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We present a probabilistic representation of network structures in images. Our target application is the
extraction of urban roads from aerial images. Roads appear as thin, elongated, partially curved structures
forming a loopy graph, and this complex layout requires a prior that goes beyond standard smoothness
and co-occurrence assumptions. In the proposed model the network is represented as a union of 1D paths
connecting distant (super-)pixels. A large set of putative candidate paths is constructed in such a way that
they include the true network as much as possible, by searching for minimum cost paths in the
foreground (road) likelihood. Selecting the optimal subset of candidate paths is posed as MAP inference
in a higher-order conditional random field. Each path forms a higher-order clique with a type of clique
potential, which attracts the member nodes of cliques with high cumulative road evidence to the
foreground label. That formulation induces a robust PN-Potts model, for which a global MAP solution
can be found efficiently with graph cuts. Experiments with two road data sets show that the proposed
model significantly improves per-pixel accuracies as well as the overall topological network quality with
respect to several baselines.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Despite more than three decades of research, automatic road
extraction from remote sensing data remains to a large degree
unsolved. Since the initial attempts in the mid-seventies (Bajcsy
and Tavakoli, 1976) important progress has been made – see the
overview papers (Heipke et al., 1997; Mayer et al., 2006) – but to
our knowledge no fully automated road extraction system so far
performs at a level that would allow operational use. In practice
the extraction or update of roads is at most semi-automatic and
requires a significant degree of user interaction, e.g. (Gerke et al.,
2004; Zhang, 2004; Helmholz et al., 2012).

Factors that make the task challenging are strong illumination
effects, appearance variations due to clutter and shadows, and
occlusion by nearby buildings and vegetation. In urban environ-
ments these factors are compounded with highly variable road
width, density and curvature, which makes the extraction particu-
larly difficult. Even in ‘‘planned’’ cities with a regular grid layout
(e.g., many American towns) nearby trees and buildings frequently
cast shadows on roads or occlude them altogether. For older or
more informally growing cities with irregular, narrow, winding
roads the problem becomes much worse.
Road extraction in the presence of noisy and ambiguous
low-level image evidence requires strong a priori knowledge. It
turns out that formalizing the structural properties of roads (and
also other networks, e.g., in medical image processing) in a prior
is difficult. Existing models are usually either too restricted to
faithfully describe the network, or too complex for stable and effi-
cient inference (see overview in Section 2).

We seek a compromise between these extremes and develop a
model of the road network which is on the one hand expressive
(e.g., it does not impose a tree structure or require piecewise
straight roads), and on the other hand amenable to powerful infer-
ence algorithms (i.e., it does not require expensive all-purpose sol-
vers like MCMC or Gibbs sampling). The proposed method follows
the recover-and-select strategy: an over-complete collection of
potential road segments is generated, which is subsequently
pruned to those segments which cover parts of the road network.
The segments, which we call paths, are found by minimum cost
path computation based on local features. The pruning step, in
which incorrect paths are suppressed, is formulated as MAP infer-
ence in a higher-order conditional random field (CRF), constructed
in such a way that it allows for efficient global energy minimiza-
tion. The conservative recover step ensures high completeness
(recall), while the select step aims to maximize correctness (preci-
sion), by explicitly including long-range connections via
higher-order CRF potentials.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2015.07.002&domain=pdf
http://dx.doi.org/10.1016/j.isprsjprs.2015.07.002
http://dx.doi.org/10.1016/j.isprsjprs.2015.07.002
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs
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To our knowledge, this is the first attempt to combine the clas-
sical idea of minimum cost paths with the comprehensive global
modeling capabilities of CRFs, for road network extraction in
particular and for other loopy, undirected networks in general. A
preliminary version of this work appeared in Wegner et al.
(2013). In that work local stretches of road were confined to lie
on straight line segments. Here, we extend the model to allow
for arbitrary (minimum-cost) paths that naturally adapt to more
complex road shapes (e.g., sharp bends). Moreover, we present a
much expanded experimental evaluation.

2. Related work

Road extraction in rural or suburban areas is often approached
in a rule-based fashion, i.e. one attempts to explicitly formulate an
exhaustive set of rules for delineating the road network (Doucette
et al., 2004; Mena and Malpica, 2005; Poullis and You, 2010; Grote
et al., 2012; Ünsalan and Sirmacek, 2012; Miao et al., 2013). Com-
mon to all these approaches is a heuristic processing pipeline con-
sisting of multiple sequential or intertwined steps, with a rather
large set of parameters that need to be re-tuned for each new
scene.

