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Abstract

Each corner of the inhabited world is imaged from mul-

tiple viewpoints with increasing frequency. Online map ser-

vices like Google Maps or Here Maps provide direct access

to huge amounts of densely sampled, georeferenced images

from street view and aerial perspective. There is an oppor-

tunity to design computer vision systems that will help us

search, catalog and monitor public infrastructure, buildings

and artifacts. We explore the architecture and feasibility of

such a system. The main technical challenge is combin-

ing test time information from multiple views of each geo-

graphic location (e.g., aerial and street views). We imple-

ment two modules: det2geo, which detects the set of loca-

tions of objects belonging to a given category, and geo2cat,

which computes the fine-grained category of the object at a

given location. We introduce a solution that adapts state-of-

the-art CNN-based object detectors and classifiers. We test

our method on “Pasadena Urban Trees”, a new dataset of

80,000 trees with geographic and species annotations, and

show that combining multiple views significantly improves

both tree detection and tree species classification, rivaling

human performance.

1. Introduction

In this very moment thousands of geo-tagged images of

almost any location of the populated world are being cap-

tured and shared on the web. There are two main sources

of publicly available images, user-contributed photographs

and imagery from online mapping services. While user-

provided photographs cover mostly popular sites, system-

atic commercial efforts provide a homogeneous and dense

coverage of the populated parts of the world, especially ur-

ban areas. This includes overhead imagery captured by

satellite and aircraft, and high-resolution ground panoramas

that are regularly distributed along the road network [3].

Browser-based interfaces such as Google Maps provide free

and well-structured access to this rich, up-to-date and geo-

coded treasure trove.

Publicly available imagery has already found its use in
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Figure 1. Overview of proposed automated public tree cataloguing

system from online maps. Aerial images and street view panora-

mas along with semantic map data are downloaded for some ge-

ographical region. Category detection and fine-grained classifi-

cation algorithms are trained from human-annotated exemplars.

Detection, classification and geolocation information is computed

automatically from multiple street view images and aerial images

and combined with map data to achieve a geolocated fine-grained

catalog. The image shows a catalog of location and species of trees

in a medium-sized city.

a great number of applications and circumstances. To cite

a few: navigation and geo-localization [19, 3, 34], virtual

tourism [2], urban planning and evaluation of the quality of

public spaces [23, 18, 17]. However, the process of cata-

loguing and classifying visible objects in the public space

(e.g. street signs, building facades, fire hydrants, solar pan-

els and mail boxes) is still carried out ‘by hand’, often by in-

person inspection or from expensive ad-hoc imagery such as

LiDAR. Due to the cost, time, and organizational headache

it involves, such information is rarely collected and ana-

lyzed. Harvesting such information automatically from on-

line maps will provide inexpensive ready-to-use and reliable

information to the public, to administrators, and to scientists

which would greatly improve the quality and timeliness of

public resource management.

We present a vision-based system that systematically de-

tects and classifies publicly visible objects. Overhead and

street-view imagery are combined to populate and update a
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public inventory of trees with GPS position and fine-grained

species at virtually no cost. Our methods were motivated

by a large-scale tree mapping project called Opentreemap1

aiming to build a centralized, publicly available, and fre-

quently updated tree inventory for each city in the world.

The project is stifled by the significant amount of human

labor required to catalogue trees. We speculated that Com-

puter Vision may make it viable and explored the question

of which combination of geometry and recognition would

be most appropriate. Our main contributions are:

1. det2geo: a method to generate a geographic catalog of

objects belonging to a given category using multiple aerial

and street-level views of each location.

2. geo2cat: a method to compute the fine-grained class la-

bel of the 3D object at a given geographical coordinate us-

ing multiple aerial and street-level views.

3. Pasadena Urban Trees: A dataset of about 80,000 trees

tagged with species labels and geographic locations, along

with a comprehensive set of aerial, street view, and map im-

ages downloaded from Google Maps (>100,000 images).

