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Abstract

Scene understanding from a monocular, moving cam-
era is a challenging problem with a number of applica-
tions including robotics and automotive safety. While re-
cent systems have shown that this is best accomplished
with a 3D scene model, handling of partial object occlu-
sion is still unsatisfactory. In this paper we propose an ap-
proach that tightly integrates monocular 3D scene tracking-
by-detection with explicit object-object occlusion reason-
ing. Full object and object part detectors are combined in a
mixture of experts based on their expected visibility, which
is obtained from the 3D scene model. For the difficult case
of multi-people tracking, we demonstrate that our approach
yields more robust detection and tracking of partially visible
pedestrians, even when they are occluded over long periods
of time. Our approach is evaluated on two challenging se-
quences recorded from a moving camera in busy pedestrian
zones and outperforms several state-of-the-art approaches.

1. Introduction

The goal of this paper is to enable reliable multi-object
tracking from a moving platform in challenging real-world
scenes (see, e.g., Fig. 1) even in cases when the objects are
partially occluded for extended periods of time. Though
by no means limiting the applicability, we focus on multi-
people tracking, which is particularly challenging due to the
large variability of human pose and appearance. The im-
pressive progress in human detection and long-term track-
ing has allowed to detect and track several people simul-
taneously in complex scenes. Yet, state-of-the-art systems
are still severely challenged by partial and full occlusions,
which occur frequently in scenes of realistic complexity.

Typical multi-people tracking systems employ a
Bayesian approach that relies on the robustness of both
the human detection model and the tracking module.
Without any explicit occlusion model such approaches have
shown some robustness w.r.t. partial occlusions [1, 6, 10].

Figure 1: Scene tracklets obtained with our explicit 3D occlusion model.

Elaborate association schemes have been proposed
to enable recovery from partial and even full occlu-
sions [7, 11, 14, 24]. However, these approaches are
limited by the ability of their respective human detection
model to detect and re-detect people before and after
the occlusion, which limits their applicability to cases
where people are sufficiently visible before and after the
occlusion. In contrast, we explicitly address the problem
of detecting and tracking people even when they are never
fully visible or when they are significantly occluded over
long periods of time. Fig. 1 gives several examples in
which our system is able to find and track people that are
partially occluded over extended periods.

Drawing on successful prior work, we propose a new ap-
proach for multi-people tracking in the presence of chal-
lenging occlusions. The first important component is to
track the complete scene rather than an assembly of individ-
uals. This idea has been shown to enable robust 2D track-
ing of multiple people in surveillance scenarios [12, 17].
We adopt and extend this idea to 3D scene tracking using
a monocular camera [2, 22]. This is in contrast to other
3D tracking work [6] that uses stereo camera setups, yet is
outperformed by our monocular system (see Sec. 4). In or-
der to enable detection and tracking of people even when
they are never fully visible, we directly extend successful
detection approaches such as HOG [3] and DPM [8] to en-
able the detection of partially visible humans for a variety
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of visibility scopes (see Fig. 3) and integrate them into our
3D scene model. Having a full 3D scene model allows us
to determine the visibility of each individual in the scene,
which in turn enables to predict which parts of the body are
sufficiently visible and thus detectable. This allows us to
define a novel complete 3D scene likelihood that tightly in-
tegrates full and partial human detectors within a 3D scene
tracking framework. Quantitative experiments on publicly
available data demonstrate that our model outperforms pre-
vious approaches and allows to associate and track people
even in the presence of long-term partial occlusions.

Related work. Partial and full occlusions are a major error
source for tracking and have been addressed in a variety of
ways. Thus, reviewing the complete state-of-the-art is be-
yond the scope of this paper. Nonetheless, we note that rel-
atively little work has attempted to tightly integrate explicit
occlusion and scene modeling in a tracking-by-detection
framework, e.g., through elaborate matching schemes.