To bridge the gap between low-level road cues and high-level
road network layout in a more principled way Stoica et al. (2004)
(later followed by Lacoste et al. (2005) and Lafarge et al. (2010))
have introduced marked point processes, a comprehensive proba-
bilistic framework to impose connectivity priors. In Chai et al.
(2013)) the authors extend the original idea of sampling
line-segments by explicitly modeling junctions with point pro-
cesses. However, the corresponding objective functions can only
be minimized with all-purpose solvers like simulated annealing
and/or reversible jump Markov Chain Monte Carlo (RJMCMC). They
are thus on one hand computationally very expensive and on the
other hand risk not finding a satisfactory optimum (e.g. due to poor
mixing of the chain).

All previously mentioned approaches primarily focus on rural
and suburban scenes with relatively sparse and mostly unoccluded
road networks. Only few works deal with road extraction in more
complex urban areas. Hinz and Baumgartner (2003) have devel-
oped a detailed heuristic model for roads and their context in
scale-space, using evidence from multiple overlapping aerial
images. More recently, Youn et al. (2008) combine an orthophoto
and airborne laser scanning data to extract wide, largely unoc-
cluded roads that follow a grid pattern. Similar to Hinz and
Baumgartner (2003) and Grote et al. (2012) they design a hierar-
chical framework which constructs longer road pieces from initial
segments, but no high-level connectivity is imposed, thus many
gaps remain.

Here, we argue that a particularly important property of the
road network is its connectedness. Hierarchical bottom-up proce-
dures that iteratively assemble short pieces of road to longer ones
must base their decisions primarily on local shape constraints,
whereas they account for connectedness at a very late stage
(or not at all). It seems more intuitive to view road networks as a
collection of smooth, connected long-range paths without strong
restrictions on the local shape. Probably the first work to model
roads via minimum cost paths is (Fischler et al., 1981). They use
an A�-type algorithm to iteratively find roads based on per-pixel
scores generated with a line detector. Since this early attempt
various groups have proposed semi-automated road tracking
approaches, in which single roads (mostly in rural areas) are traced
after manual selection of starting nodes. Technical implementa-
tions of this idea include Kalman filtering (Vosselman and de
Knecht, 1995), extended Kalman filtering and/or particle filtering
(Movaghati et al., 2010), heuristic rule-based tracing
(Baumgartner et al., 2002), and shortest path computation by
dynamic programming (Gruen and Li, 1995; Gruen and Li, 1997;
Dal Poz et al., 2010; Dal Poz et al., 2012).

To our knowledge, minimum cost paths for automated road net-
work extraction have not been followed up in recent years in
remote sensing, until recently Türetken et al. (2012) tested their
method, originally developed for vessel tree extraction in medical
imagery, on road networks. In medical imaging, many researchers
have used minimum cost paths to model 2D and 3D tree struc-
tures, e.g. (Li and Yezzi, 2007; Türetken et al., 2011; Benmansour
and Cohen, 2011; Bas and Erdogmus, 2011; Zhao et al., 2011). Gen-
erally, these approaches first detect local cues, which are then con-
nected to elongated tubes via minimum cost paths. Model-based
criteria ensure that all branches fit into a global tree topology,
either in a bottom-up or in a top-down fashion. Bottom-up meth-
ods try to initially extract only correct network pieces, thereby
accepting low completeness, followed by insertion of missing links,
e.g. (Bas and Erdogmus, 2011; Wang et al., 2011). Top-down meth-
ods proceed the other way round, and first generate an overly com-
plete network, by allowing all potential paths at the risk of a high
false alarm rate. Subsequently, erroneous links are pruned to
obtain a correct network, e.g. (Li and Yezzi, 2007; Türetken et al.,
2012). Bottom-up methods are usually fast to compute iteratively
but often fail to bridge large gaps, whereas top-down techniques
have problems when it comes to suppressing ‘‘shortcuts’’ through
the background. The approach proposed here follows the
top-down strategy and aims for high topological completeness, i.e.
our objective is to extract the complete urban road network as
far as possible, which is crucial for navigation applications such as
personal navigation systems or vehicle routing.

A method similar in spirit to ours is (Türetken et al., 2012),
which was extended to graphs with cycles in Türetken et al.
(2013). They locally compute road (resp. tube) likelihoods at each
pixel (or voxel, if applied to stacks of medical images) and connect
seed points via minimum cost paths at several scales. The resulting
graph is broken down into short overlapping segments, and a net-
work graph through the set of segments is found with mixed inte-
ger programming. Although originally developed for a medical
application, the experiments also demonstrate promising perfor-
mance for suburban road networks in aerial images.

For completeness we also mention a body of literature, starting
with (Laptev et al., 2000), that uses the term ‘‘road extraction’’ for
the delineation of roads with different variants and extensions of
active contour models (‘‘snakes’’). For example, Butenuth and
Heipke (2012) extend standard snakes to explicitly model the net-
work topology, including junctions, with so-called network snakes.
Wang et al. (2011) apply a similar snake formulation to iteratively
reconstruct tree-like tubular structures from medical image stacks.
However, snakes are a local optimizer, and mainly useful to delin-
eate roads more precisely once their approximate layout is known.
We therefore rather see them as a potential geometric refinement
after extraction.