To build geo2cat and det2geo, we created methods to au-

tomatically download and mutually register aerial and street

view images from Google maps. We document the appro-

priate geometric routines needed to register each type of

Google maps image, such that they can easily be integrated

with computer vision algorithms (Section 3). We believe

that, compared to most prior work, we have gone more in

depth to integrate modern, learning-based methods for de-

tection (Section 4) and recognition (Section 5) with multi-

view geometry and maps data to obtain multi-view visual

detection and recognition. We find that multi-view recogni-

tion of 3D objects provides significant empirical gains over

the customary single view approach: mean average preci-

sion increases from 42% to 71% for tree detection, and tree

species recognition accuracy is improved from 70% to 80%
(Section 7). We motivate and test our algorithms with an

important real life application and a new dataset (Section 6).

Our methods are already working well enough to have prac-

tical impact.

2. Related work

During the past ten years a number of creative and po-

tentially useful ideas have emerged, how to make use of

publicly available geo-referenced imagery. Amongst these

are the analysis of social networks [7], the identification of

popular landmarks [29, 8], scene reconstruction, 3D models

and visualizations [20, 2, 1, 11] and 4D models that capture

changes over time [35]. Many of these studies are based

on images shared by individual users, whose uneven spa-

tial distribution has been recognized as a fundamental lim-

itation [20, 2]. Regularly sampled street-level and satellite

pictures have been used to obtain more complete coverage

1https://www.opentreemap.org/

and reconstructions [45]. Researchers have proposed visual

recognition and classification methods for inferring Geo-

localization from single images [19, 30, 31] for applications

like land cover classification [28] or to build large-scale

maps of snow coverage or bird species distribution [46].

A number of studies have proposed methods for au-

tomating the detection of publicly visible objects. These

methods make use of ad-hoc special-purpose imagery [42]

or laser scans [16, 26]. One recent approach to tree detec-

tion in cities with aerial RGB images is [48]. They first

classify aerial images into tree and background pixels with

a CRF under the standard Potts prior. Single trees are ex-

tracted by matching a template to candidate tree regions,

followed by a set of rules that greedily selects best matches

while minimizing overlap of adjacent templates. It is not yet

clear whether that method will scale up to entire cities with

many different tree shapes since the experiments are carried

out on limited datasets. The study focusses on detection and

does not address species classification.

Tree species classification from remote sensing data usu-

ally relies either on species-specific spectral signatures in

hyperspectral data [6, 39] or on dense full-waveform Li-

DAR returns that capture the distinctive reflectance patterns

of the laser beam penetrating the canopy [5, 49]; or on a

combination of LiDAR data and aerial imagery, to exploit

both the height distribution of the LiDAR returns and the

image radiometry and texture [21, 24, 22]. Classifiers are

mostly trained for a relatively small number of species (3

in [27, 21, 24], 4 in [22], 7 in [47, 37]).

An alternative to remote sensing is to acquire images of

tree details (e.g., of leafs, bark) in situ, and match them to

a reference database [9, 25, 36, 15, 14]. If turned into a

smart-phone app like Pl@ntNet [15, 14] or Leafsnap [25]

they enable anyone to recognize the species of a particular

plant. The main goal of such apps has been to educate users

about plants. It seems difficult to collect a complete and

homogeneous tree inventory with them due to the fact that

each tree must be visited by at least one person.

Recent work tries to establish correspondence between

street-view data and oblique aerial imagery with a learned

matching function [32, 33]. We are not aware of any prior

work that combines aerial and street view images as differ-

ent cues that can be used with modern learning-based de-

tection and fine-grained recognition algorithms. We also do

not know of any work that recognizes more than a handful

of species without dedicated sensor data like hyper-spectral

images or high-density LiDAR.