To deal with partial occlusion, Isard & MacCormick [12]
integrated human detection and tracking more tightly and
proposed a complete 2D scene likelihood for tracking hu-
mans in a surveillance setting by using local filter responses
as image evidence. Similarly, Shet et al. [17] and Wu &
Nevatia [24] employed a combination of body part detec-
tors to obtain a 2D scene model from a static surveillance
camera. In contrast, the goal of this paper is to understand
scenes recorded from a moving monocular camera and to
infer a 3D scene model to eventually support autonomous
navigation. In this context, Choi & Savarese [2] recently
proposed a 3D tracking approach for monocular semi-static
cameras. Despite modeling track interaction, explicit occlu-
sion reasoning is not performed. Wojek et al. [22] proposed
a 3D scene tracking approach for moving monocular cam-
eras, but also do not explicitly take occlusion into account.
Other approaches with 3D scene models include work by
Ess et al. [6] and Gavrila & Munder [10], but both use
a stereo camera setup. [7] uses stereo disparity to extend
tracks under occlusion using occlusion maps. Similarly,
Kaucic et al. [14] leverage scene segmentation to predict
occlusion. Common to these approaches is that they only
allow to temporally extend tracks of fully visible objects,
but do not allow to detect and track objects that are only
partially visible. As our experiments show, the proposed,
tightly integrated scene tracklet model with explicit occlu-
sion handling outperforms these approaches [2, 6, 22], and
is able to detect and associate also partially visible objects.

The basic detectors for most tracking-by-detection sys-
tems for 3D scene understanding are full-body detectors,
which allow to deal with occlusions only when the person is
visible enough to be detectable by the respective full-body
detector. In many scenes, however, certain people are never
fully visible making these approaches prone to fail. To ad-
dress this, we propose to use multiple partial detectors that

(a) Left-half detector (b) Full-body detector

Figure 2: Sample detections for models trained on the left half of a pedes-
trian and for the full-body detector. While the models for partial views do
not perform as well overall, they are able to provide the scene model with
hypotheses for partially occluded pedestrians.

allow to also detect and track people that are never fully
visible. To our knowledge, the only other work that uses
partial detectors for tracking is by Xing et al. [25], which
uses only two partial and one full detector without a scene
model to infer expected occlusion. In contrast, we use six
partial detectors in a tightly integrated scene model.

There is also an extensive literature on explicit occlusion
handling for object detection. Enzweiler et al. [4] learned
local head, torso and leg detectors combined in a mixture-
of-experts framework and leveraged stereo and flow cues.
Wang et al. [20] performed occlusion handling in a modi-
fied SVM framework, while Lin et al. [15] adapted a boost-
ing cascade to cope with partial occlusion. Winn & Shot-
ton [21] employed CRFs to couple segmentation and detec-
tion under partial occlusion. Finally, Vedaldi & Zisserman
[19] employed structured output regression to detect par-
tially truncated and misaligned multi-aspect objects. For
human pose estimation, Sigal & Black [18] proposed an
approach to model self-occlusion of body-parts. However,
none of these approaches models the interaction of differ-
ent objects. In contrast, the goal of this work is an explicit
model for complex object-object occlusions.

2. Detectors

Our system uses seven detector components to provide
the detection hypotheses. All components use HOG-like
features [3], which have been proven to be a robust and ef-
fective feature for pedestrian detection.

The first detector component is the deformable parts
model (DPM) by Felzenszwalb et al. [8]. It uses a combina-
tion of a global HOG template and several higher-resolution
templates for parts that are allowed to vary in position rela-
tive to the position of the global template. This component
performs best for fully visible large-scale pedestrians, but
cannot handle small pedestrians and occlusions well. All
other detectors are obtained by training an SVM on vari-
ous parts of the HOG block grid of the detector window.
They differ from [3] by an intersection kernel SVM instead
of a linear SVM [16], using multiple rounds of retraining
to make the training procedure stable [8], and an improved
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(a) Left (b) Right (c) Top (d) Top-HR (e) Mid-HR (f) Bot-HR

Figure 3: Detector regions of object part detectors.

non-maximum suppression scheme [23].
The SVM for three of the detectors is trained on the up-

per, left and right halves of the block grids (rounded up).
The upper-body detector uses the top 8 × 7 blocks, and
the left- and right-half body detectors the 15 × 4 left and
right blocks, respectively (for an illustration see Fig. 3(a)–
(c)). We also employ three models using a higher reso-
lution detection window (256 × 128 pixels, resulting in a
grid of 31× 15 blocks), trained using only rows 3–12 (Top-
HR), 11–20 (Mid-HR) and 20–29 (Bot-HR) (see Fig. 3(d)-
(f)). These are motivated by the fact that in crowded scenes
pedestrians are often quite close to the camera, but it is still
desirable to detect them. All seven detectors are trained on
the INRIA Person dataset [3].

