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Abstract. Scene understanding has (again) become a focus of computer vision
research, leveraging advances in detection, context modeling, and tracking. In
this paper, we present a novel probabilistic 3D scene model that encompasses
multi-class object detection, object tracking, scene labeling, and 3D geometric
relations. This integrated 3D model is able to represent complex interactions
like inter-object occlusion, physical exclusion between objects, and geometric
context. Inference allows to recover 3D scene context and perform 3D multi-
object tracking from a mobile observer, for objects of multiple categories, using
only monocular video as input. In particular, we show that a joint scene track-
let model for the evidence collected over multiple frames substantially improves
performance. The approach is evaluated for two different types of challenging on-
board sequences. We first show a substantial improvement to the state-of-the-art
in 3D multi-people tracking. Moreover, a similar performance gain is achieved
for multi-class 3D tracking of cars and trucks on a new, challenging dataset.

1 Introduction

Robustly tracking objects from a moving observer is an active research area due to
its importance for driver assistance, traffic safety, and autonomous navigation [1, 2].
Dynamically changing backgrounds, varying lighting conditions, and the low viewpoint
of vehicle-mounted cameras all contribute to the difficulty of the problem. Furthermore,
to support navigation, object locations should be estimated in a global 3D coordinate
frame rather than in image coordinates.

The main goal of this paper is to address this important and challenging problem by
proposing a new probabilistic 3D scene model. Our model builds upon several impor-
tant lessons from previous research: (1) robust tracking performance is currently best
achieved with a tracking-by-detection framework [3]; (2) short term evidence aggre-
gation, typically termed tracklets [4], allows for increased tracking robustness; (3) the
objects should not be modeled in isolation, but in their 3D scene context, which puts
strong constraints on the position and motion of tracked objects [1, 5]; and (4) multi-cue
combination of scene labels and object detectors allows to strengthen weak detections,
but also to prune inconsistent false detections [5]. While all these different components
have been shown to boost performance individually, in the present work we for the first
time integrate them all in a single system. As our experiments show, the proposed prob-
abilistic 3D scene model significantly outperforms the current state-of-the-art. Fig. 1
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(a)

(b)

Fig. 1: Our system performs 3D inference to reinforce weakly detected objects and to prune false
positive detections by exploiting evidence from scene labeling and an object detector. (left) Detec-
tor input; (middle) single-frame 3D inference with overlaid scene labeling and horizon estimate;
(right) multi-frame tracking results (all results at 0.1 FPPI). See Sec. 6 for a detailed discussion.

shows example results for two different types of challenging onboard sequences. Our
system is able to robustly track a varying number of targets in 3D world coordinates in
highly dynamic scenes. This enables us to use a single camera only instead of relying
on stereo cameras as in previous work (e.g., [1, 2]).

Despite using only monocular input, the proposed model allows to constrain object
detections to geometrically feasible locations and enforces physically plausible 3D dy-
namics. This improves object detection results by pruning physically implausible false
positives and strengthening weak detections along an object’s trajectory. We demon-
strate that accumulating scene evidence over a small number of frames with help of a
3D scene model significantly improves performance. As exact inference is intractable
we employ reversible-jump Markov Chain Monte Carlo (RJMCMC) sampling to ap-
proximate per-frame distributions. Further improvement can be achieved by performing
long-term data association with a Hidden Markov Model (HMM).

2 Related Work

Our work builds on recent advances in scene understanding by pixel-wise labeling,
3D scene analysis and tracking. The use of scene context has been investigated in the
computer vision literature in several ways. Torralba [6] proposes to employ Gabor filter-
bank responses in a bottom-up fashion in order to gain prior information on likely 2D
object positions. More recently, Shotton et al. [7] use a strong joint-boosting classifier
with context reasoning based on a CRF framework to provide a local, per pixel classifi-
cation of image content. Ess et al. [8] and Brostow et al. [9] particularly address traffic
scene understanding. [8] uses 2D Walsh-Hadamard filter-bank responses together with
stereo depth information to infer traffic situations, while [9] leverages 3D point clouds
to improve 2D scene segmentation. Tu et al. [10] use MCMC sampling techniques to
combine top-down discriminative classifiers with bottom-up generative models for 2D
image understanding. Common to these approaches is the goal of 2D image understand-
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ing. Our work includes scene labeling as a cue, but its ultimate goal is to obtain a 3D
model of the observed world.