Unlike previous studies we approach the detection and

classification of urban objects, trees in this paper, by using

exclusively images that are publicly available. We find that

the two points of view, aerial and street-view, complement

each other well. The trick is to do late fusion of category la-

bels: the outputs of state-of-the-art CNN detectors and clas-

https://www.opentreemap.org/
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Figure 2. (a) Geometry of the street view acquisition system. The

Google car sits on the surface of the earth at coordinate (lat,lng). A

tree is represented in ENU coordinates formed by a plane tangent

to the earth at the location of the camera. The heading of the car

rotates this point to determine the tree’s location in a panorama

image. (b) An example of a 360
◦ street view panorama image.

sifiers are combined in a probabilistic framework. In this

way, one circumvents the difficult problem of establishing

sparse (let alone dense) correspondence across very wide

(≈ 90◦) baselines and scale differences. Note also that, un-

like most other methods, our formulation does not require

any prior segmentation into superpixels, hierarchies of ad-

hoc rules, or pre-designed top-down tree models. In many

cases it is not even necessary to annotate training data, be-

cause geo-referenced tree inventories already exist in many

regions of the world – i.e., our training data was generated

by downloading publicly available resources from the web.

3. Online map data

As a data source we use publicly available images of

Google maps, including aerial imagery, street view imagery,

and map data (see Figure 1). Given a geographic region of

interest (e.g., the city of New York), we first densely down-

load all relevant images from static URLs. For each type of

image modality v (e.g., street view or aerial view), we com-

puted the function ℓ′ = Pv(ℓ, c) that projects a geographic

latitude/longitude location ℓ = (lat, lng) to its correspond-

ing image location ℓ′ = (x, y) given camera parameters c.
These projection functions will provide a building block for

using Google maps data with different types of computer

vision algorithms in subsequent sections of the paper.

Street view images: We can estimate geographic coordi-

nates of an object from a single street view panorama under

the assumption of known camera height and locally flat ter-

rain. We first represent the object in Local east, north, up

(ENU) coordinates with respect to the position of the cam-

era. This means that if we position a plane tangent to the

surface of the earth at lat(c), lng(c) and define a coordinate

system where the x-axis points east, the y-axis points north,

and the z-axis points up (Fig. 2), then the ENU position of

an object sitting on the ground at (lat, lng) is

(ex, ey, ez) =
(
R cos[lat(c)] sin[lng − lng(c)],

R sin[lat− lat(c)],−h
) (1)

where h is the height that the Google street view camera

is mounted above the ground and R is the radius of the

earth. The object is then at a distance z =
√

e2x + e2y
from the camera (measured on the ground plane). It sits

at a clockwise angle of arctan(ex, ey) from north, and a tilt

of arctan(−h, z) (Fig. 2). The ENU coordinate can be con-

verted into cylindrical coordinates using the camera’s head-

ing to obtain image coordinates ℓ′ = (x, y). The resulting

image projection (x, y) = Psv(lat, lng, c) is computed as

x =(π + arctan(ex, ey)− yaw(c))W/2π

y =(π/2− arctan(−h, z))H/π
(2)

where the panorama image is W ×H pixels.

Aerial images: Due to space limitations, we include the

form of ℓ = P−1
v (ℓ′, c) and further information about geo-

metric transformations in the supplementary results.

4. det2geo: Multi-view detection

The goal of det2geo is to process image sets and map lay-

ers downloaded from Google maps and automatically gen-

erate a catalog of all geographic locations of an object of

interest. We introduce methods to augment state-of-the-art

learning based object detection systems with multi view ge-

ometry and maps such as the location of roads.

A minor complication to using conventional object de-

tection methods is that our target outputs and training anno-

tations are geographic coordinates (latitude/longitude)–they

are points rather than bounding boxes. A simple solution is

to interpret boxes as regions of interest for feature extrac-

tion rather than as physical bounding boxes around an ob-

ject. At train time we can convert geographic coordinates to

pixel coordinates using the appropriate projection function

Pv(ℓ, c) and create boxes with size inversely proportional

to the distance of the object to the camera. At test time, we

can convert the pixel location of the center of a bounding

box back to geographic coordinates using P−1
v (ℓ′, c). Do-

ing so makes it possible to train single-image detectors. In

the next section, we show how to build a multi-view de-

tector that combines multiple images and other sources of

information probabilistically.

