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Abstract

Data-driven techniques can reliably build semantic cor-
respondence among images [16, 15]. In this paper, we
present a new regularization model for stereo or flow
through transferring the shape information of the dispar-
ity or flow from semantically matched patches in the train-
ing database. Compared to previous regularization models
based on image appearance alone, we can better resolve lo-
cal ambiguity of the disparity or flow by considering the se-
mantic information without explicit object modeling [ 1, 5].

We incorporate this data-driven regularization model
into a standard Markov Random Field (MRF) model, in-
ferred with a gradient descent algorithm [14] and learned
with a discriminative learning approach [19]. Compared
to prior state-of-the-art methods, our full model achieves
comparable or better results on the KITTI stereo and
flow datasets [7], and improves results on the Sintel Flow
dataset [41] under an online estimation setting.

1. Introduction

Stereoscopic vision and dense motion estimation are
crucial in 3D reconstruction. In order to regularize local
matching evidence, Markov Random Field (MRF) models
have been widely used to enforce smoothness constraints
on scene properties (disparity or flow). Most regularization
models [21, 23, 31] assume that the discontinuities of scene
properties coincide with the discontinuities of the image ap-
pearance, which works well for examples in the lab settings
(Figure la-c). However, in real-world scenarios where the
local matching evidence is insufficient, these models suf-
fer from the ambiguous correlation between appearance and
scene properties (Figure 1d-f), since regions with the same
appearance can have different scene properties.

Our first key idea is to infer shape information from
contextually matched regions in a database. As more la-
beled data become available, data-driven approaches, for
example, by means of dense correspondences [16], can
transfer information such as semantic labels [15] and high-
resolution images [25] from an existing database to the
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Figure 1: Motivation for a data-driven regularization model. In a
lab setting, e.g., (a) stereo images from Middlebury dataset [20],
(b) a patch-based matching model [3] performs well and achieves
a state-of-the-art result with (c) an additional bilateral regulariza-
tion model [21] by refining the disparity boundary. In a real-world
scenario, e.g.e (d) stereo images from KITTI dataset [7], neither
(e) the matching model nor (f) the regularization model above per-
forms well. We introduce (g) a data-driven regularization model to
make use of the semantic parsing of the scene, which transfers dis-
parity information from regions with similar context in the train-
ing data. For the disparity (top row) and error map (bottom row)
in (b-c, e-g), we use the default color code from the corresponding
dataset.

query image. Here, we want to transfer shape information.
For example, a less textured patch can have a similar dispar-
ity along the horizontal direction if from a road, or the verti-
cal direction if from a wall. By checking if it is consistently
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Figure 2: Illustration of our data-driven regularization model (stereo example). For (a) a test left-camera image, we first retrieve similar
images with their underlying disparity based on the GIST descriptor from (b) the training database. For each test image patch (red) from
(a), we find its matched training image patches through the SIFT flow algorithm. Given (c) the disparity of these matched patches, we
apply a nonlocal smoothness penalty function (i.e. subtracting the disparity in the center) and (d) the results for the training patches are
similar to (e) that for the ground truth test patch. Our data-driven regularization penalizes the difference between these smoothness penalty

results, weighted by the matching confidence and the pixel position within the patch.

matched with patches from walls or roads in the database,
we obtain stronger shape prior for this uninformative patch.

Our second key idea is to represent the shape informa-
tion as the relative relationship of scene properties instead
of their absolute values. Most of the existing data-driven ap-
plications transfer the data-term of the MRF model, namely
transferring the exact values of the scene from similar
patches in similar images. Such a data-term transfer ap-
proach seems to work well for problems not constrained by
data, such as image hallucination [25] and depth synthesis
[12]. However, for accuracy-demanding problems such as
stereo and flow, the data-term transfer approach greatly lim-
its the re-usability of scene properties in the training data.
For example, if we want to regularize the disparity value
of a car, the data-term transfer approach requires matched
cars to have similar positions, while the relative-relationship
transfer approach only requires similar local shape.