It is important to note that training an SVM on parts, i.e.
subsets of blocks, is different from using the model learned
for the full body and only evaluating on the “visible” subset
(which would be theoretically possible for additive kernels),
especially because during the bootstrapping phase of train-
ing the detector finds hard samples for the partial-view mod-
els instead of hard samples for the full-body model. Even
though a bank of detectors increases the computational load,
we stress that the low-level feature representation can be
shared among detectors and therefore only the classifiers
need to be evaluated. To further reduce the load it may also
be possible to adapt the DPM formulation to allow a tighter
integration of our partial detectors; this will remain future
work. Fig. 2 shows detection examples for the left-half and
full-body models. The full-body detector (Fig. 2(b)) is good
at spotting fully visible pedestrians, but has problems find-
ing pedestrians that are partially occluded. For these cases
partial-view detectors can be beneficial, as they can spot
partially occluded pedestrians (Fig. 2(a)). However, they
typically also produce more false positives (as in Fig. 2(a)).
As these tend to be inconsistent with the 3D scene model,
our method can discard them.

3. 3D Scene and Occlusion Model

Before being able to introduce our explicit occlusion rea-
soning scheme based on 3D information, we first describe
the basic 3D scene model. The 3D scene model is based on
our recent work [22], which aimed to combine image ev-
idence from detectors, geometric constraints and priors, as

well as temporal reasoning to infer the 3D position of all ob-
jects in a scene from monocular video alone. For simplicity,
we follow the notation of [22] and denote image coordinates
in lower case, 3D world coordinates in upper case, and other
vectors in bold.

For now assuming that only a single frame is given (the
frame index is omitted for clarity), we take a Bayesian ap-
proach and define the posterior for the 3D scene X given
image evidence E as

P (X|E) ∝ P (E|X) · P (X), (1)

where P (E|X) describes the observation model and P (X)
the prior assumptions about the 3D scene. The state of
the 3D scene X is comprised of the individual objects Oi,
whose state is given by their 3D position (Oix, O

i
y, O

i
z)
> rel-

ative to the observer and their height Hi. The scene state X
also includes the intrinsic and extrinsic camera parameters
K and R (rotation only, see [22, Fig. 2]).
Prior. We make the same basic assumptions as in [22],
which apply to a variety of robotics and automotive sce-
narios: We assume that the camera is rigidly mounted to a
platform, which along with all objects stands on a common
ground plane (Oiz = 0), and has been calibrated off-line.
The camera is furthermore assumed to undergo no roll and
yaw w.r.t. the platform; odometer readings are used to de-
termine the speed and turn rate of the platform itself. Hence
the observer-centric coordinate system is fully specified by
the pitch angle Θ, which may vary slightly as the platform
accelerates or slows down.

Due to the low viewpoint in the sequences employed in
this paper, the correct estimation of distant objects is dif-
ficult requiring reliable estimates of the camera pitch. We
also aim to avoid detecting background structures that stand
on the ground but have incorrect height. To address these
issues, we integrate prior knowledge. Specifically, the cam-
era pitch Θ is assumed to follow a Gaussian distribution
N (Θ;µΘ, σΘ) around the resting pitch µΘ. In addition,
the height of each scene object Hi is assumed to follow
a Gaussian distributionN (Hi;µci

H , σ
ci

H), where µci

H denotes
the mean height of the respective object class ci. Conse-
quently, the 3D scene prior can be written as

P (X) ∝ N (Θ;µΘ, σΘ) ·
∏
i

N (Hi;µci

H , σ
ci

H). (2)

Next, we turn to the observation model P (E|X). The im-
age evidence E in this work is comprised of a set of candi-
date full object detections and a set of candidate object part
detections. We will first describe our model for a single full
body detector and then extend it to a setup with multiple part
detectors. As we will see in the experiments, the combina-
tion of different detectors is beneficial for handling partial
object-object occlusion as well as object truncation at the
image boundary. Full object detectors return more reliable
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hypotheses than part detectors, but are limited to entirely
visible objects. Frequently the detection confidence drops
severely even when the object is only partially occluded or
outside the image. Part detectors on the other hand allow to
detect objects based on partial appearance, but also tend to
produce a higher number of false positive detections.
Single detector likelihood. In case of a single full body
detector we define the likelihood following [22] as