This paper is most similar to work by Hoiem et al. [5] and Ess et al. [1]. [5] combines
image segmentation and object detections in order to infer the objects’ positions in 3D.
Their work, however, is limited to single images and does not exploit temporal infor-
mation available in video. [1] extends [5], but requires a stereo camera setup to achieve
robust tracking of pedestrians from a mobile platform. Similarly, [2] tracks pedestri-
ans for driver assistance applications and employs a stereo camera to find regions of
interest and to suppress false detections. Note, however, that stereo will yield only lit-
tle improvement in the far field, because a stereo rig with a realistic baseline will have
negligible disparity. Thus, further constraints are needed, since appearance-based ob-
ject detection is unreliable at very small scales. Therefore, we investigate the feasibility
of a monocular camera setup for mobile scene understanding. Another system that uses
monocular sequences is [11]. Contrary to this work, we tightly couple our scene model
and the hypothesized positions of objects with the notion of scene tracklets, and exploit
constraints given by a-priori information (e.g., approximate object heights and camera
pitch). Our experiments show that these short-term associations substantially stabilize
3D inference and improve robustness beyond what has previously been reported. Our
experimental results show that the proposed approach outperforms the stereo system by
Ess et al. [1].

Tracking-by-detection, with an offline learned appearance model, is a popular ap-
proach for tracking objects in challenging environments. Breitenstein et al. [12], for
instance, track humans based on a number of different detectors in image coordinates.
Similarly, Okuma et al. [3] track hockey players in television broadcasts. Huang et
al. [13] track people in a surveillance scenario from a static camera, grouping detec-
tions in neighboring frames into tracklets. Similar ideas have been exploited by Kaucic
et al. [4] to track vehicles from a helicopter, and by Li et al. [14] to track pedestrians
with a static surveillance camera. However, none of these tracklet approaches exploit
the strong constraints given by the size and position of other objects, and instead build
up individual tracks for each object. In this paper we contribute a probabilistic scene
model that allows to jointly infer the camera parameters and the position of all objects
in 3D world coordinates by using only monocular video and odometry information. In-
creased robustness is achieved by extending the tracklet idea to entire scenes toward the
inference of a global scene model.

Realistic, but complex models for tracking including ours are often not amenable
to closed-form inference. Thus, several approaches resort to MCMC sampling. Khan et
al. [15] track ants and incorporate their social behavior by means of an MRF. Zhao
et al. [16] use MCMC sampling to track people from a static camera. Isard&Mac-
Cormick [17] track people in front of relatively uncluttered backgrounds from a static
indoor camera. All three approaches use rather weak appearance models, which prove
sufficient for static cameras. Our model employs a strong object detector and pixel-wise
scene labeling to cope with highly dynamic scenes recorded from a moving platform.
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Fig. 2: Visualization of the 3D scene state X in the world coordinate system. The camera is
mounted to the vehicle on the right.

3 Single-Frame 3D Scene Model

We begin by describing our 3D scene model for a single image, which aims at com-
bining available prior knowledge with image evidence in order to reconstruct the 3D
positions of all objects in the scene. For clarity, the time index t is omitted when refer-
ring to a single time step only. Variables in image coordinates are printed in lower case,
variables in 3D world coordinates in upper case; vectors are printed in bold face.