In this paper, we make two main technical contributions.
MRF Model We build a joint model for both the test and
training examples to incorporate the data-driven module.
Data-driven Method We transfer the relative relationship
of scene properties instead of the data value, which is appli-
cable to accuracy-demanding tasks like stereo and flow.

2. Related Work

Markov Random Field Model for Visual Reconstruc-
tion Markov random fields (MRF) have been widely used
in low-level vision for visual reconstruction, such as image
denoising stereo, optical flow, etc. As the local informa-
tion from the observation can be noisy or ambiguous, the
MRF model imposes regularization to produce a spatially
smooth estimate for the scene property. Filter-based penalty
functions [10, 13, 27, 23] and subspace-based penalty func-

tions [ 11, 8] are often used. To adaptively model the corre-
lation between the observed image and the scene property
for estimation, new regularization functions, like weighted
median filters [22], bilateral filters [21], and linear regres-
sion [31], have been proposed.

Data-driven Techniques for Non-parametric Modeling
In low-level vision tasks, scene properties, like image ap-
pearance [0, 9, 24, 25], depth [12, 2], and motion [6], have
been transferred as different proposals for local evidence
from the matched patches. In this paper, we use the SIFT
flow algorithm to find training patches with similar context
with each test patch to build a “semantic prior” that is mod-
eled explicitly in [, 5] for visual reconstruction.

3. Pipeline

Our pipeline to build the data-driven regularization
model is illustrated in Figure 2. Given an image patch from
the test example, we first retrieve patches in the training
database that have similar semantic information (Step 1),
and then extract the shape information from their dispar-
ity values to regularize the estimate (Step 2). We incorpo-
rate this regularization model into a traditional stereo/flow
model and produce an estimate based on the full model.
Step 1: Retrieve Semantic-Similar Patches For each test
left-camera image in Figure 2a, we first use the GIST de-
scriptor to retrieve training images and their disparity with
similar scene structures, as shown in Figure 2b. We apply
SIFT flow to align the test image with retrieved images and
find contextual matches (shown as red boxes) for the patch
from the test image.

Step 2: Regularize Shape Information Given the dis-
parity of these matched patches (Figure 2c), we represent
the local shape information as the response from a nonlocal
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Graphical representation of our stereo/flow model.

Figure 3:
Inside the red box (dash line boundary), we show a traditional
model which consists of the data term Ep(z,y) and smooth-
ness term Eg(x). We introduce a data-driven regularization term
Epp(x,{x;,w;}) which encourages the output of penalty func-
tion ¢ for the test scene property = to be similar to that for the
training scene property x; warped by w;.

smoothness penalty function, which subtracts the disparity
at the center pixel. The results for matched training patches
(Figure 2d) are similar to that for the ground truth disparity
of the test patch (Figure 2¢e). Although the local appearance
of these patches is different, their semantic labels as being
part of a car suggest them to have similar local shape infor-
mation while their absolute disparity values differ.

4. MRF with Data-driven Regularization

We here build a fully generative MRF model for each
test example and all training examples jointly, which incor-
porates naturally the data-driven regularization. For a test
example, let y denote its observation (such as stereo pairs
or adjacent frames) and z denote its underlying scene (such
as disparity or flow). Traditional stereo and flow models
aim to minimize

~log P(aly) x ~ log { P(y]2) P(x))}
x —log P(y|x) — log P(x)
= Ep(z,y) + Es(x),

where E'p and Eg are called the data term and smoothness
term respectively.

Here, we assume that the training database has k scene
properties {z;}¥_, which are “generated” from = through
the dense correspondence field {w;}%_,. Conditioning on
these training information z = {;, w;}*_,, the objective
function becomes

—log P(z|y, z) x — log {P(y|x, z)P(z|x)P(m)}
o — log {P(y|$)P(m)} —log P(z|x)
=Ep(z,y) + Es(z) + Epp(z, {x, wi}le),

where Epp is the new data-driven smoothness term regu-
larizing x to have the similar smoothness property to scenes
from the training database. Note that our new data-driven
regularization term can be added to any traditional formula-
tion of MRF model.