4.1. Multi­view detection

As a base detection system, we use the publicly available

implementation of Faster R-CNN [38]. Faster R-CNN is

a recent state-of-the-art method that significantly improves

the speed of R-CNN [13] and Fast R-CNN [12], all of which

are based on convolutional neural networks (CNNs) and re-

gion proposals.
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Figure 3. Multi View Detection: We begin with an input region (left image), where red dots show available street view locations. Per

view detectors are run in each image (top middle), and converted to a common geographic coordinate system. The combined proposals

are converted back into each view (bottom middle), such that we can compute detection scores with known alignment between each view.

Multi-view scores are combined with semantic map data and spatial reasoning to generate combined detctions (right).

In our approach, we allow promising detection regions

in one view to augment the region proposal set of the other

views. The multiview detection score of a geographic co-

ordinate is obtained by combining the corresponding detec-

tion scores in each view, and thresholding and non-maximal

suppression occurs over regions represented in geographic

coordinates rather than in pixel coordinates of any one view.

We use the following procedure:

1. For each view v, generate region proposals Rv by run-

ning a detector with a liberal detection threshold

2. Compute a combined multi view region proposal set

R by taking the union of all view proposals Rv af-

ter warping them into geographic coordinates R =

{P−1
v (ℓvj , cv)}

|Rv|
j=1 , where ℓvj is the pixel location of

the jth region center.

3. For each view v, evaluate detection scores on the com-

bined multi view proposal set R after converting each

region ℓk into image coordinates Pv(ℓk, c).

4. Compute a combined detection score by adding to-

gether the detection scores of each view. Apply a de-

tection threshold τ2 and suppress overlapping regions

to obtain geographic detections.

Figure 3 shows a visualization of the approach. It is de-

signed to be able to always combine information from each

view, even when the region proposal or detection system

fails in a subset of the views. Additionally, we attempt to

minimize computation time by keeping the combined pro-

posal set R as small as possible. Note that although we

use Faster R-CNN, our method can work with any major

object detection algorithm, including methods that use re-

gion proposals or methods that compute detection scores in

sliding window fashion. A limitation though is that sim-

ply adding the detection scores together is suboptimal when

some views are more reliable sources of information than

others. In the next section, we describe a procedure to

learn how to combine them probabilistically and also in-

clude other sources of information.

4.2. Probabilistic model

Let T be a candidate set of object detections, where each

ti ∈ T represents an object location in geographic coordi-

nates. Let lat(t) and lng(t) be shorthand for the latitude and

longitude of t. Our goal is to choose the best set of objects

T that factors in different sources of information, including

aerial view imagery, street view imagery, semantic map data

(e.g., the location of roads), and spatial context of neighbor-

ing objects. We combine these sources of information using

a conditional random field:

log p(T ) =
∑

t∈T

(

Λ(t, T ;α)
︸ ︷︷ ︸

spatial context

+Ω(t,mv(t);β)
︸ ︷︷ ︸

map image

+ Ψ(t, av(t); γ)
︸ ︷︷ ︸

aerial view image

+
∑

s∈sv(t)

Φ(t, s; δ)
︸ ︷︷ ︸

street view images

)

− Z

(3)

where Λ(), Ω(), Ψ(), and Φ() are potential functions

with learned parameters α, β, δ, γ, av(t) and mv(t) are

the IDs of aerial and map view images that contain object

t, sv(t) is the ID of the set of street view images where t is

visible (with associated meta data defining the camera po-

sition), and Z is a normalization constant. We define these

terms below:

Aerial View Potential: We define the aerial view potential

to be the detection score evaluated at the appropriate region:

Ψ(t, av(t); γ) = CNN(X(av(t)),Pav(t); γ) (4)

where X(av(t)) is the aerial image, γ encodes the weights

of the aerial view detection CNN, and Pav(t) transforms



between pixel location and geographic coordinates.See sup-

plementary material for details.