P (E|X) ∝
∏
i

ΨD

(
da(i)

)
·ΨG

(
Oi,Θ; da(i)

)
. (3)

Herein every 3D object hypothesis Oi is associated with
one of the candidate detections da(i) via an association
function a(i). The appearance potential ΨD maps the de-
tector’s appearance score for the associated detection da(i)

into the positive range. In practice we perform hard clip-
ping of the SVM margin at zero (for negative scores). The
potential ΨG models geometric constraints imposed by the
ground plane, which is governed by the camera pitch Θ.
In particular, a Gaussian in x-y-scale-space measures how
well the projection of the object Oi to the ground plane, oi,
matches the associated detection da(i):

ΨG(Oi,Θ; da(i)) = N (oi; da(i),σG + σ̄G). (4)

The kernel bandwidth is split into a constant component
σG and a scale-dependent component σ̄G to account for
the sliding-window detector’s discrete scanning stride.

3.1. Multi-detector likelihood with occlusions

We now extend the above observation likelihood of [22]
to include multiple detectors as evidence. To incorporate lo-
cal part detections robustly we perform occlusion handling
by explicitly leveraging 3D scene information. For each
part p (we also refer to the full object detector as a part in
the following) we compute its projection’s expected visibil-
ity vip based on the global 3D scene model. Assuming that
the camera views the scene along the x-axis and that the
objects are sorted with increasing depth, we can formally
express a part’s visibility as:

vip =AREA(oip\
⋃
j<i

oj)/AREA(oip), s.t. ∀jOjx<Oix (5)

where AREA(oip) denotes the image area in pixels covered
by the projection of oip. Alg. 1 gives an efficient algorithm
for obtaining vip for rectangular projections oip. As detec-
tors tend not to respond for parts with low visibility due to
the lack of occluded samples in the training data, we dis-
card part detections when the visible area vip is below a cer-
tain threshold vmin (in practice, vmin = 0.75). We define
our multi-detector observation likelihood with explicit oc-
clusion handling as a mixture of experts [13] where the ex-
perts are the part detectors and the weights are proportional

Algorithm 1 Efficient visible area computation for rectangular regions:
r - rectangle for which the number of visible pixels is computed; m -
maximum tested object depth.
Since the intersection and AREA can be computed quickly for rectangles,
this algorithm is faster in practice than a dense pixel-wise occlusion map,
which is often used for arbitrary shapes.

Require: O1, . . . ,Om sorted in increasing depth
1: function VISIBLEAREA(r, m)
2: vr ←AREA(r)
3: for k = 1 . . .m− 1 do
4: ok ←PROJECT(Ok)
5: if r ∩ ok 6= ∅ then
6: if k 6= 1 then
7: vr ← vr−VISIBLEAREA(r ∩ ok, k)
8: else
9: vr ← vr−AREA(r ∩ ok)

10: end if
11: end if
12: end for
13: return vr
14: end function
15:
16: vip ← VISIBLEAREA(oip, i)/AREA(oip)

to the visible area vip of those parts:

P (E|X) ∝
∏
i

1∑
p δ[vip > vmin] · vip

· (6)[∑
p

δ[vip > vmin] · vip ·ΨD

(
da(i)
p

)
·ΨG

(
Oi,Θ; da(i)

p

)]
Here, a(i) denotes the association function that assigns can-
didate detections da(i)

p (at most one for each part p) to ev-
ery 3D object hypothesis Oi. In case a detector is not firing
despite a sufficiently large estimated visibility (vip > vmin)
we use a minimum appearance score to compensate missing
evidence. ΨD and ΨG are defined as for the single detector
likelihood, but use the associated part detector’s estimate for
the full object extent instead of the full body detector. Re-
garding the comparability of detector scores we found em-
pirically that SVM margins on true positive detections tend
to be larger for better performing detectors. This is prob-
ably due to the fact that we train all detectors on the same
training set, and thus scores are implicitly normalized by
scaling the SVM margin to 1. Therefore an implicit detec-
tor weighting is learned during SVM training and no further
provision to balance SVM scores is required.
Multi-frame model. In video streams it is possible to lever-
age evidence from adjacent frames. To that end we extend
our likelihood to entire “scene tracklets” [22, Sec. 4] and
define the multi-frame observation likelihood as:

P (Xt|E−δt+t:t+δt) ∝
t+δt∏
r=t−δt

P (X̂r|Er), (7)
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where X̂r denotes the scene configuration that has been ex-
trapolated from Xt based on the camera’s estimated ego-
motion and assuming that object positions as well as the
camera pitch vary only slowly in successive frames.