4.1. Data-driven Regularization Term

Our first step is to regularize the smoothness property of
z to be similar to that of the matched regions in x;. We rep-
resent the local smoothness property with a weighted non-
local penalty function

or(t.9) = 7(q) (o + ) — 1)), M

where 7y(q) is the weight based on the relative position ¢ and
is set to 0 for p+¢ ¢ Q,,. Given the correspondence field w;
from the test scene property x to a training scene property
x;, every pixel p in z is matched to the pixel p+w;(p) in z;.
Thus, at each pixel x, we want to minimize the difference
between its penalty response and that from p+w;(p) within
the local patches

Z ||¢P(x7 Q) - ¢p+wi(p) ($i, Q)Hl ()
q

The second step is to adaptively weigh the regularization
term at each pixel based on its matching quality. We define
the matching quality with training example {z;, w; } at pixel
pas

M;(p) = exp{—m(w;(p))} 3)

where m(w;(p)) is the pre-computed matching cost be-
tween corresponding patches in SIFT flow. See the sup-
plementary material for the justification for such metric
through the context matching accuracy. For matched re-
gions with high M;(p), which tend to have similar semantic
context [16], we increase the regularizaiton weight for their
smoothness property difference, and vice versa. If there are
few good matches found for a test example, then our model
will fall back to the baseline model, as little shape informa-
tion can be transferred from the database.

Combining Eq (2,3), we have the data-driven smooth-
ness term for a set of training examples {x;, w; }cs,

Epp(z{zi wities;) = Z Epp(@,z;,w;)

= Z > Mi(p)> (9l (w(p +q) - w(p))

~ (@ +w) +0) —ao+w®)) @

4.2. Traditional Data Term and Smoothness Term

As a baseline, we choose a simple formulation for the
data term and smoothness term in our system.
Data Term y = {y®, 3} denotes the two input images (left
and right images for stereo, adjacent frames for flow). At
each pixel p, we define C(p, z(p)) as the matching cost for
the disparity/flow value x(p) with the Centralized-Sum-of-
Absolute-Difference (CSAD) metric recommended in [26]
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where €, is the local patch around p. We choose the con-
tinuous MRF formulation and approximate the matching
cost with a quadratic function centered at the initial estimate

z'(p)
C(p,z(p)) = Ap(p)||z — =’ (p)]l2,

where Ap(p) is fitted from Eq (5). Our MRF data term can
be written as the sum of the matching costs at all pixels:

Ep(z,y) = Y Ap(®)llz —2'(p)]2- (6)

Smoothness Term We define a smoothness term to regu-
larize the second-order gradient of the scene property = as

Es(z) =Xs)_llap = 1) = 22(p) + 2(p+ D1, ()

where Ag is the weight parameter and L1 norm is used for
robustness. Similar to that in [27], this smoothness term
encourages disparity or flow to be piecewise planar.

5. Inference and Learning

Our model is a standard high-order continuous MRF and
we use gradient descent algorithms for inference and learn-
ing. Combining Eq (4,6,7), we have the full energy model

E(z) = Ep(v,y) + Es(x) + Epp (v, {zi, wi}ics,), (8)

where t; ,; = z:(p + wi(p) + ¢) — x:(p + w;(p)) is the
smoothness penalty value at position (p, ¢) for the warped
training example x;

5.1. Inference

We make two approximation to the data-driven regular-
ization model for efficiency, which leads to the pipeline
steps described in Section 3.

Relevant Subset of Training Examples Given a test im-
age, many training images have few good matches and con-
sequently small matching confidence M and small contri-
bution to the Data-driven regularization term Epp. We use
GIST descriptor [17] to find K nearest training examples.
Dense Appearance Correspondence Instead of jointly es-
timating the dense scene correspondence {w;} and scene
property {x;}, we approximate {w;} by the dense appear-
ance correspondence with the SIFT flow algorithm [16].