Street View Potential: Similarly, we define the potential

function for a street view image s ∈ sv(t) as

Φ(t, s; δ) = CNN(X(s),Psv(t, c(s)); δ) (5)

where X(s) is a street view image, δ encodes the weights

of the street view detection CNN, and Psv(t, c) is defined

in Equation 2. Note that each object t might be visible in

multiple street view images. We tried two approaches for

defining the set sv(t) of relevant images: 1) We select a sin-

gle street view image that is closest to the proposed object

location t, or 2) We select all images that were taken within

a prespecified distance threshold τsv between t and the cam-

era location c(s). We empirically found the first approach

to give better results, probably due to lower likelihood of

occlusion and effect of camera heading error2.

Spatial Context Potential: The purpose of the spatial con-

text potential is to impose a prior on the distance between

neighboring objects. For example, two trees cannot phys-

ically grow in the same location and are unlikely to be

planted in very close proximity. At the same time, neigh-

boring trees are often planted in regularly spaced intervals

parallel to the road. Let ds(t, T ) = mint′∈T ‖t−t′‖2 be the

distance to the closest neighboring object, and Qs(ds(t, T ))
be a quantized version of ds. That is, Qs() is a vector in

which each element is 1 if ds lies within a given distance

range and 0 otherwise. We then learn a vector of weights α
(see Fig.8 in supplementary material), where each element

αi can be interpreted as the likelihood that the closest object

is within the appropriate distance range. Thus

Λ(t, T ;α) = α ·Qs(ds(t, T )) (6)

In our experiments, we compare this to a term that forbids

neighboring objects to be closer than τnms

Λnms(t, T ;α) =

{

−∞ if ds(t, T ) < τnms

0 otherwise
(7)

This is analagous to a traditional non-maximal suppres-

sion term that suppresses overlapping bounding boxes. The

learned approach has the advantage that it can learn to softly

penalize objects from being too close. It can also learn that

it is unlikely for an object such as a tree to be completely

isolated from other trees.

Map Potential: Google maps offer additional semantic in-

formation that may provide useful priors for detection. In-

tuitively, an object such as a tree cannot lie in the middle of

the road. Moreover, trees are often planted alongside roads

at a fixed distance. We download Google maps images and

2Future extensions could better exploit multiple views by inversely

weighting their influence with distance from the object, for example.

use simple image processing techniqes to compute the dis-

tance from each pixel to the nearest road3. Let dm(t) be the

distance in meters between an object t and the closest road.

Similar to the spatial context term, we quantize this distance

into geometrically increasing intervals and learn a prior βi

(see Fig.8 in supplementary material) on each interval:

Ω(t,mv(t);β) = β ·Qm(dm(t)) (8)

Inference: At test time, our goal is to choose a catalog

of object detections T ∗ = argmaxT log(p(T )) that maxi-

mizes Equation 3. This is in general a challenging problem;

however, a widely used procedure is to iteratively add new

detections using a greedy algorithm. That is, we begin with

T = ∅, and iteratively append a new detection

t′ = argmax
t

log(p(T ∪ t)) (9)

stopping when no new object can be found that increases

log p(T ). This is efficient to compute because we can pre-

compute the combined detection score Ω(t,mv(t);β) +
Ψ(t, av(t); γ) +

∑

s∈sv(t) Φ(t, s; δ) for each location t in

our combined multi view region proposal set R, then up-

date our computation of the spatial term Λ(t, T ;α) every

time we add a new detection t′. This greedy procedure is

a very commonly used procedure in object detection and is

a well known probabilistic interpretation of non-maximal

suppression that has known approximation guarantees for

some choices of Λ() [4, 43].

Learning: At training time, our goal is to learn parameters

α∗, β∗, δ∗, γ∗ = argmaxα,β,δ,γ log(p(T )) that maximizes

Equation 3, where T is the set of objects in our training set.

For practical reasons, we use piecewise training, which is

known to work well for these types of CRFs [41] and offers

convenience in terms of optimization and modularity. Here,

we subdivide the training set into a validation set Dv and

training set Dt, then learn each parameter vector α, β, δ, γ
separately over their respective potential terms. Next, we

learn a weighted combination of each potential term on the

validation set. For details see the supplementary material.