The posterior distribution for the 3D scene state X given image evidence E is defined
in the usual way, in terms of a prior and an observation model:

P (X|E) ∝ P (E|X)P (X) (1)

The 3D state X consists of the individual states of all objects Oi, described by their rel-
ative 3D position (Oix, O

i
y, O

i
z)
> w.r.t. the observer and by their height Hi. Moreover,

X includes the internal camera parameters K and the camera orientation R.
The goal of this work is to infer the 3D state X from video data of a monocular, for-

ward facing camera (see Fig. 2). While in general this is an under-constrained problem,
in robotic and automotive applications we can make the following assumptions that are
expressed in the prior P (X): The camera undergoes no roll and yaw w.r.t. the platform,
its intrinsics K are constant and have been calibrated off-line, and the speed and turn
rate of the platform are estimated from odometer readings. Furthermore, the platform as
well as all objects of interest are constrained to stand on a common ground plane (i.e.,
Oiz = 0). Note that under these assumptions the ground plane in camera-centric coordi-
nates is fully determined by the pitch angle Θ. As the camera is rigidly mounted to the
vehicle, it can only pitch a few degrees. To avoid degenerate camera configurations, the
pitch angle is therefore modeled as normally distributed around the pitch of the resting
platform as observed during calibration: N (Θ;µΘ, σΘ). This prior allows deviations
arising from acceleration and braking of the observer. This is particularly important
for the estimation of distant objects as, due to the low camera viewpoint, even minor
changes in the pitch may cause a large error for distance estimation in the far field.

Moreover, we assume the height of all scene objects to follow a normal distribu-
tion around a known mean value, which is specific for the respective object class ci,
N (Hi;µciH , σ

ci
H). This helps to prune false detections that are consistent with the ground

plane, but are of the wrong height (e.g., background structures such as street lights). The
overall prior is thus given as

P (X) ∝ N (Θ;µΘ, σΘ) ·
∏
i

N (Hi;µciH , σ
ci
H) (2)
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Next, we turn to the observation model P (E|X). The image evidence E is comprised
of a set of potential object detections and a scene labeling, i.e., category labels densely
estimated for every pixel. As we will see in the experiments, the combination of these
two types of image evidence is beneficial as object detections give reliable but rather
coarse bounding boxes, and low level cues enable more fine-grained data association
by penalizing inconsistent associations and supporting consistent, but weak detections.

For each object our model fuses object appearance given by the object detector con-
fidence, geometric constraints, and local evidence from bottom-up pixel-wise labeling:

P (E|X) ∝
∏
i

ΨD
(
da(i)

)
· ΨG

(
Oi, Θ;da(i)

)
· Ψ iL

(
X; l

)
(3)

Here, a(i) denotes the association function, which assigns a candidate object detection
da(i) to every 3D object hypothesis Oi. Note that the associations between objects and
detections are established as part of the MCMC sampling procedure (see Sec. 3.2). The
appearance potential ΨD maps the appearance score of detection da(i) for object i into
the positive range. Depending on the employed classifier, we use different mappings –
see Sec. 5 for details.

The geometry potential ΨG models how well the estimated 3D state Oi satisfies the
geometric constraints due to the ground plane specified by the camera pitchΘ. Denoting
the projection of the 3D position Oi to the image plane as oi, the distance between oi

and the associated detection da(i) in x-y-scale-space serves as a measure of how much
the geometric constraints are violated. We model ΨG using a Gaussian

ΨG(Oi, Θ;da(i)) = N (oi;da(i),σG + σ̄G) , (4)

where we split the kernel bandwidth into a constant componentσG and a scale-dependent
component σ̄G to account for inaccuracies that arise from the scanning stride of the
sliding-window detectors.

The scene labeling potential Ψ iL describes how well the projection oi matches the
bottom-up pixel labeling. For each pixel j and each class c the labeling yields a clas-
sification score lj(c). Similar to ΨD, the labeling scores are normalized pixel-wise by
means of a softmax transformation in order to obtain positive values.

It is important to note that this cue demands 3D scene modeling: To determine
the set of pixels that belong to each potential object, one needs to account for inter-
object occlusions, and hence know the objects’ depth ordering. Given that ordering,
we proceed as follows: each object is back-projected to a bounding box oi, and that
box is split into a visible region δi and an occluded region ωi. The object likelihood is
then defined as the ratio between the cumulative score for the expected label e and the
cumulative score of the pixel-wise best label k 6=e, evaluated over the visible part of oi:

Ψ iL(X; l) =

( ∑
j∈δi l

j(e)+τ

ε|ωi|+
∑

j∈δi l
j(k)+τ

)α
, (5)

where the constant τ corresponds to a weak Dirichlet prior; ε|ωi| avoids highly oc-
cluded objects to have a large influence with little available evidence; and α balances
the relative importance of detector score and pixel label likelihood.