3.2. Inference

Hypotheses clustering. To enable efficient inference we
cluster a(i) agglomeratively into groups of possible associ-
ations. Starting from an association function a(i) that only
associates full object detections, we iteratively add associ-
ations to part detections when those overlap sufficiently for
the respective object part. In each iteration we add the part
detection with the highest overlap that has previously not
been matched. Part detections that cannot be matched to an
existing cluster lead to an additional, new cluster.
RJMCMC inference. Inference in our model is performed
by Metropolis-Hastings MCMC sampling [22, Sec. 3.1-
3.2], which employs reversible jumps in order to cope with a
varying number of objects in the scene. Our framework em-
ploys diffusion, add and remove proposal moves. Add pro-
posals are adapted from the agglomeratively clustered ob-
ject hypotheses, which are selected with a probability pro-
portional to its maximum part detector score. Finally, we
perform projective 3D to 2D marginalization [22, Sec. 3.3]
to compute a score for each object.

4. Experimental Results

We evaluate our models on two publicly available
datasets: ETH-Linthescher and ETH-PedCross2 (see Fig. 6
for sample images). Both were recorded with a moving
stereo camera in densely populated pedestrian zones and
originally published by Ess et al. [5]. The videos are
recorded at a frame rate of ∼14Hz and a resolution of
640×480 pixels. We only use the left camera’s images as
input to our monocular system1. ETH-Linthescher is com-
prised of 1209 stereo image pairs with a total of 2606 an-
notated pedestrians. As our system with explicit occlu-
sion reasoning is capable of detecting severely occluded
pedestrians that are not contained in the original annotation,
we manually extended the annotations (by all pedestrians
which are at least 20% visible) to a total of 3018 pedes-
trians. ETH-PedCross2 consists of 840 frames recorded at
a pedestrian crossing and along a rather narrow sidewalk
with frequent occlusions among pedestrians. As the dataset
comes without annotations, we annotated pedestrians in ev-
ery 4th frame similar to ETH-Linthescher, and included in-
stances that are truncated by the image boundaries. Over-
all our annotations contain 1635 pedestrians2. We used the
same set of parameters throughout all experiments and fol-

1We simulate yaw and speed sensor readings based on SfM results
kindly provided by the authors of [5].

2Annotations are available at http://www.d2.mpi-inf.mpg.de.

low the evaluation protocol of Ess et al. [6] to consider only
pedestrians with an annotation height of at least 60 pixels.

Due to the lack of 3D ground truth we project the es-
timated 3D models to the image plane and employ detec-
tion metrics to report full image performance as miss rate
vs. false positives per image (FPPI) (see Fig. 4). Moreover,
we use the log-average miss rate (LAMR) for an assessment
across a large range of false positive rates. We define it as
the average miss-rate sampled from the lowest false positive
rate to a false positive rate of 1 FPPI. Missing samples for
high FPPI rates are filled in with the minimum miss rate of
the highest false positive rate on the curve. We use equally
distant samples in log-space and therefore the log-average
miss rate stresses low miss rates at high precision, which is
preferable for the systems’ output.