5. geo2cat: Fine-grained classification

geo2cat aims to predict the fine-grained category of

an object that has already been geolocated (e.g., using

det2geo). We propose to apply state-of-the-art CNNs, and

combine their outputs on aerial and street view imagery.

The method first obtains cropped versions of each ob-

ject at different zoom levels using the appropriate projec-

tion function Pv(ℓ, c) defined in Section 3. Each cropped

3Roads are distinguishable as pixels with value 255. Morphological

opening removes other small symbols that also have value 255. Morpho-

logical closing removes text written on roads. A distance transform com-

putes per pixel distances to road.



region is then fed through a CNN feature extractor. After

testing several models we found that the GoogLeNet CNN

model [44] offered the best compromise in terms of recogni-

tion performance, run-time, and memory consumption. We

train one CNN model per viewpoint and zoom level using

a log-logistic loss via stochastic gradient descent. We fine-

tune the weights of each model after initializing them to

weights pre-trained on ImageNet [40]. The learning rate is

initially set to 0.001. After every ten epochs, it is decreased

by a factor ten for 30 epochs in total. We then discard the

top, fully-connected layer per model and extract features

from the pool/7 × 7 layer of the GoogLeNet model. The

resulting feature vector per model has 1024 dimensions.

We concatenate all feature vectors of all models (views and

zooms) per tree to a single feature vector4 which we then

use to train a standard linear SVM5.

6. The Pasadena Urban Trees Dataset

We apply det2geo and geo2cat to a new dataset, moti-

vated by a collaboration with Opentreemap–a large-scale

project to build and maintain a geographic catalog of tree

species. We collected the dataset by downloading publicly

available aerial and street view images from Google Maps

at city-scale. As test area, we chose Pasadena because 1)

an up-to-date tree inventory (as of 2013) with annotated

species is publicly available and 2) image data are as of Oc-

tober 2014 (street view) and March 2015 (aerial images).

The Pasadena tree inventory is publicly available as a kml-

file that contains rich information for ≈ 80,000 trees on pub-

lic ground. We estimate that these constitute ≈ 20% of all

trees in Pasadena. Figure 4 (top) shows an overview of all

trees in the Pasadena city center that were used for exper-

iments. Each tree is mapped with its geo-location, street

address, species, and trunk diameter.

Detection data set: We densely downloaded all street view,

aerial, and map images for Pasadena. This included 1)

46,321 street view panorama images of size 1664× 832 px
and their associated camera locations and meta data, 2)

28,678 aerial view images of size 256 × 256 px (at ≈
0.15 m resolution), and 3) 28,678 map view images of size

256 × 256 px. We converted the geographic locations of

the 80, 000 Pasadena trees to the appropriate pixel locations

in each image. Since the inventory does not include trees

on private land, we densely labeled all tree locations in a

subset of 1,000 aerial view images and 1,000 street view

images using Mechanical Turk, which we used to train ob-

ject detectors.

Species recognition data set: We downloaded four dif-

4to form a vector of 4096 dimensions in our case with one aerial image

and street views at three different zoom levels per tree. A (probably more

elegant) alternative to simple feature concatenation would be to explicitly

encode the three panorama zoom levels in a single CNN architecture.
5experiments with Neural Nets decrease performance by 2 percent

Figure 4. Top: Overview of the Pasadena 2013 public tree inven-

tory data set. Bottom: Aerial image and street view panorama

examples from Google maps at zoom levels 40, 80, and 110.

ferent images per tree from Google Maps around the ap-

propriate geographic position for 18 different species (see

Fig. 5, 5205 trees in total) that have between 100 and 600

instances: one aerial image and street view images at three

different zoom levels 40, 80, and 110 (Fig. 4 (bottom)).

While automated downloads facilitated data collection for

thousands of trees within a few hours, the images are sub-

ject to some noise (e.g., a tree may be occluded by a truck,

or it has been removed after the inventory date). Manual

evaluation of a dataset subset showed that < 5% of images

were affected. We did not manually filter data, so as to keep

the processing pipeline fully automatic. Rather, we rely on

the learning algorithm to cope with label noise.