Importantly, P (X|E) is not comparable across scene configurations with different
numbers of objects. We address this with a reversible jump MCMC framework [18].



6 C. Wojek, S. Roth, K. Schindler, and B. Schiele

3.1 Inference framework

To perform inference in the above model, we simulate the posterior distribution P (X|E)
in a Metropolis-Hastings MCMC framework [19]. At each iteration s new scene sam-
ples X′ are proposed by different moves from the proposal density Q(X′;X(s)). Since
our goal is to sample from the equilibrium distribution, we discard the samples from an
initial burn-in phase. Note that the normalization of the posterior does not have to be
known, since it is independent of X and therefore cancels out in the posterior ratio.

3.2 Proposal moves

Proposal moves change the current state of the Markov chain. We employ three different
move types: diffusion moves to update the last state’s variables, add moves and delete
moves to change the state’s dimensionality by adding or removing objects from the
scene. Add and delete moves are mutually reversible and trans-dimensional. At each
iteration, the move type is selected randomly with fixed probabilities qAdd, qDel and qDif.

Diffusion moves change the current state by sampling new values for the state vari-
ables. At each diffusion move, object variables are updated with a probability of qO,
while Θ is updated with a probability of qΘ.

To update objects we draw the index i of the object to update from a uniform distri-
bution and then update Oi. Proposals are drawn from a multi-variate normal distribution
centered at the position of the previous state and with diagonal covariance.

To update the camera pitch Θ proposals are generated from a mixture model. The
first mixture component is a broad normal distribution centered at the calibrated pitch
for the motionless platform. For the remaining mixture components, we assume distant
objects associated with detections at small scales to have the class’ mean height and use
da(i) to compute their distance by means of the theorem of intersecting lines. Then the
deviation between the detected bounding box and the object’s projection in the image
allows one to estimate the camera pitch. We place one mixture component around each
pitch computed this way and assign mixture weights proportional to the detection scores
to put more weight on more likely objects.

Add moves add a new object ON+1 to the chain’s last state, whereN is the number
of objects contained in X(s). As this move is trans-dimensional (i.e., the number of
dimensions of X(s) and X′ do not match) special consideration needs to be taken when
the posterior ratio P (X′|E)

P (X(s)|E)
is evaluated. In particular, P (X(s)|E) needs to be made

comparable in the state space of P (X′|E). To this end, we assume a constant probability
P̄ (ON+1) for each object to be part of the background. Hence, posteriors of states with
different numbers of objects can be compared in the higher dimensional state space by
transforming P (X(s)|E) to

P̂ (X(s)|E) = P (X(s)|E)P̄ (ON+1) (6)

To efficiently explore high density regions of the posterior we use the detection scores
in the proposal distribution. A new object index n is drawn from the discrete set of all
K detections {d̄}, which are not yet associated with an object in the scene, according to
Q(X′;X(s)) = ψD(d̄n)∑

k ψD(d̄k)
. The data association function is updated by letting a(N+1)

associate the new object with the selected detection. For distant objects (i.e., detections
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at small scales) we instantiate the new object at a distance given through the theorem
of intersecting lines and the height prior, whereas for objects in the near-field a more
accurate 3D position can be estimated from the ground plane and camera calibration.

Delete moves remove an object On from the last state and move the associated
detection da(n) back to {d̄}. Similar to the add move, the proposed lower dimensional
state X′ needs to be transformed. The object index n to be removed from the scene is
drawn uniformly among all objects currently in the scene, thus Q(X′;X(s))= 1

N .