ETH-Linthescher. We start by evaluating the performance
of the different human detectors on the ETH-Linthescher
sequence (see Fig. 4(a)). Firstly, we observe that the part-
based full body DPM detector [8] performs best as expected
with an LAMR of 42.1%. When we only use left- and right-
half detectors the performance drops to 61.0% for the left
detector and to 66.3% for the right detector, respectively.
The performance for the upper body top-half detector is
even worse with an LAMR of 79.0%. This drop in per-
formance may be explained by the missing discriminative
evidence of the legs as lower object boundary. The high-
resolution top-third pedestrian detector and mid-third detec-
tor roughly perform at the same level and achieve an LAMR
of 79.7% and 78.8%, respectively. The missing recall is
mostly due to pedestrians that appear at small scales and
cannot be scanned by this detector. The bottom-third (feet)
detector performs worse than the top-third and mid-third de-
tectors and achieves an LAMR of 95.3%. When we com-
bine all detectors by agglomerative clustering as described
in Sec. 3.2, the combination achieves an LAMR of 69.6%
when we use the average score of all detectors for the clus-
ter, and 80.2% when we use the maximum score. While
the clustering of detector hypotheses yields an unsatisfying
false positive rate, the achieved minimum miss rate (11.2%)
is promising and lower than for all stand-alone detectors.
We thus use this detector combination as input and baseline
for our models that employ explicit occlusion reasoning. As
we will see they successfully improve the performance over
systems with full-body detectors only.

Next we analyze our model’s performance with explicit
occlusion handling (Fig. 4(b)). As a baseline we run
our model with evidence from a single frame and with-
out occlusion reasoning. With this setup only a small im-
provement over agglomerative clustering can be achieved
(LAMR 59.7%). When extending the evidence over mul-
tiple frames and performing scene tracklet inference, we
achieve an LAMR of 52.2%. Most importantly, however,
an even larger performance gain to an LAMR of 42.2% is
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(a) Detector performance (ETH-Linthescher)
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(c) Comparison to state-of-the-art (ETH-Linthescher)
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(d) Detector performance (ETH-Pedcross2)
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Figure 4: The first row shows results for the ETH-Linthescher sequence, the second row for the ETH-PedCross2 sequence. Percentages in the legends
indicate the log-average miss rate (see text for definition). The left column shows the standalone detector performance. DPM [8] performs overall best,
but detectors for body parts are able to achieve a lower miss rate at the cost of lower precision. The middle column depicts our models’ performance for
different configurations. Single-frame inference does not perform much better then agglomerative detector combination. Adding occlusion reasoning to the
single-frame model improves more than adding scene tracklet inference. However, when both are combined the best overall performance is achieved. The
right column compares this performance to other state-of-the-art methods. Our models outperform the stand-alone DPM detector [8], the stereo system by
Ess et al. [6], our previous monocular single full-body detector system [22] and the monocular system by Choi & Savarese[2].

accomplished when using our newly proposed explicit 3D
occlusion reasoning scheme. We note that this model al-
ready outperforms the standalone full body detector. When
additionally using scene tracklets and thus the full model,
we achieve a further improvement to an LAMR of 37.3%.

Finally, Fig. 4(c) compares our model to other state-of-
the-art approaches3. The modular stereo system of Ess et
al. [6] performs at an LAMR of 57.1%. Our previously
proposed system with a single full body MultiFtr+Motion
detector [22] achieves an LAMR of 51.8%. The same sys-
tem in combination with DPM and the single-frame model
achieves an LAMR of 43.9% and in combination with the
scene-tracklet model an LAMR of 41.6%. We note that
for all systems the minimum miss rate saturates at 30%-
40%. Our model on the contrary achieves an LAMR of
37.3% with a substantially lower minimum miss rate of only
16.0%, while also improving the false detection rate for all
miss rates. Choi and Savarese [2] report three points on
the recall vs. FPPI curve, which are not competitive com-
pared to our model; the miss rate is about 20% higher at the
same error rates. Moreover, we note that [2] reports perfor-

3The authors of [6] kindly provided us with their latest results (for our
annotations).