7. Experiments

We evaluate the proposed approach in terms of detec-

tion accuracy and species classification accuracy separately

on the dataset described in Section 6. We split the dataset

into 16 geographically separated rectangular regions (9 for

training, 6 for testing, and 1 for validation).

7.1. det2geo: Tree detection

Evaluation: We evaluated detection performance in terms

of average precision (precision averaged over all levels of

recall), which is the standard metric used in the VOC Pas-

cal Detection Challenge [10]. Here, candidate trees were

ranked by their score combining aerial, streetview, and map

imagery and spatial context (the 4 terms in Eq. 3 for a given

tree t) and enumerated in order6. Since our goal is to pre-

6A current limitation of the system is that it does not detect objects

at the wrap-around of street view panoramas, which could be fixed by

padding images from the other side of the panorama.



AS: 155 BT: 566 BB: 309 BC: 313 CF: 522 CI: 593 CA: 314 CW: 305 CE: 330

DP: 170 FP: 160 GP: 129 IC: 140 IF: 335 IP: 270 JA: 315 SA: 166 YP: 113

Figure 5. Examples of the 18 species for GPS2Cat and their number of occurrences (5205 trees in total, see abbreviations in Fig. 6).

dict the latitude and longitude of trees rather than bound-

ing boxes, predictions within a threshold of 4 meters from

ground truth were considered to be valid matches. Note

that the typical difference of our system from ground truth

is 1 − 2 m, equal to ground truth accuracy7. We plot our

results in Figure 6 and summarize our results below:

Significant improvement combining multiple views: Our

full model obtained .706 mAP, a significant gain over the

.42 mAP achieved from a pure aerial view detector us-

ing the same Faster R-CNN detection system [38]. This

baseline is perhaps the most straightforward way to apply

a current state-of-the-art detector to Google maps imagery

without developing a way of combining multiple views. A

pure street view detector achieves better performance (.581
mAP). This is a stronger baseline because it requires using

geometry to combine multiple street view images–we im-

plemented it by omitting non-streetview terms from Eq. 3

and applying non-maxima suppression (Eq. 7). We found

that many penalized detections were in fact trees located

on private land, which weren’t included in our inventory8.

Thus performance in practice was better than what .706
mAP would indicate.

Each component of the model is useful: To validate our

model, we performed additional lesion studies. In Fig-

ure 6 top, ”No Aerial”, ”No Streetview”, and ”No Map”

remove the applicable potential term from the full model in

Eq. 3. ”No Spatial” replaces the learned spatial context term

(Eq. 8) with a more conventional non-maximal suppression

term (Eq. 7). We see the biggest loss in performance if we

drop street view images (.706 → .462 mAP) or aerial im-

ages (.706 → .619 mAP). Dropping the map term results in

a smaller drop in performance (.706 → .667 mAP). Replac-

ing the learned spatial context potential with non-maximal

suppression results in only a small drop (.706 → .69 mAP).

For each lesioned version of the system we re-learn an ap-

7We are currently initiating a field campaign with high-accuracy dGPS

to quantify these errors.
8This is a limitation of the current ground truth and obtaining pub-

lic/private land boundaries is an important next step.

propriate weight for each potential function on the valida-

tion set. The method ”No CRF Learning” shows results

if we use the full model but omitted learning these scaling

factors and set them all to 1 (results in a .706 → .66 mAP

drop). Additional analysis, visualizations, and qualitative

examples are included in the supplementary material.

7.2. geo2cat: Tree species classification

First, we compare single view recognition (aerial or

street view) to the combination of all four images per tree.

If classifying tree species based on only one image per

tree (instead of three zoom levels and one aerial view),

we achieve ≈ .66 average precision for aerial images, and

≈ .70 per zoom level 40, 80, and 110. Combining features

of all four models per tree, we see a significantly higher

performance of .80 average precision and .79 average recall

over all species. According to collaborators at TreePeople9,

our recognition performance is comparable to that achiev-

able using citizen scientists, due to the significant amount

of expertise required.