3.3 Projective 3D to 2D marginalization

In order to obtain a score for a 2D position u (including scale) from our 3D scene
model, the probabilistic framework suggests marginalizing over all possible 3D scenes
X that contain an object that projects to that 2D position:

P (u|E) =

∫
max
i

([
u = oi

])
P (X|E) dX , (7)

with [expr] being the Iverson bracket: [expr]=1 if the enclosed expression is true, and
0 otherwise. Hence, the binary function maxi ([·]) detects whether there exists any 3D
object in the scene that projects to image position u. The marginal is approximated with
samples X(s) drawn using MCMC:

P (u|E) ≈ 1

S

S∑
s=1

max
i

([
u = oi,(s)

])
, (8)

where oi,(s) denotes the projection of object Oi of sample s to the image, and S is
the number of samples. In practice maxi ([·]) checks whether any of the 3D objects of
sample s projects into a small neighborhood of the image position u.

4 Multi-frame Scene Model and Inference

So far we have described our scene model for a single image in static scenes only. For
the extension to video streams we pursue a two-stage tracking approach. First, we ex-
tend the model to neighboring frames by using greedy data association. Second, the
resulting scene tracklets are used to extend our model towards long-term data associa-
tion by performing scene tracking with an HMM.

4.1 Multi-frame 3D scene tracklet model

To apply our model to multiple frames, we first use the observer’s estimated speed
Vego and turn (yaw) rate to roughly compensate the camera’s ego-motion. Next, we use
a coarse dynamic model for all moving objects to locally perform association, which
is refined during tracking. For initial data associations objects that move substantially
slower than the camera (e.g., people) are modeled as standing still, V ix =0. For objects
with a similar speed (e.g., cars and trucks), we distinguish those moving in the same
direction as the observers from the oncoming traffic with the help of the detector’s class
label. The former are expected to move with a similar speed as the observer, V ix =Vego,
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whereas the latter are expected to move with a similar speed, but in opposite direction,
V ix =−Vego. The camera pitch Θt can be assumed constant for small time intervals.

For a given frame t we associate objects and detections as described in Sec. 3.2. In
adjacent frames we perform association by finding the detection with maximum overlap
to each predicted object. Missing evidence is compensated by assuming a minimum
detection likelihood anywhere in the image. We define the scene tracklet posterior as

P (Xt|E−δt+t:t+δt) ∝
t+δt∏
r=t−δt

P (X̂r|Er), (9)

where X̂r denotes the predicted scene configuration using the initial dynamic model
just explained.

4.2 Long term data association with scene tracking

While the above model extension to scene tracklets is feasible for small time intervals, it
does not scale well to longer sequences, because greedy data association in combination
with a simplistic motion model will eventually fail. Moreover, the greedy formalism
cannot handle objects leaving or entering the scene.

We therefore introduce an explicit data association variable At, which assigns ob-
jects to detections in frame t. With this explicit mapping, long-term tracking is per-
formed by modeling associations over time in a hidden Markov model (HMM). Infer-
ence is performed in a sliding window of length w to avoid latency as required by an
online setting:

P (X1:w,A1:w|E−δt+1:w+δt) = P (X1|A1, E−δt+1:1+δt)
w∏
k=2

P (Ak|Ak−1)P (Xk|Ak, E−δt+k:k+δt)
(10)

The emission model is the scene tracklet model from Sec. 4.1, but with explicit data as-
sociation Ak. The transition probabilities are defined as P (Ak|Ak−1) ∝ P ηe P

λ
l . Thus,

Pe is the probability for an object to enter the scene, while Pl denotes the probability for
an object to leave the scene. To determine the number η of objects entering the scene, re-
spectively the number λ of objects leaving the scene, we again perform frame-by-frame
greedy maximum overlap matching. In Eq. (10) the marginals P (Xk,Ak|E−δt+1:w+δt)
can be computed with the sum-product algorithm. Finally, the probability of an ob-
ject being part of the scene is computed by marginalization over all other variables (cf.
Sec. 3.3):

P (uk|E−δt+1:w+δt) =
∑
Ak

∫
max
i

([
uk = oik

])
P (Xk,Ak|E−δt+1:w+δt) dXk (11)

In practice we approximate the integral with MCMC samples as above, however this
time only using those that correspond to the data association Ak. Note that the summa-
tion over Ak only requires to consider associations that occur in the sample set.
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5 Datasets and Implementation Details