3. Network extraction

In our approach the road network is thought of as the union of
many elongated paths. In this way, network extraction can be cast
as the search for a set of paths that together cover the entire net-
work. The proposed method follows the recover-and-select
strategy:

� In the recover step a large, over-complete set of potential candi-
date paths is generated, by finding the most road-like connec-
tions between many different pairs of seed points. The aim of
candidate generation is high recall, ideally the candidate set
covers the entire road network, at the cost of also containing
many false positives that do not lie (completely) on roads.
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� In the select step undesired false positives are pruned from the
candidate set to yield a reduced set still covering as much as
possible of the network, but with few false positives. This sec-
ond step is formulated as the minimization of a global
higher-order CRF energy, and can be solved to global optimality.

In more detail, our system consists of the following steps: First,
an image is segmented into superpixels, which are from then on
treated as the smallest entities (nodes) to be labeled. Per super-
pixel a feature vector is extracted and fed to a binary Random For-
est classifier, which assigns each superpixel a unary road likelihood
(Section 3.1). Next, promising candidate paths are generated. To
that end, superpixels with high road likelihoods are sampled ran-
domly as seed nodes and linked with minimum cost paths. The
hope is that road superpixels that have high background probabil-
ity, e.g. due to a cast shadow, will be covered by a minimum cost
path and thus become member of a connected subset where the
majority of superpixels votes for road. The superpixels of each can-
didate path form a higher-order clique in a CRF (Section 3.2).

The potentials of these higher-order cliques are based on the
PN-Potts model of Kohli et al. (2009) that enforces label consistency
within large cliques, meaning that superpixels within the clique
are penalized for deviating from the majority label. In that sense,
our method could be seen as an anisotropic ‘‘smoothing along
the paths’’.

The resulting CRF energy can be minimized with a graph cut,
leading to a global optimum of the binary labeling task. Note that
working with the actual long-range paths (cliques) is conceptually
different from methods that divide long paths into short segments
and classify each segment separately (Türetken et al., 2012). Like
(Wang et al., 2011; Türetken et al., 2011) we prefer to work with
complete paths, so as not to lose any connectivity information.

3.1. Unary potential

Recall that our smallest entity to be labeled is a superpixel. By a
slight abuse of notation, in the following we write x for both the
raw data and the features. Correspondingly, we denote both a par-
ticular superpixel from the set S of all superpixels and its features
with xj. Thus, our objective is to assign each superpixel xj a label
yj 2 0;1f g, where 1 represents road and 0 background.

We segment the raw images into superpixels xj, and train a bin-
ary Random Forest classifier (Breiman, 2001) with 20 trees to pre-
dict, for each superpixel, the class-conditional (negative
log-)likelihoods E1ðxjÞ ¼ � log Pðyj ¼ 1jxjÞ for the foreground (road)
class and E0ðxjÞ ¼ � log Pðyj ¼ 0jxjÞ for the background. These
log-likelihoods form the unary potentials in the conditional ran-
dom field, i.e. the energies for assigning labels yj 2 f0;1g are then

EuðxjÞ ¼ yjE1ðxjÞ � ð1� yjÞE0ðxjÞ ð1Þ

Although our method could in principle work directly with
individual pixels we prefer regular superpixels of an over-
segmentation as smallest entities to be labeled, on one hand due
to their larger support for feature computation, and on the other
hand to reduce the computational burden, both during shortest
path generation and during inference. Superpixels sometimes are
not correctly aligned with object boundaries, but we do not
consider this a major hurdle for our application because the
emphasis lies on the correct and complete road network topology
rather than on pixel-accurate labeling, which can be achieved in a
subsequent refinement step, for example using snakes (Laptev
et al., 2000; Butenuth and Heipke, 2012).

As features we use the responses of the color/texture filter bank
of Winn et al. (2005), after converting the images to opponent
Gaussian color space (Burghouts and Geusebroek, 2009), as well
as the height over ground, if available. For each superpixel we
record mean and standard deviation of all features, leading to a
feature vector of dimension 34 for raw images, respectively 36 if
a height channel is available.

An important property of the problem, which is rarely men-
tioned in the literature, is that the foreground–background labeling
problem for line networks is usually very asymmetric: much of the
clutter that disturbs the road appearance (overhanging trees, cast
shadows, etc.) is also prominent in the diffuse statistics of the
background (‘‘everything except roads’’), whereas only few things
in the background exhibit the comparatively crisp, well-defined
statistics of roads. Consequently false negatives in the foreground
class (gaps in the road network) are the dominant failure mode
of the unary potential that needs to be addressed by a prior,
whereas false positives are much less of a problem – see Sec-
tion 4.2, Figs. 2(a,e,i) and 3(a,e,i,m).
3.2. Minimum cost paths

As explained above, we concentrate on a model to correct false
negatives, i.e. superpixels that do actually lie on roads, but have
low road likelihood. We thus construct an asymmetric prior which
attracts superpixels with low road probability to the road class to
reduce false negatives, but not the other way round.

