dataset we

additionally analyzed the performance on partially occluded

pedestrians. To that end we annotated all partially occluded

pedestrians and performed the evaluation restricted to these

instances. Overall 1052 pedestrians were marked as partially

occluded out of which DPM [54] detected 40.7%. Our model

without explicit occlusion reasoning was able to detect only

19.2%. This low recall compared to the standalone detector

is mostly due to the tracklet formulation as discussed above.

The proposed model with explicit occlusion reasoning, on the

other hand, can solve this shortcoming and achieves a recall

almost three times higher (55.0%).

7.4 MPI-VehicleScenes

Finally, we analyze our system’s performance on the MPI-

VehicleScenes dataset (see example results in Fig. 13). Com-

pared to the other datasets the camera as well as all other

objects are moving substantially faster, since part of the

database has been recorded on rural highways. The two classes

of interest on this dataset are cars front and truck front. We

start by analyzing the performance for the detection of frontal

cars (cf. Fig. 12(a)) for which our boosted detector achieves a

LAMR of 37.5%. In particular the performance for oncoming

cars is impaired when they are occluded by another car driving

in front of them. Adding the single-frame scene model slightly

improves performance to a LAMR of 37.3% by pruning

scene inconsistent false detections, mostly responses of the

full-object detector on vehicle parts. Scene tracklet inference

further improves performance by strengthening hypotheses

over time (LAMR of 30.1%). When we add explicit occlusion

reasoning (cf. Fig. 12(b)) we are able to increase performance

to a LAMR of 19.6%. Especially the performance on partially

visible oncoming cars is greatly improved with this model

(see for instance Fig. 13(c)). Again we compare our models

to Kalman filters as baseline in Fig. 12(c) which achieve an

overall LAMR of 39.4% but loose substantial recall. This is

due to the fact that partially occluded oncoming cars in the

distance are detected only occasionally, and hence no tracks

can be set up. For frontal cars we also analyze the impact

when model is run with varying potentials (cf. Fig. 14). Most

performance is gained by tracklet and occlusion reasoning,

but best performance can only be achieved by the full model

including bottom-up scene labeling.

Finally, we discuss the performance for truck front for which

the object detector achieves an LAMR of 69.4%. Compared to

the car detector the performance is considerably worse because
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Single full object detector Single frame 3D scene model 3D scene tracklet model [39]
3D scene tracklet model with
explicit occlusion reasoning

(a)

(b)

(c)

Fig. 13: Example results on MPI-VehicleScenes. All images are displayed for an error rate of 0.1 FPPI. The leftmost column shows the results of single-frame
object detection; the second column adds the single-frame 3D model described in Sec. 3. The third column shows results that are obtained with scene tracklets
while the rightmost column additionally adds occlusion reasoning. Our tightly integrated 3D scene model strengthens scene consistent object detections over
time in particular for far ranges (cf. (a),(b)). Moreover, it allows to prune false detections that typically appear on instances of other similar object classes
(cf. (c)). Partial detectors with explicit occlusion reasoning allow to improve performance for partially visible objects even when those are never fully visible.
(cf. (b),(c)). Yellow bounding boxes indicate the car front class, dark blue truck front and light blue car rear. Figure best viewed in color.
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Fig. 14: Results obtained for cars front on MPI-VehicleScenes with
varying system components

of larger intra-class variability. False detections typically arise

as detections on cars (see Fig. 13(c)). The inconsistence with

the bottom-up scene labeling allows to resolve close-range

false positives and improves performance compared to the

detector with an LAMR of 59.0%. The scene tracklets model

is able to improve on spurious false detections but also misses

true detections which are not continuously detected so that

the overall performance remains unchanged (LAMR 59.0%).

Adding occlusion reasoning brings a further improvement to

45.3% LAMR. Fig. 12(f) compares our models to Kalman

filters, which only achieve a LAMR of 67.5%, for the same

reason as on cars.

7.5 Discussion

Overall, our experiments on four datasets and on four different

object classes indicate that our 3D scene tracklet model is

able to leverage scene context to robustly infer both the 3D

scene geometry and the presence of objects in that scene

from a monocular camera. This performance is mainly due

to the use of a strong tracking-by-detection framework which

employs tracklets on a scene level, thereby leveraging evidence

from a number of consecutive frames. The tight coupling with

the observation model allows to exploit 3D scene context

as well as to combine multiple cues of a detector and from

scene labeling. Moreover, our 3D scene model enables us to

perform explicit occlusion reasoning. Inferred object visibility

can easily be embedded into the integrated formulation as a

mixture-of-experts, and it improves performance on all tested

sequences, for all four object classes. Long-term tracking with

an HMM does not lead to additional gains. In all cases,

independent extended 3D Kalman filters cannot significantly

improve the output of state-of-the-art object detectors, and are

greatly outperformed by the integrated state model. Comparing

to other work that integrates detection and scene modeling, we

outperform [1] for the case of pedestrians, even though we do

not use stereo information, and our 3D scene tracklet model

also outperforms the competing monocular approach of [17],

which is less tightly integrated.

8 CONCLUSION

We have presented a probabilistic 3D scene model, that enables

multi-frame tracklet inference on a scene level in a tracking-
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by-detection framework. Our system performs monocular 3D

scene geometry estimation in realistic traffic scenes, and leads

to more reliable detection of objects such as pedestrians, cars,

and trucks. Leveraging the 3D scene model enables us to

perform explicit occlusion reasoning and reliably track objects

even under partial occlusion or when they have never been

fully visible. We exploit information from object (category)

detection and low-level scene labeling to obtain a consistent

3D description of an observed scene, even though we only

use a single camera. Our experimental results show a clear

improvement over top-performing state-of-the-art object de-

tectors. Moreover, we significantly outperform basic Kalman

filters, a competing monocular system [17], as well as a state-

of-the-art stereo-based system [1].

Our experiments underline the observation that objects are

valuable constraints for the underlying 3D geometry, and vice

versa (cf. [1, 7]), so that a joint estimation can improve

detection performance.

For future work it would be interesting to explore the fusion

with complementary sensors such as RADAR or LIDAR, which

should allow for further improvements.
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