For our experiments we use two datasets: (1) ETH-Loewenplatz, which was introduced
by [1] to benchmark pedestrian tracking from a moving observer; and (2) a new multi-
class dataset we recorded with an onboard camera to specifically evaluate the challenges
targeted by our work including realistic traffic scenarios with a large number of small
objects, objects of interest from different categories, and higher driving speed.
ETH-Loewenplatz. This publicly available pedestrian benchmark contains 802 frames
overall at a resolution of 640×480 pixels of which every 4th frame is annotated. The
sequence, which has been recorded from a driving car in urban traffic at≈15 fps, comes
with a total of 2631 annotated bounding boxes. Fig. 4 shows some examples.
MPI-VehicleScenes. As the above dataset is restricted to pedestrians observed at low
driving speeds, we recorded a new multi-class test set consisting of 674 images. The
data is subdivided into 5 sequences and has been recorded at a resolution of 752×480
pixels from a driving car at ≈15 fps. Additionally ego-speed and turn rate are obtained
from the car’s ESP module. See Fig. 5 for sample images. 1331 front view of cars, 156
rear view of cars, and 422 front views of trucks are annotated with bounding boxes.
Vehicles appear over a large range of scales from as small as 20 pixels to as large as
270 pixels. 46% of the objects have a height of ≤ 30 pixels, and are thus hard to detect.
Object detectors. To detect potential object instances, we use state-of-the-art object
detectors. For ETH-Loewenplatz we use our motion feature enhanced variant of the
HOG framework [20]. SVM margins are mapped to positive values with a soft-clipping
function [21].

For our new MPI-VehicleScenes test set we employ a multi-class detector based
on traditional HOG-features and joint boosting [22] as classifier. It can detect the four
object classes car front, car back, truck front or truck back. The scores are mapped to
positive values by means of class-wise sigmoid functions. Note that for our application
it is important to explicitly separate front from back views, because the motion model
is dependent on the heading direction. This detector was trained on a separate dataset
recorded from a driving car, with a similar viewpoint as in the test data.
Scene labeling. Every pixel is assigned to the classes pedestrian, vehicle, street, lane
marking, sky or void to obtain a scene labeling. As features we use the first 16 coef-
ficients of the Walsh-Hadamard transform extracted at five scales (4-64 pixels), along
with the pixels’ (x, y)-coordinates to account for their location in the image. This algo-
rithm is trained on external data and also employs joint boosting as classifier [23].
Experimental setup. For both datasets and all object classes we use the same set of
parameters for our MCMC sampler: qAdd = 0.1, qDel = 0.1, qDif = 0.8, qO = 0.8,
qΘ = 0.2. For the HMM’s sliding window of Eqn. 10 we choose a length of W = 7
frames. Our sampler uses 3,000 samples for burn-in and 20,000 samples to approximate
the posterior and runs without parallelization at about 1 fps on recent hardware. By
running multiple Markov chains in parallel we expect a possible speed-up of one or two
orders of magnitude. As we do not have 3D ground truth to assess 3D performance, we
project the results back to the images and match them to ground truth annotations with
the PASCAL criterion (intersection/union > 50%).
http://www.vision.ee.ethz.ch/˜aess/dataset/
The data is publicly available at http://www.mpi-inf.mpg.de/departments/d2
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(a) Pedestrians on ETH-Loewenplatz [1]
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(b) Comparison to [1] on ETH-Loewenplatz
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(c) Cars on MPI-VehicleScenes
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(d) Trucks on MPI-VehicleScenes
Fig. 3: Results obtained with our system. The first row shows results for pedestrians on ETH-
Loewenplatz and compares to the state-of-the-art. The second row shows results for truck and
car on our new MPI-VehicleScenes dataset. Figure best viewed in color.

Baselines. As baselines we report both the performance of the object detectors as well
as the result of an extended Kalman filter (EKF) atop the detections. The EKFs track
the objects independently, but work in 3D state space with the same dynamic models
as our MCMC sampler. To reduce false alarms in the absence of an explicit model for
new objects entering, tracks are declared valid only after three successive associations.
Analogous to our system, the camera ego-motion is compensated using odometry. Best
results were obtained, when the last detection’s score was used as confidence measure.