Our model represents the network as a union of many mini-
mum cost paths that link two randomly sampled superpixels
(Fig. 1), one start node xs and one end node xe. Clearly, the set of
all such paths in an image is too large for practical purposes. In
order to keep shortest path computation and the subsequent CRF
inference tractable, we sample node pairs fxs; xeg from all super-
pixels with a road likelihood P 0:7. The minimum cost paths are
found with the standard Dijkstra algorithm (Dijkstra, 1959). In
order to also cover comparable paths with slightly higher costs
due to noise, we use the k-shortest path version of the algorithm
to get k mutually exclusive paths per node pair.

Let the path from xs to xe be denoted Riðsx; seÞ, and let its nodes
be fxj 2 Rig. The cost of a path is

C Riðxs; xeÞð Þ ¼
Xe

j¼s

cðxjÞ; ð2Þ

where in the basic case the individual edge costs are simply
cðxjÞ ¼ E1ðxjÞ, stating a preference for paths that pass through nodes
of high road likelihood.

For the case of road extraction from aerial images, where often
also a height value hðxjÞ for each superpixel is available from dense
stereo or a pre-existing terrain model, we additionally require low
slope (height gradient) DhðxjÞ ¼ hðxjþ1Þ � hðxjÞ between neighbor-
ing nodes:

cðxjÞ ¼ kE1ðxjÞ þ ð1� kÞ DhðxjÞ
�� ��; ð3Þ

with k 2 ½0 . . . 1� a weighting parameter that determines the relative
influence of appearance and slope.

Note that paths are instantiated for all sampled pairs of
start/end nodes, without knowing whether there really exists a
connection between them. Although roads may frequently be
occluded, we observe that this only occurs for a certain maximum
number of consecutive superpixels on a path. In general, P10 con-
secutive superpixels with unary road likelihood below 0.5 indicate
background. We therefore directly prune unlikely paths that pass
through too long stretches of background, and pass only the
remaining ones to CRF inference. Each sampled minimum cost path
Ri that passes this initial threshold forms a higher-order clique Q i

in a CRF for the selection (inference) step.



Fig. 1. Densities of minimum cost paths per pixel of GRAZ images shown in Fig. 2. High densities are displayed red, low densities blue.
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3.3. Contrast-sensitive node weighting

To measure the goodness-of-fit of individual nodes xj w.r.t. a

given clique Qi, we introduce weights w j
i . They are derived by com-

paring the nodes’ appearance to the mean appearance of the clique.
To that end, we compute the mean feature vector xðQ iÞ in the cli-
que i, the Euclidean distance to the mean jxj � xðQ iÞj for each indi-
vidual node, and the standard deviation rxðQ iÞ of those distances.
The variance-adjusted distance dðxj;QiÞ ¼ jxj � xðQiÞj=rxðQiÞ is
then used to assign an individual weight to the node xj:

wj
i ¼

wmax dðxj;Q iÞ 6 0:5
wmax 1� dðxj;Q iÞ

� �
0:5 < dðxj;Q iÞ 6 1

0 dðxj;Q iÞ > 1

8><
>: ð4Þ

using a truncated linear weighting function for robustness. The
scale wmax can be chosen arbitrarily, since it is later rescaled with

the path weight kpath, see Eq. (6). We set wmax ¼ 1. The weights wj
i

can be interpreted as ‘‘degrees of clique membership’’ or as ‘‘cou-
pling strengths’’ between node and clique. They help to better han-
dle cliques which lie largely on roads, but take incorrect ‘‘shortcuts’’
through the background. Such cliques are rather frequent due to the
nature of shortest path computation, and if not properly treated can
produce false positives. To understand the effect of the weights it is
instructive to look at the extreme cases: nodes within 0.5 rxðQiÞ get
the full weight and strongly increase the penalty for labeling the
superpixel as background (see below). In contrast, nodes further
away than rxðQiÞ get weight zero, effectively removing them from
the clique, such that labeling them as background incurs no penalty.

3.4. Higher-order CRF model

In their work on the PN-Potts model Kohli et al. (2008) showed
that efficient inference in higher-order CRFs is feasible, if the num-
ber of possible states per clique remains low, whereas the absolute
clique size is less crucial. Several works have adopted that model
for semantic segmentation tasks. Examples include imposing mul-
tiple superpixel segmentations as soft constraints on object bound-
aries (Kohli et al., 2009), modeling long-range texture patterns
(Rother et al., 2009), exploiting global co-occurrence statistics of
object classes (Ladicky et al., 2010), and concurrently capturing
the spatial extent, semantic class, and semantic context of objects
(Yao et al., 2012). Few works exist that apply minimum cost paths
for the extraction of single ‘‘objects’’ with complex layout. An
example is (Vicente et al., 2008), which employs Dijkstra shortest
paths within a graph cut framework as connectivity prior for inter-
active image segmentation, in order to counter the ‘‘shrinking
bias’’.

