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Regionlets for Generic Object Detection
Xiaoyu Wang, Ming Yang, Shenghuo Zhu, and Yuanqing Lin

Abstract —Generic object detection is confronted by dealing with different degrees of variations, caused by viewpoints or defor-
mations in distinct object classes, with tractable computations. This demands for descriptive and flexible object representations
which can be efficiently evaluated in many locations. We propose to model an object class with a cascaded boosting classifier
which integrates various types of features from competing local regions, each of which may consist of a group of subregions,
named as regionlets. A regionlet is a base feature extraction region defined proportionally to a detection window at an arbitrary
resolution (i.e., size and aspect ratio). These regionlets are organized in small groups with stable relative positions to be
descriptive to delineate fine-grained spatial layouts inside objects. Their features are aggregated into a one-dimensional feature
within one group so as to be flexible to tolerate deformations. The most discriminative regionlets for each object class are selected
through a boosting learning procedure. Our regionlet approach achieves very competitive performance on popular multi-class
detection benchmark datasets with a single method, without any context. It achieves a detection mean average precision of
41.7% on the PASCAL VOC 2007 dataset, and 39.7% on the VOC 2010 for 20 object categories. We further develop support
pixel integral images to efficiently augment regionlet features with the responses learned by deep convolutional neural networks.
Our regionlet based method won second place in the ImageNet Large Scale Visual Object Recognition Challenge (ILSVRC
2013).

Index Terms —Object Detection, Regionlet, Boosting, Object Proposals, Selective Search, Deep Convolutional Neural Network
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1 INTRODUCTION

D ESPITEthe success of face detection, where the target
objects are roughly rigid, generic object detection

remains an open problem mainly due to the challenge of
handling all possible variations with tractable computations.
In particular, different object classes demonstrate variable
degrees of deformation in images, either due to their
nature,e.g., living creatures like cats are generally more
deformable than man-made objects like vehicles, or due to
viewing distances or angles,e.g., deformable objects may
appear somewhat rigid at a distance and even rigid objects
may show larger variations under different viewing angles.
These pose a fundamental dilemma to object class represen-
tations: on the one hand, a delicate model describing rigid
object appearances may hardly handle deformable objects;
on the other hand, a high tolerance of deformation may
result in imprecise localization or false positives for rigid
objects.

Prior arts in object detection cope with object deforma-
tion with primarily four typical strategies. First, if spatial
layouts of object appearances are roughly rigid such as
faces or pedestrians at a distance, the classical Adaboost
detector [1] models local variations with an ensemble clas-
sifier of fast features. This enables a sliding window search
with cascaded classifiers, achieving precise and efficient
localization. Second, the deformable part model (DPM)
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method [2] inherits HOG window template matching [3]
but explicitly models deformations using latent variables.
Using the DPM, an exhaustive search of possible locations,
scales, and aspect ratios is critical to localize objects. In
order to alleviate the computational cost, DPM approaches
have been accelerated by coarse-to-fine search [4], branch
and bound [5], and cross-talk methods [6]. Third, ob-
ject recognition methods using spatial pyramid matching
(SPM) of bag-of-words (BoW) models [7], which can
inherently tolerate large deformations, are adopted for de-
tection [8]. These detectors are applied to thousands of
object-independent candidate detection windows [8], [9],
[10], instead of millions of sliding windows. Recently, deep
convolutional neural networks (DCNN) [11] have exhibited
superior capacities in learning invariance in multiple object
categories from large amounts of training data [12], [13],
and they have been successfully adapted to object detection
with a sliding window search [14] or object proposal based
search [10], [15].