6 Experimental Results

We start by reporting our system’s performance for pedestrians on ETH-Loewenplatz.
Following [1] we consider only people with a height of at least 60 pixels. The authors
kindly provided us with their original results to allow for a fair comparison.

In the following we analyze the performance at a constant error rate of 0.1 false po-
sitive per image (FPPI). At this error rate the detector (dotted red curve) achieves a miss

The original results published in [1] were biased against Ess et al., because they did not allow
detections slightly < 60 pixels to match true pedestrians ≥ 60 pixels, discarding many correct
detections. We therefore regenerated all FPPI-curves.
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Detector Single-frame model
Scene tracklet model with

tracking

(a)

(b)

(c)

Fig. 4: Sample images showing typical results of our model along with MAP scene labels at a
constant error rate of 0.1 false positives per image. Street pixels appear in purple, lane markings
in light purple, sky in yellow, pedestrians in green and vehicles in orange. Void (background)
pixels are not overlayed. The light green line denotes the estimated horizon.

rate of 48.0%, cf. Fig. 3(a). False detections typically appear on background structures
(such as trees or street signs, cf. Fig. 4(a)) or on pedestrians’ body parts. When we per-
form single frame inference (solid blue curve) with our model we improve by 10.4%;
additionally adding tracking (dashed blue curve) performs similarly (improvement of
11.6%; see Fig. 4, Fig. 1(a)), but some false positives in the high precision regime are
reinforced. When we omit scene labeling but use scene tracklets (black curve) of two
adjacent frames our model achieves an improvement of 10.8% compared to the detec-
tor. When pixel-labeling information is added to obtain the full model (solid red curve),
we observe best results with an improvement of 15.2%. Additionally performing long-
term data association (dashed red curve) does not further improve the performance for
this dataset: recall has already saturated due to the good performance of the detector,
whereas the precision cannot be boosted because the remaining false positives happen
to be consistent with the scene model (e.g., human-sized street signs).

Fig. 3(b) compares the system’s performance to EKFs and state-of-the-art results by
Ess et al. [1]. When we track detections with EKFs (yellow curve) we gain 2.5% com-
pared to the detector, but add additional false detections in the high precision regime,
as high-scoring false positives on background structures are further strengthened. Com-
pared to their detector (HOG, [21], dotted cyan curve), the system in [1] achieves an
improvement of 11.1% using stereo vision (solid cyan curve), while our monocular ap-
proach gains 15.2% over the detector used in our system [20]. We obtain a miss rate of
32.8% using monocular video, which clearly demonstrates the power of the proposed
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approach using multi-frame scene tracklets in conjunction with local pixel-labeling.
Some example results of our system are depicted in Fig. 1 and 4. Our scene tracklet
model allows to stabilize horizon estimation compared to a single-frame model, see
Fig. 1(a). Moreover, consistent detections and scene labels boost performance, espe-
cially when geometry estimation is more difficult, such as for example in the absence
of a sufficient number of objects with confident detections, cf. Fig. 4(b),(c).

Next, we turn to the evaluation on our new MPI-VehicleScenes dataset. We note, that
cars rear are detected almost perfectly, due to the fact that there are only few instances
at rather similar scales. Moreover, the test dataset does not contain rear views of trucks.
Hence, we will focus on the classes car front and truck front. In the following, when we
refer to cars or trucks this always concerns front views.

For cars the detector achieves a miss rate of 27.0% (see Fig. 3(c)). Independent
EKFs improve results by 1.1% to a miss rate of 25.9%. However, in the high precision
regime some recall is lost. False positives mainly occur on parts of actual cars, such as
on head lights of cars in the near-field, and on rear views of cars – see Fig. 5(a). Thus, in
the single-frame case of our approach the false detections are often strengthened rather
than weakened by the scene geometry, cf. Fig. 1(b), and in some cases even wrongly
bias geometry estimation, thus lowering the scores for correct objects. A drop in high
precision performance is the result (27.8% miss rate at 0.1 FPPI). This drop can partially
be recovered to a miss rate of 21.8%, when an HMM is added for longer-term tracking.