We infer the full MRF model according to Eq (8) with the
standard gradient descent method. As the object function is
nonlinear, we use the iterative fixed point method to find an
incremental displacement Az(*) at iteration  that satisfies

0
=—F7>=F
0 OAz(*) (
See the supplementary material for more details. In prac-
tice, we start from an initial estimate of the scene prop-
erty, which comes from either the coarse-to-fine optimiza-
tion scheme of our baseline model or external algorithms.

™ 4 Az )

5.2. Learning

The full energy function Eq (8) has two sets of weight
parameters: Ag for the smoothness term and {vy(q)} for
the data-driven regularization. We do a grid search for
As and below we describe the discriminative learning ap-
proach [19] to optimize {v,}.

One standard evaluation metric for stereo and flow is 0-1
penalty, which is not differentiable. We approximate it an
exponential function p; = 1 — exp(—(t/2)?) to penalize
the difference between the ground truth disparity x4 and
the MAP estimate z*. Below is the objective function for
our MRF learning to optimize w.r.t. parameter -y

L(z*(7), gt) = pr(=™(7) — gt)-

We use a steepest-gradient descent optimization method.
See the supplementary material for the details of calculat-
ing the gradient % |+ and the parameter learning results.

6. Experiments on Stereo

In this section, we first evaluate our proposed model on
the recent KITTI stereo benchmark [7], where our perfor-
mance is comparable to the state-of-the-art methods (only
using the stereo pair images). Then, with the ground truth
disparity from the training dataset, we further analyze the
importance of the matching quality and transferred regular-
ization for our model.

The stereo experiments below use the following system
configuration. For the data-driven pipeline, we use 11-NN
and GIST features for image retrieval, and SIFT flow for
scene matching with 7x 7 patch size. See the supplemen-
tary material for the details of parameter selection from the
validation data. The runtime for our entire system is 1 min
per example, where most of the computation time is spent
on the data-driven module: 0.1 s for image retrieval and 50
s for SIFT flow.

6.1. Benchmark Results on KITTI Stereo Dataset
The KITTI stereo dataset provides 194 pairs of stereo
images for training and 195 pairs for testing. Recorded with
a calibrated stereo rig on a car driving around the city, the
KITTI stereo dataset has rich scene structures from rural
areas to downtown regions.
Quantitative Result The best available initialization on the
benchmark is from StereoSLIC [29], which is used by the
state-of-the-art PCBP-SS algorithm [28]. For a fair com-
parison, we use the same initialization and our entry name



> 2 pixels > 3 pixels > 4 pixels > 5 pixels
Non-Out All Non-Out All Non-Out All Non-Out All
DDS-SS (Ours) | 591% | 696% | 383% | 459 % | 290% | 349 % | 236% | 2.83 %
PCBP-SS [28] 519% | 675% | 340% | 4.72% | 2.62% | 3.75% | 218 % | 3.15%
StereoSLIC [29] | 576 % | 720% | 392% | 5.11% | 3.04% | 404% | 249% | 333 %

Table 1: Test result on the KITTI stereo benchmark. Ours is comparable with the state-of-the-art algorithm [28] and the smallest error
rate is marked in bold. “All* is the evaluation on the entire region, while “Non-Out* is the evaluation on the non-occluded region only.