In this paper we use higher-order potentials for road network
extraction. A CRF models the posterior P yjxð Þ of labels y depending
on observations x as a Gibbs distribution,
P yjxð Þ ¼ 1
Z xð Þ exp E x; yð Þð Þ ð5Þ

with Z xð Þ the partition function which ensures that the probability
integrates to 1. The joint Gibbs energy E x; yð Þ of unary potentials wj

(cf. Eq. (1)), pairwise potentials wb, and higher-order potentials wq of
a CRF is (with N and Q the sets of all binary and all higher-order cli-
ques, respectively)

E x; yð Þ ¼
X
j2S

wj xj; yj

� �
þ kbin

X
n2N

wb xn; ynð Þ þ kpath

X
i2Q

wq xi; yið Þ: ð6Þ

Maximum a posterior (MAP) inference then amounts to minimizing
E x; yð Þ to maximize the posterior probability P yjxð Þ.

It turns out that moderate smoothing with a 1st-order
contrast-sensitive Potts model (Boykov and Jolly, 2001) in addition
to the higher-order cliques eliminates small, isolated false posi-
tives. We thus include a pairwise term with a low weight
kbin ¼ 0:1. The pairwise potentials wb compare labels and features
of adjacent superpixels, whereas the higher-order potentials wq

define interactions between all superpixels contained in a minimum
cost path (cf. Section 3.2). In our case higher-order cliques can
reach a size of up to � 300 superpixels.

Only applying standard pairwise potentials to extract roads,
which appear as narrow, elongated objects inside a dominant,
heterogeneous background, is prone to fail. The local interactions
between adjacent superpixels do not carry information about
long-range connectivity, and will tend to smooth away thin struc-
tures like roads, cf. Section 4.2 and e.g. (Vincente et al., 2008). On
the contrary, the higher-order cliques (paths) are designed to fill
gaps and improve network completeness. With shortest path sam-
pling we obtain elongated chains of superpixels (Fig. 1), the major-
ity of which in most cases fall on a road. If the overall road evidence
of a clique (derived from the unaries) is strong enough, then the
higher-order potential drags clique members with less evidence
to the foreground. For example, consider a case where long
stretches of superpixels with high road likelihood on a path are
interrupted by short, isolated groups of superpixels with low road
likelihood caused by overhanging trees. Because path computation
is engineered to follow roads, this is strong evidence that the iso-
lated groups should also be labeled road, and consequently the cli-
que potential attracts all superpixels of the path to the road class.
On the contrary, if the majority of superpixels inside a path belongs
tobackground, one cannot generally infer that all should be back-
ground. Therefore, the prior is asymmetric. Note, paths explicitly
model foreground, but no prior for superpixels not covered by
paths is formulated. In the absence of any path the prior remains
neutral (however, the local smoothness prior from the pairwise
potentials acts on both foreground and background).

In many cases paths that largely cover a stretch of road will nev-
ertheless contain a few background superpixels. In such cases the
energy should increase gracefully, rather than abruptly with the



Table 1
Pixelwise and topological road extraction results (mean values after cross-validation). All numbers are percentages.

Method j Qual. Comp. Corr. 2long 2short noC. Correct

GRAZ RF 76 69 80 84 7 3 32 59
Potts 76 69 76 89 5 3 30 62
Thresh 68 62 87 69 2 36 1 62
Paths 78 71 83 84 6 8 11 75

VAIH RF 73 65 77 81 8 3 40 49
Potts 73 46 60 67 5 3 42 50
Thresh 68 61 87 68 1 43 1 55
Paths 76 68 81 81 7 11 17 65

Bold values represent the top performance.

Fig. 2. Road networks extracted in three patches of the GRAZ orthophoto mosaic. Green true positives, blue false positives, red false negatives.
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first deviating superpixel. We therefore employ the robust PN-Potts
model with a linear truncated cost function, with parameters b, c
and the potentials’ upper bound a. Together with the asymmetry
explained above the higher-order potential wq xi; yið Þ becomes
wqðxi; yiÞ ¼
min a; Pb � a�b

c þ b
� �

if Pb < Pr

0 else

(
ð7Þ
1 The VAIHINGEN data are part of the ISPRS benchmark. The GRAZ data has been kindly
provided by Microsoft Photogrammetry, Graz.

2 Parameters are found empirically. See Section 4.3 for a parameter study.
where Pr ¼
P
ðw j

i � yjÞ is the weighted sum of road superpixels

inside a clique, and Pb ¼
P
ðw j

i � ð1� yjÞÞ is the weighted sum of

background superpixels. The w j
i are the weights that act on individ-

ual superpixels j to adjust their influence on the potential of a clique
i (cf. Section 3.3).