Close inspection of per species results (Fig. 6) reveals

that not all tree species can be recognized equally well.

Shamel Ashes (SA) are the most error prone (.46 precision,

.35 recall) whereas American Sweetgums are recognized

almost perfectly (1.0 precision, .93 recall). Note that the

number of occurrences per tree is quite unevenly distributed

(only 113 Yew Pines vs. 593 Canary Island Date Palms).

Generally, strongly varying lighting conditions (cf. Fig. 5),

partial occlusions, and differing size, shape, and general ap-

pearance per species make fine-grained classification chal-

lenging. We also observe that some species tend to be lo-

cated in a few larger clusters in very different contexts (e.g.,

Shamel Ashes), while others are evenly distributed across

the city. This makes generalization challenging.

We visualize the confusion matrix of tree species recog-

nition in Fig. 7. We see that most tree species are recognized

well (dominant, most orange values on main diagonal). We

can also observe that there is hardly any dominant confusion

9www.treepeople.org

www.treepeople.org
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Figure 6. Top: Comparison of the full tree detection model to sin-

gle view aerial and street view detectors and lesioned models. cen-

ter, bottom: Tree species recognition results left to right: Ameri-

can Sweetgum (AS), Bottle Tree (BT), Brisbane Box (BB), Brush

Cherry (BC), California Fan Palm (CF), Canary Island Date Palm

(CI), Carob (CA), Carrotwood (CW), Chinese Elm (CE), Date

Palm (DP), Fern Pine (FP), Guadalupe Palm (GP), Incense Cedar

(IC), Indian Laurel Fig (IF), Italian Cypress (IP), Jacaranda (JA),

Shamel Ash (SA), Yew Pine (YP).

between two particular species for any possible combina-

tion. For example, out of all tree species Shamel Ash (SA)

has highest confusion with other species, but confusion is

more or less evenly distributed across alternate species.

8. Conclusion

The picture of all that may be visible outdoors in the

populated world is sampled with increasing temporal and

spatial resolution. This ‘World-Wide Light Field (WWLF)’

allows machines to discover, catalogue and monitor public

objects in the real 3D world. We built and tested two prim-

itives that help automate the exploration of what is visible

in the WWLF: geo2cat given GPS coordinates it computes

Figure 7. Confusion matrix of tree species recognition results.

More orange indicates higher values (see Fig. 6 for abbreviations)

the fine-grained class of the object at that location, while

det2geo produces the list of GPS coordinates of objects that

belong to a chosen category.

We have tested our algorithms on a specific benchmark:

detecting trees of the urban forest and classifying their

species. geo2cat distinguishes 18 different species using

state-of-the-art CNNs on RGB aerial and street view images

at multiple zooms. det2geo finds the locations of urban trees

(on public land), with the help of probabilistic CRF-based

fusion on CNN detector scores across views.

Our experiments suggest that publicly available imagery

supports both accurate detection, and accurate fine-grained

classification of publicly visible objects. This is good news

because cataloguing of publicly visible objects is currently

carried out with specialized imagery (LiDAR, hyperspec-

tral) that is collected ad-hoc, and/or with in-person visits.

Our next goal is to explore how well our algorithms scale

to planet-wide exploration. We are planning to engage in a

US-wide tree catalog of the urban forest, which is highly

valuable for city planners. We will also attempt to estimate

further parameters like the trunk diameter of trees. Another

interesting challenge will be to combine automated meth-

ods, such as geo2cat and det2geo with crowdsourcing to

fill in missing objects. To this end we will explore how to

engage citizen scientists to carry out image-based and in-

person verification of the data.

Our method is not limited to trees, and we expect it

to generalize to other types of urban objects, for example,

lamp posts, mailboxes, traffic lights. And it should become

even more relevant as more city-scale imagery becomes

available (e.g., videos from driver assistance systems).
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