Stereo Matching Optical Flow
Example 1 Example 2 Example 2
First Image
Scene
Property [29] - [26]
o ' o
[29]] i [26]
Map
Ours -E Ours
Error (a) (16.8%,10.7%) (b) (12.2%,5.8%) (c) (10.0%,7.1%) (d) (19.6%,11.3%)

Figure 4: Visual comparison on examples from the KITTI stereo and flow datasets. We initialize our model with [29] (rank 374y for
stereo and [26] (rank 4t") for optical flow. For each example, we show (top row) its left-camera image, (middle row) color-coded disparity
map and (bottom row) error map scaled between 0 (black) and 5 (white). We mark regions with big improvement with cyan rectangles.
Note that those regions often correspond to semantic objects like cars, buildings, trees, and roads, where our data-driven regularizer can

use the good matches from training examples to make better guesses.

is “DDS-SS” on the benchmark website. Shown in Table 1,
our data-driven regularization model significantly improves
upon the initialization, by around 10%, and obtains compa-
rable results to that from the slanted-plane MRF regulariza-
tion model in [28]. In general, PCBP-SS performs better
in non-occluded regions while ours improves more in oc-
cluded regions. With the metric using a 4 pixel error thresh-
old, our proposed method outperforms [28] by 10% when
evaluated on the entire region, and is worse by 10% when
evaluated on the non-occluded region.

Qualitative Results We visualize results from the KITTI
stereo training dataset, to empirically understand when our
system works or fails.

(1) Success Cases The images from KITTI benchmark
are taken from a moving car and the scene structures are
similar to that in the LabelMe Outdoor dataset [16], where
the SIFT flow algorithm has been proved reliable for findng
contextual matches. In the left two columns in Figure 4, we

Retrieved Nearest Neighbor Retrieved Disparity

(a) Poor Image Retrieval
-

Test Image Initial Disparity Estimation

Error Map

(b) Poor Disparity Initialization

Figure 5: Two failure cases of little improvement on KITTI stereo
training examples. For test images (left), (a) GIST-based retrieval
finds images (middle) with dissimilar scene structures (right); (b)
the initial disparity estimate (middle) has large error (right).

show two stereo examples. Our model improves the dispar-
ity estimate for regions of cars and walls, which are matched
well from the training database.

(2) Failure Cases Figure 5, shows examples in two typ-
ical scenarios, where little improvement is obtained upon
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Figure 6: The effect of the matching quality. On the KITTI stereo
training data, we show (a) the anti-correlation between the match-
ing quality and our relative ratio of the improvement. We show (b)
a left-camera image (top) with its initial disparity estimate (bot-
tom). The (c) well-matched regions (blue) in the matching cost
map (top) correspond to regions with improved disparity estimate
(red) in the map of reduced disparity error (bottom).

the initialization. In the first scenario shown in Figure 4a,
for a test image (left), the retrieved training images (mid-
dle) based on the GIST descriptor have dissimilar disparity
structures (right). With the high SIFT flow matching cost,
the data-driven regularization terms have negligible weight
in the MRF model according to Eq (4), which leads to lit-
tle change from the initialzation. In the second scenario,
the initial disparity estimate can have too large an error to
be corrected. In Figure 4b, for a left-camera image (left),
the initial disparity estimate (middle) is off as a whole for
the tree regions, seen from the error map (right). Even with
the ground truth shape information, we cannot improve the
result due to the big offset from its initial error.

6.2. Breakdown System Analysis

Given the ground truth disparity from the KITTI stereo

training data, we perform a breakdown analysis to under-
stand the importance of the (1) matching results of the data-
driven technique, and (2) data-driven regularization model
in our stereo system. In practice, we randomly split the
stereo training data into a training set and a test set with 1:1
ratio.
Correlation with Matching Quality In Eq (3), the SIFT
matching cost for a test patch centered at pixel p is denoted
as m;(p). We here evaluate the matching result of a test
example with the total matching cost > min; {m;(p)}, the
sum of the smallest matching cost for each patch.