Since our problem only has two labels and the potential (7) is a
special case of the robust PN-Potts model (Kohli et al., 2008), a glo-
bal minimum of the energy (6) can be found in low polynomial
time with a graph cut.
4. Experiments

We evaluate the proposed approach on two different datasets.
Both datasets consist of a number of 1000 � 1000 pixel tiles from
aerial true orthophotos and corresponding normalized digital sur-
face models (nDSM) from stereo matching, with a ground sampling
distance of 0.25 m. The first dataset contains 76 (RGB) tiles cover-
ing the entire city center of GRAZ, Austria, the second one consists of
16 (color infrared) tiles from VAIHINGEN, Germany.1

Raw image tiles are segmented into superpixels with the
patch-based energy minimization approach of Veksler et al.
(2010). We generate on average 15,000 superpixels per tile, so as
to limit graph size.2

To obtain candidate paths we randomly sample 1500 pairs of
start/end nodes per tile for GRAZ, and 4000 pairs for the more diffi-
cult VAIHINGEN. These seeds are sampled from all superpixels with
high unary road likelihood Pðyj ¼ 1jxjÞP 0:7. The number k of



Fig. 3. Road networks extracted in three patches of the VAIHINGEN orthophoto mosaic. Green true positives, blue false positives, red false negatives.
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shortest paths per start/end pair is set to k ¼ 4 for both data sets
resulting in a total of 6000 (GRAZ), respectively 16,000 (VAIHINGEN)
paths per image. We give high weight k ¼ 0:9 to the unary energy
and low weight 1� k ¼ 0:1 to the height gradient because the ter-
rain height is already implicitly contained in the unaries as a fea-
ture. However, keeping the height gradient in the equation helps
avoiding gross errors particularly if the unary classifier (i.e., Ran-
dom Forest) is uncertain at buildings that have similar appearance
(color, texture) as streets, but different height.

A bit of pairwise smoothing to remove noise inside the back-
ground and on wide roads proved beneficial, as long as the
higher-order potentials dominate. We thus weight the binary term
wb with kbin ¼ 0:1 and the higher-order term wq with kpath ¼ 1:0.
3 j ¼
N
P

i
cii�
P

i
ð
P

j
cij �
P

j
cjiÞ

N2�
P

i
ð
P

j
cij �
P

j
cjiÞ

, with cij the entries of the confusion matrix and N the

number of pixels. E.g., for an image with 10% road and 90% background pixels a result
without a single road pixel has 90% overall accuracy, but j = 0%.
4.1. Error measures

We report the standard metrics quality; completeness, and cor-
rectness (Wiedemann et al., 1998) commonly used in literature
on road extraction (e.g., Laptev et al., 2000; Doucette et al., 2004;
Mayer et al., 2006; Hu et al., 2007; Mnih and Hinton, 2010; Mnih
and Hinton, 2012). Another popular metric is the j-value to assess
pixel-wise labeling accuracy. It quantifies how much the predicted
labels differ from a random image with the same label counts, thus
measuring the improvement over chance, whereas overall accu-
racy measures the improvement over a 100% incorrect result.
Hence j avoids biases due to uneven class distribution.3

A topologically correct network is essential for navigation pur-
poses, but that fact is not well captured by the described metrics:
even a small gap can lead to lengthy detours, while not having
much impact on completeness. We thus use an additional metrics
based on shortest paths between randomly sampled, correctly
labeled road pixels, for which a road connection exists in ground
truth. In case the extracted network has the correct topology, the
predicted and actual path lengths should be (nearly) identical.
Incorrect shortcuts result in too short paths (2short), incorrect gaps
in the extracted network cause too long paths (2long), or they dis-
connect the network into disjoint parts with no connection at all
(noC). We repeatedly sample pairs of seed pixels and compare
the path lengths between the ground truth and our estimate until
the percentages of all error types have converged. A tolerance of 5%
of the path length is used to account for geometric uncertainty.
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4.2. Results

For quantitative analysis, we run 7-fold cross-validation for GRAZ

with a 11/65 training/testing split. In case of VAIHINGEN we conduct
4-fold cross-validation with 4/12 training/testing split.

We compare the proposed method (Paths) to three baselines:
the raw unaries (RF), only the standard contrast-sensitive pairwise
Potts model without path cliques (Potts), and a rule-based version
of the path prior, which directly thresholds the cost-weighted path
density (Thresh). Evaluation results are given in Table 1, example
results are depicted in Fig. 2 (GRAZ) and Fig. 3 (VAIHINGEN).

The two data sets have somewhat different characteristics. GRAZ

has major roads and large blocks of buildings, whereas VAIHINGEN

has narrower roads often shaded by trees or even completely
occluded in the town center. Narrow and/or occluded roads (by
trees or cast shadow) are typical situations where RF and Potts fail.
RF misclassifies road parts with shadows (Figs. 2(a and e) and 3(e
and i)) and Potts tends to smooth away narrow pieces of road
(Figs. 2(b, f, j) and 3(b, j, n)) although we already gave a very low
weight to the pairwise potentials.