When scene tracklets are employed, many false hypotheses are discarded because
of the gross mismatch between their expected and observed dynamics. Consequently,
scene tracklets boost performance significantly, resulting in an improvement of 9.9%
in miss rate. Adding long-term tracking with the HMM again only slightly improves
result over scene tracklets (by 0.1%). Therefore we conclude that the critical source of
improvement is not to track objects over extended periods of time, but to enforce a con-
sistent scene interpretation with short tracklets, by tightly coupling tracklet estimation
with geometry fitting and scene labeling.

Finally, we also report results for trucks, cf. Fig. 3(d). For this class our detector
has a higher miss rate of 59.4%. This is caused by a significantly higher intra-class
variation among trucks and by the fact that the frontal truck detector often fires on cars
due to the high visual similarity of the lower part – an example is shown in Fig. 1(b). As
a consequence, independent EKFs do not yield an improvement (miss rate 60.9%), as
already observed for cars. Similarly, our model using single-frame evidence is not able
to disambiguate the classes when both detectors fire, resulting in a miss rate of 67.9%.
Though HMM tracking improves this to 57.6%.

As in the previous examples, our scene tracklet model is able to suppress many
false detections through evidence aggregation across a small number of frames (miss
rate 38.6%). Also, weak detections on small scale objects are strengthened, thus recall
is improved – cf. Fig. 5(a),(b). Compared to the detector, we improve the miss rate by
20.8%, respectively by 23.9% when also adding HMM tracking.
Discussion. Overall, our experiments for two datasets and four different object classes
indicate that our scene tracklet model is able to exploit scene context to robustly infer
both the 3D scene geometry and the presence of objects in that scene from a monocular
camera. This performance is mainly due to the use of a strong tracking-by-detection
framework which employs tracklets on a scene level thereby leveraging evidence from



Monocular 3D Scene Modeling and Inference 13

Detector Single-frame model
Scene tracklet model with

tracking

(a)

(b)

Fig. 5: Example images showing typical results of our model on the MPI-VehicleScenes dataset
at a constant error rate of 0.1 false positives per image. For color description see Fig. 4.

a number of consecutive frames. The tight coupling with the observation model allows
to exploit 3D scene context as well as to combine multiple cues of a detector and from
scene labeling. Long-term tracking with an HMM only results in minor additional im-
provement. In all cases, independent extended 3D Kalman filters cannot significantly
improve the output of state-of-the-art object detectors on these datasets, and are greatly
outperformed by the integrated state model. On the new multi-class MPI-VehicleScenes
dataset we outperform state-of-the-art detection by 10.0% for cars, respectively 23.9%
for trucks at 0.1 FPPI.

Comparing to other work that integrates detection and scene modeling, we also
outperform [1] by 3.8% at 0.1 FPPI for the case of pedestrians, even though we do
not use stereo information. At a recall of 60% our model reduces the number of false
positives by almost a factor of 4.

7 Conclusion

We have presented a probabilistic 3D scene model, that enables multi-frame tracklet
inference on a scene level in a tracking-by-detection framework. Our system performs
monocular 3D scene geometry estimation in realistic traffic scenes, and leads to more
reliable detection of objects such as pedestrians, cars, and trucks. We exploit informa-
tion from object (category) detection and low-level scene labeling to obtain a consis-
tent 3D description of an observed scene, even though we only use a single camera.
Our experimental results show a clear improvement over top-performing state-of-the-
art object detectors. Moreover, we significantly outperform basic Kalman filters and a
state-of-the-art stereo camera system [1].

Our experiments underline the observation that objects are valuable constraints for
the underlying 3D geometry, and vice versa (cf. [1, 5]), so that a joint estimation can
improve detection performance.

In future work we plan to extend our model with a more elaborate tracking frame-
work with long-term occlusion handling. Moreover, we aim to model further compo-
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nents and objects of road scenes such as street markings and motorbikes. It would also
be interesting to explore the fusion with complementary sensors such as RADAR or
LIDAR, which should allow for further improvements.
Acknowledgement: We thank Andreas Ess for providing his data and results.
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