In Figure 5a, for all examples in the test set, we plot the
anti-correlation between the relative error change from the
data-driven regularization against the total matching cost.
As expected, if a test example retrieves better matches, then
it has bigger improvement. We visualize such correlation
qualitatively on a test example, shown in Figure 5b-c. In
Figure 5b, we show a test image (top) and its initial disparity
map (bottom). For each patch from the test image, we show
the map of its matching cost in the top row in Figure Sc,
within [0, 1] shown in the top of Figure 5c. where regions
of roads and buildings are well matched. In the bottom row
in Figure 5c, we show the map of reduced disparity error,

Smoothness Term | Initial| V V2 B Ours | GT

Coarse-to-Fine 12.6%| 14.0%| 11.8%| 10.6%| 8.3%| 5.0%

StereoSLIC [29] | 5.4% | 7.5% | 6.8% | 6.3% | 4.6%| 3.0%

Table 2: Comparison of different smoothness terms. Given the
same data term on KITTI stereo training data, our data-driven
smoothness term outperforms others. See the descriptions for
these smoothness terms in the text.

where positive values (red color) overlaps substantially with
regions with the smaller matching cost.

Comparison Against Other Smoothness Terms We fix
the data term of the stereo model and compare our data-
driven smoothness against the following smoothness terms:
first-order smoothness (V [13]), second-order smooth-
ness (V2 [27]), and the higher-order bilateral smoothness
(B [20]). We also include the upper bound result for our
model, which transfers the local shape information from the
ground truth disparity map (GT).

In practice, we calculate data terms following Eq (6) with

two different initializations: coarse-to-fine scheme of our
model and StereoSLIC [29]. The weight parameters for
each smoothness term (except for GT') are chosen through
the cross-validation procedure. The weight for GT is set
the same as the data-driven smoothness, otherwise the error
will drop to 0 with increasing weight. We evaluate the test
results with a threshold of 3 pixels on the entire disparity
map and we show in Table 2 that our data-driven smooth-
ness term consistently outperforms others. The gap between
ours and the upper bound performance is due to the perfor-
mance of the SIFT flow algorithm, which may fail to trans-
fer correct local shape information for some regions.
MRF Learning Results To estimate the weight parameter
~v(q), we run 50 steps of gradient descent, which is de-
scribed in Section 5.2. In Figure 6a, we show that these
~(q) learned from the approximated loss function can ef-
fectively decrease the desired loss evaluated under the true
0-1 penalty function. By the definition in Eq (1), v(q) re-
flects the importance of each position in a patch to regular-
ize the disparity value at the center pixel. In Figure 6b, we
visualize the weight vector 7y(g), where brighter pixels have
higher value. As the number of iterations increases, v(q)
evolves from the initial uniform configuration to a configu-
ration that favors regularization along the horizontal direc-
tion. In Figure 6¢, we show the change of the absolute error
rate on the test set of examples from using uniform weight
to the learned parameters. On average, the new parameters
only marginally improve the performance on the test set by
0.1%.

7. Experiments on Flow

In this section, we first evaluate our model on the KITTI
flow benchmark [7], which is comparable to a recent state-
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Figure 7: MREF learning result on the first 10 training examples
from the KITTI stereo dataset. (a) the average 0-1 loss decreases
over the iterations; (b) the weight vector learned by the approx-
imated loss function at iteration {0, 10, 20, 30, 40, 50}; (c) the
histogram of the change of the error rate on the test set with the
learned parameters, where the improvement is insignificant.

of-the-art method (excluding those using additional frames
or restrictive prior information [29]). Then, we show signif-
icant improvement on the training sequences from the Sin-
tel flow dataset [4] in an online flow estimation scenario. In
the flow experiments below, we use the same MRF model
parameters for flow as that for stereo.

7.1. Benchmark Results on KITTI Flow Dataset
The KITTI flow dataset provides 194 pairs of temporal
adjacent frames for training and 195 pairs for testing.
Quantitative Result The best available initialization on the
benchmark is from DataFlow [26], whose model is sim-
ilar to ours without the data-driven regularization. Thus,
we directly use the coarse-to-fine initialization of our own
model and our entry name is “DDS-DF” on the bench-
mark website. Shown in Table 3, our data-driven regular-
ization model significantly improves upon the initialization
by around 10% and obtains comparable results to the recent
state-of-the-art method [ 1 8]. With the metric using a 4 pixel
error threshold, our proposed method outperforms [18] by
1% when evaluated on the entire region, and is worse by 8%
when evaluated on the non-occluded region.
Qualitative Results We visualize results from the KITTI
flow training dataset. As the failure mode for flow is similar
to that for stereo, we describe two successful examples in
the right two columns in Figure 4. Note that our model
improves the flow estimate for regions of trees and roads,
which are matched well from the training database.