Consequently Potts performs worst on VAIHINGEN with respect to
quality, even below the raw unaries. On the GRAZ data set with its
wider roads, the pixelwise accuracy of Potts is on par with RF,
while its topological correctness (correct) is slightly higher. Our
proposed method (Paths) resolves these situations much better
and extracts many narrow and occluded portions of the road net-
work, leading to 2–3% gains in j and quality compared to the sec-
ond best method. Particularly large improvements of 10–13% are
achieved with respect to topological correctness (correct). How-
Fig. 4. Example results for EPFL data set obtained with our method (left) and the EP
ever, due to its asymmetric nature it does produce some additional
false positives, which is reflected in the number of 2short paths.

To separate the performance of the clique sampler from the glo-
bal CRF cost function we relabel superpixels covered by paths (that
contain less than 10 consecutive superpixels with unary road like-
lihood below 0.5) as roads (Thresh). Clearly, minimum cost paths
without a global CRF model do not improve the unary result but
rather produce many false positives (see column Thresh in Figs. 2
and 3).

Nonetheless, Paths still exhibits a number of typical failures.
Labeling errors in dead end roads cannot be corrected, unless by
chance a seed is sampled at their very end. Moreover, minimum
cost paths between different start/end nodes tend to use the same
superpixels when passing through the same stretch of road or the
same junction (those which have the highest road likelihood). As a
result, superpixels with low road likelihood, often on the border of
a wide road or crossing, may be missed by the path sampler and
then cannot be recovered. Choosing a high number k of mutually
exclusive shortest paths between two seeds reduces this effect,
but k cannot be set arbitrarily high because this would force too
many paths through the background and increase the number of
false positives near road boundaries. If a scene contains both very
narrow and very wide roads, like in the bottom row of Fig. 2, not all
errors in the unaries (red parts center and right in Fig. 2(i)) can be
corrected by Paths (remaining red parts Fig. 2(l)).

For a visual comparison to a state-of-the-art method, we extract
roads in the EPFL-dataset of suburban RGB ortho-images, consist-
ing of screenshots from Google Earth without height information
(Türetken et al., 2013), see Fig. 4. Images and results of (Türetken
et al., 2013, hereafter termed EPFL) were provided by the authors.
FL method (right). Green true positives, blue false positives, red false negatives.
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Note that the EPFL results were achieved using gray-scale versions
of the RGB ortho-images, whereas our approach needs color
images as input. To adapt our approach to this data set without
height channel, we drop the height from all steps of our method
for the comparison: (i) the Random Forest uses no height features;
(ii) path computation does not use the height gradient for the edge
cost between adjacent superpixels; and (iii) the contrast-sensitive
Potts potentials are computed without the height gradient. The
visual comparison shows that our method produces significantly
fewer gross errors, in particular it manages better to avoid false
positives, see Fig. 4. For correct roads, EPFL does give smoother road
boundaries than our method without post-processing. This could
be expected, since on the one hand it operates on pixels rather than
superpixels; and on the other hand it explicitly estimates the road
width as part of the per-pixel ‘‘tubularity’’, which works well for
unoccluded roads with nearly constant width, as depicted in the
data set.
4.3. Parameter study

In order to quantify the sensitivity of the method to different
parameter settings we perform a study in which we vary several
crucial parameters. We test each parameter separately within a
reasonable range and keep all others fixed. Tests are performed
on a representative train/test split of VAIHINGEN, i.e. the one that is
closest to the cross-validation average (cf. VAIH in Table 1). We test
different parameters for path sampling, for path pruning, and for
the truncated linear node weighting function. Additionally, we
assess the impact of an alternative superpixel segmentation algo-
rithm on the results. For all tests we record pixel-wise (j) as well
Fig. 5. Results of the parameter study (percentages on vertical axis, parameters on horizo
4) and (b) evaluation of mutually exclusive paths k per node pair (with sep fixed to 400

Fig. 6. Results of the parameter study (percentages on vertical axis, parameters on h
consecutive superpixels with unary road likelihood below 0.5 per path. (b) Node weight
function.
as topological error metrics (quality and the percentage of correct
paths of the topological measure, cf. Section 4.1).

Two different parameters have to be set for path sampling (Sec-
tion 3.2): the amount of start–end node pairs sep per image tile and
the number k of mutually exclusive shortest paths per node pair.
We evaluate sep 2 ð1000;2000;3000;4000;5000Þ (Fig. 5(a)) and
k 2 ð1;2;4;6;8Þ (Fig. 5(b)). For sep this corresponds to a minimum
number k � sep ¼ 4 � 1000 ¼ 4000 and maximum number of
k � sep ¼ 4 � 5000 ¼ 20;000 paths, while the total path number for
tests with k ranges from k � sep ¼ 1 � 4000 ¼ 4000 to
k � sep ¼ 8 � 4000 ¼ 32; 000. It turns out that different settings of
sep (Fig. 5(a)) and k (Fig. 5(b)) do not significantly change j and
quality in general. However, they do have an influence on the per-
centage of topologically correct connections. Especially the
extreme setting k ¼ 1 misses important connections and signifi-
cantly decreases topological correctness.