mance for the original annotations, which do not include all
occluded pedestrians. Hence, the performance on the mod-
ified annotation set may be slightly worse. Overall, our full
model with explicit occlusion reasoning and scene tracklets
outperforms three state-of-the-art approaches. In particular
it achieves the highest recall and reduces the error rate along
the entire curve. Fig. 6 compares our full model on some
sample scenes to competing state-of-the-art approaches.
ETH-PedCross2. Next, we turn to the more difficult ETH-
PedCross2 sequence, which contains more occluded pedes-
trians. Again, we start by analyzing the detectors’ perfor-
mance alone (Fig. 4(d)). Similar to ETH-Linthescher, DPM
[8] yields the best standalone detector performance with
an LAMR of 65.2%. The next best performance again is
achieved by left- and right-half detectors with 78.6% and
79.1% LAMR, respectively. The top-half detector performs
at 86.0% LAMR. For the high-resolution detectors the
top-third (83.0% LAMR) and mid-third detectors (84.1%
LAMR) again perform better than the bottom-third detector
(90.9% LAMR). Interestingly, the agglomerative detector
combination with average scores (88.3% LAMR) performs
worse than when the maximum score is used (76.2%). We
conjecture that low scores of the full-body detector on the
occluded samples lower the average score on this dataset.
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Figure 5: First (left) and second (right) false positive detection on the
ETH-PedCross2 sequence for our proposed model with occlusion han-
dling. Both false positives (red bounding boxes) are due to false detec-
tions of a left- or right-half detector and are strengthened by occluding true
positives. The false detection on the left actually detects an occluded true
pedestrian, but with a too large scale. This detection also suppresses the
true detection on the pedestrian in the close range.

When we apply our single-frame 3D scene model
(Fig. 4(e)), the performance of the agglomeratively clus-
tered detector combination is improved only slightly to
78.3%. Again, explicit occlusion reasoning improves the
results more (59.6% LAMR) than the scene tracklet for-
mulation (68.2% LAMR). However, as for the previous se-
quence, the best performance is achieved when both track-
let inference and explicit occlusion reasoning are performed
(56.5% LAMR).

We finally compare our model to our previously pro-
posed approach [22], which only uses a single full body
MultiFtr+Motion object detector (Fig. 4(f)). In terms of
LAMR our full model outperforms this segmentation sup-
ported model (LAMR 66.9%). When we replace the detec-
tor with DPM the single-frame model achieves an LAMR
of 66.1% and the scene tracklet model an LAMR of 64.1%.
However, note that our new model with explicit occlusion
reasoning achieves a substantially higher recall. It is also
instructive to go back to the DPM full body detector, which
is also clearly outperformed by our model and in addition is
able to estimate 3D positions. In particular our full model
achieves a substantially lower minimum miss rate (26.0%)
compared to the two baselines, which achieve 39.0% [8]
and 50.7% [22]. For our full model we have also analyzed
false positive failures that occur with a high score. Fig. 5
shows the two highest scoring detections that are due to
false partial detections and incorrectly supported by occlu-
sion reasoning.

For this dataset we additionally analyzed the perfor-
mance on partially occluded pedestrians. To that end we
annotated all partially occluded pedestrians and performed
the evaluation restricted to these instances. Overall 1052
pedestrians were marked as partially occluded out of which
DPM [8] detected 40.7%. Our previous approach without
explicit occlusion reasoning [22] was able to detect only
19.2%. This low recall compared to the standalone detec-
tor is mostly due to the tracklet formulation, which tends
to drop detections that are partially occluded in at least one
frame of a tracklet. The proposed model, on the other hand,

can solve this shortcoming using an explicit 3D occlusion
reasoning and achieves a recall almost three times better
(55.0%). Our current C++ implementation runs about 2sec
on average per frame on recent hardware; the run time is
dependent on the number and density of objects in a scene.

5. Discussion and Conclusion
We introduced a model for multi-object tracking from a

moving platform that combined 3D scene tracking, full ob-
ject and object part detectors, and explicit 3D object-object
occlusion reasoning to also handle objects that are partially
occluded for long durations of time or never fully visible
at all. As our experiments with multi-people tracking have
shown, our model is capable of robustly detecting occluded
and truncated pedestrians by strengthening weak evidence
obtained from partial human detectors through the accumu-
lation of geometric scene constraints and by evidence ob-
tained over multiple frames. The proposed model outper-
forms similar monocular approaches [2, 22] without occlu-
sion reasoning, as well as a stereo-based system [6], and is
able to obtain a substantially higher recall than these com-
peting approaches. Also, our approach outperforms state-
of-the-art part-based detectors [8].

For future work incorporating a stronger spatial part
model [9] may prove beneficial. Other possible avenues to-
ward even more robust scene understanding for robotics and
automotive applications may include incorporating a stereo
formulation to make use of disparity discontinuities for oc-
clusion reasoning and detection, or to integrate information
from other, complementary sensors such as laser scanners.
Acknowledgements. We would like thank Andreas Ess for
making datasets and results available.
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