7.2. Results on Sintel Dataset

Smoothness Term | Initial | V | V2 | B | Ours
Endpoint Error 8.7 85178 |74 | 62

Table 4: Results on the Sintel flow dataset with the same data
term but different smoothness terms. Our data-driven smoothness
term outperforms others. “Initial” result is obtained by [26].

The Sintel dataset contains CG-generated, naturalistic
video sequences that are challenging for large motion am-
plitude, motion blur and non-rigid motion. However, its 23

(b) Last Frame and gt flow

MO

10119

(a) First Frame and gt flow

(c) Bilateral Smoothness Result

(d) Ours Result

Figure 8: (a) the first frame and its GT flow from a training se-
quence from the Sintel flow dataset; (b) the last frame and its GT
flow from the same sequence; (c) flow estimate with bilateral reg-
ularization and its error map; (d) flow estimate with our and its
error map. Error maps are scaled between 0 (black) and 5 (white).

training sequences share little similar scene structure with
the 12 testing sequences, which breaks the assumption of
our model. We here benchmark our model under the online
estimation scenario: Given the ground truth flow for the first
two frames, the goal is to improve the flow estimate for the
later frames. Such a scenario could be useful to avoid the
costly computation of the flow estimate from more com-
plicated algorithms for every pair of adjacent frames. In
Figure 7a, we show the first frame (top) and its ground truth
flow (bottom) from a training sequence in the Sintel dataset.
Although the sequence contents change significantly over
time, the background scene structures still share a certain
similarity. In Figure 7b, we show the last frame (left) and
its ground truth flow map (right).

Quantitative Result We follow the same procedure as in
Section 6.2 to compare our data-driven smoothness term
with other smoothness terms. For comparison, we evaluate
the standard Endpoint Error for the flow between the last
two frames averaged over all training sequences. Shown
in Table 4, our data-driven smoothness term outperforms
those popular smoothness terms. In Figure 7c, we show the
flow estimate (top) and the error map (bottom) of the bilat-
eral smoothness term, which can’t correctly infer the object
boundary from color information due to the low contrast.
Shown in Figure 7d, our data-driven smoothness term alle-
viates the problem of over-smoothing flow by transferring
the regularization on scene structures from the ground truth
flow between the first two frames.

8. Summary

Recent data-driven techniques can reliably estimate,
from a single test image, scene properties such as high-
resolution appearance or depth. Here, we incorporate a
non-parametric approach into a generative MRF model to
improve results for stereo and flow estimation. We regu-
larize the estimates based not only on local appearance but
also on the scene properties of contextually similar images



> 2 pixels > 3 pixels > 4 pixels > 5 pixels
Non-Out All Non-Out All Non-Out All Non-Out All
NLTGV-DF [18] | 7.64% | 1455 % | 593 % | 11.96 % | 508 % | 1048 % | 450 % | 9.42 %
DDS-DF (Ours) | 823% | 1601% | 6.03% | 13.08% | 5.03% | 11.49% | 441 % | 1041 %
Data-Flow [26] 916 % | 1741% | 711 % | 1457% | 6.05% | 1291% | 534 % | 11.72%

Table 3: On the KITTI flow test data, ours is comparable to a recent state-of-the-art algorithms and the smallest error rate is marked in

bold. “All*“ means evaluation is on the entire region, while “Non-Out* evaluation is on the non-occluded region.

from a labeled database.

This data-driven regularization

model can better distinguish the ambiguity between appear-
ance and scene properties, through exploiting the contextual
similarities.
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