Pruning of unlikely paths before CRF inference (Section 3.2) is
governed by a maximum allowed number prune of consecutive
superpixels with unary road likelihood <0.5. Paths with
longer stretches of background are discarded directly and
not passed to inference. We test for a range of lengths
prune 2 ð5;10;15;20;25Þ, see Fig. 6(a). The tests indicate that
prune should be set P 10 in order not to drop too many promising
paths at an early stage of the process.

The truncated linear weighting function (Section 3.3) for a
node’s clique membership needs lower and upper bounds (Eq.
(4)). All nodes with dðxj;Q iÞ 6 l � rxðQiÞ receive wmax, whereas

nodes with dðxj;QiÞ > u � rxðQiÞ receive w j
i ¼ 0. We start from a

very conservative setting of ðl;uÞ ¼ ð0:0;0:5Þ and incrementally
increase l and u in steps of 0:5 to ðl;uÞ ¼ ð2:0;2:5Þ, Fig. 6(b). While
ntal axis). (a) Path sampling: Evaluation of start–end node pairs sep (with k fixed to
0). All numbers are percentages.

orizontal axis). (a) Path pruning: Evaluation of the maximum number prune of
ing: Evaluation of different settings of (l;u) for the truncated linear node weighting



Fig. 7. Superpixel segmentations overlaid to image generated with the methods of (a) (Veksler et al., 2010), (b) SLIC (Achanta et al., 2012), and (c) comparison of quantitative
results (SLIC blue, ours red) (percentages on vertical axis).
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one could also vary the slope by changing l and u differently, we
found this to have only minor influence. Too conservative values
for (l;u) weaken the clique membership of too many superpixels
and counteract the intended effect of the cliques, hence they yield
inferior topological correctness. Larger values preserve the cliques
better and unleash the potential of the model.

Finally, we compare our default way of generating superpixels,
the energy-based approach of Veksler et al. (2010), with the SLIC
method of Achanta et al. (2012), Fig. 7. The method of Veksler
et al. (2010) has a small advantage of one or two percent points
over SLIC for all measures. Note, however, that SLIC is faster to
compute.

Overall, the proposed scheme is rather robust against different
parameter settings. It should be noted, though, that some settings
have considerable influence on the computation time. In particular,
increasing the number of minimum cost paths slows the method
down (how much depends strongly on the implementation and
hardware used, since the computation trivially parallelises over
different paths). On the other hand, higher values for prune do lead
to a larger CRF with more large cliques, but that only marginally
increases the run-time for inference.
5. Conclusions

We have proposed a model for long-range network structures in
images, in which the network is seen as a collection of (partially
overlapping) curvilinear paths. Putative pieces of the network are
found by minimum cost path search and then pruned to a set that
covers the road network, through MAP inference in a CRF. The
paths correspond to higher-order cliques and their potentials are
designed in such a way that they allow for efficient inference in
spite of large clique sizes. In our experiments the proposed method
outperforms several natural baselines, both in terms of labeling
accuracy and w.r.t. topological correctness. Our model is not
restricted to 2D network extraction, and its adaptation to 3D net-
works often encountered in medical image stacks appears
straight-forward.

Still, a lot of prior knowledge remains unused and there are
ample opportunities to improve network extraction. For example,
crossings and T-junctions are not yet explicitly incorporated, but
are strong evidence for networks. Simple star-shaped ‘‘junction cli-
ques’’ in our experience only lead to small improvements (Wegner
et al., 2013), so better ways to use evidence from junctions should
be found. False negatives still remain on very narrow roads and
near the boundaries of wide roads or crossings. These can be better
recovered by (i) moving to a per-pixel classification (instead of
superpixels) and (ii) by explicitly estimating the road width
instead of tuning k, as proposed in our recent paper (Montoya
et al., 2014). In Montoya et al. (2015) we show that our framework
is flexible and can be extended to incorporate a higher-order prior
for building extraction. While per-pixel classification improves
numbers slightly, the superpixel approach presented here runs
generally faster. Using superpixels instead of single pixels signifi-
cantly speeds up path computation and inference, because the
graph size (the number of nodes) per image is significantly reduced
(from 1 million to �17,000).

Finally, minimum cost path sampling is at present done inde-
pendently of the CRF. It appears feasible to include the path search
directly into the CRF via pairwise potentials derived from the
per-edge cost. Such a solution would certainly be more elegant
and principled, albeit at the cost of more complicated inference.
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