Objects may appear at different scales with different
aspect ratios. Most existing approaches [3], [2], [1], [4],
[7] train an object detector at a fixed scale and aspect
ratio. In the training phase, object bounding boxes are
normalized to exactly the same resolution. In the testing
phase, a test image is resized to image pyramids in order
to detect objects appearing at scales different from that of
the testing model. Multiple models are usually learned to
detect objects with different aspect ratios. On the one hand,
normalizing training samples may yield more consistent
visual appearance which simplifies the learning process.
On the other hand, the normalization may alter the object
appearance at the original scale, and evaluating the model
at all possible scales involves expensive computation. An
alternative strategy is to employ a large codebook to encode
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Candidate detection bounding boxes

Regionlet based model Applied to candidate boxes

Fig. 1: Illustration of the regionlet representation. Regionlet
representation can be applied to candidate bounding boxes
that have different sizes and aspect ratios. A regionlet-based
model is composed of a number of regions (denoted by
blue rectangles), and then each region is represented by a
group of competing regionlets (denoted by the small orange
rectangles inside each region).

features extracted at the original object resolution to a fixed
length vector [8], regardless of the scale or aspect ratio of an
object. Therefore, it is feasible to train a single detectorto
detect objects at their original resolutions without resizing
testing images. These detection approaches inspired us to
investigate a descriptive and flexible object representation,
which delivers the modeling capacity for describing both
rigid and deformable objects in a unified framework and
handles multiple scales and aspect ratios efficiently.

In this paper, we propose a new object representation
strategy for generic object detection, which incorporates
adaptive deformation handling into both object classifier
learning and basic feature extraction. Each object bounding
box is classified by a cascaded boosting classifier, where
each weak classifier takes the feature response of a region
inside the bounding box as its input. The region is in
turn represented by a group of small subregions, named
as regionlets. The sets of regionlets are selected from a
huge pool of candidate regionlet groups by boosting. The
relative spatial positions of both the regionlets within the
region and the region within an object bounding box are
stable. Therefore, the proposed regionlet representationcan
model fine-grained spatial appearance layouts. Moreover,
the feature responses of regionlets within one group are
aggregated into a one-dimensional feature, and the resulting
feature is robust to local deformation. Also, our regionlet
model is designed to be flexible enough to take bounding
boxes with different sizes and aspect ratios. The flexibility
enables our regionlet-based classifier to directly evaluate
object proposals from selective search [8], which are of-
ten thousands of candidate bounding boxes in contrast to
hundreds of thousands (if not millions) of sliding windows
required for exhaustive search.

Figure 1 illustrates the regionlet representation, where

the regionlets shown as orange boxes are grouped within
blue rectangular regions. The regionlets and their groups
for one object class are learned in boosting with stable
relative positions to each other. When they are applied to
two candidate bounding boxes, the feature responses of
regionlets are obtained at their respective scales and aspect
ratios. The effective regionlets configurations are learned in
training and fixed in testing with no spatial configuration
inference (like DPM [2]), leading to a fast evaluation speed.

The features extracted from the regionlets in one group
are aggregated into a 1-D feature as one weak classifier,
which allows the boosting classifier to incorporate multiple
types of features flexibly. This requires efficient random
access of features inside arbitrary regionlets during training
and testing, which is straightforward for dense features
extracted at a pixel grid but complicated for spatially
sparse features (e.g., sparse SIFT features not available at
each pixel). To leverage sparse features in the regionlet
detector, we propose asupport pixel integral images (SPII)
technique, that utilizes a two-layer indexing scheme to
retrieve integral vectors of spatially sparse features. As
the first layer, we identify spatial locations where the
integral computation is indispensable, referred to as the
set of support pixels, then store and hash these integral
vectors by their spatial locations for fast access. The second
layer stores the hashing entries of the integral vector for
each pixel location. SPII is much faster than conventional
integral image and substantially reduces the memory usage.
We demonstrate the effectiveness of SPII by incorporating
the responses from a deep convolutional neural network
into our regionlets framework and improving the detection
performance significantly.

The major contributions of this paper are three-fold.
1) The novel regionlet-based representation that models
relative spatial layouts inside an object. It accommodates
variations, especially deformations, by the max-pooling of
feature responses and data-driven regionlet group selec-
tion. 2) The regionlet-based detector efficiently applies to
arbitrary bounding boxes at different scales and aspect
ratios. 3) The support pixel integral image allows fast
access to feature vectors in arbitrary regions given a set
of spatially sparse features in an image. As validated in
the experiment, the proposed regionlet detector adaptively
handles a varying degree of deformation in diverse object
classes in a data driven fashion, leading to the state-of-
the-art performance on PASCAL VOC 2007 and 2010
datasets [16] without outside training data. Moreover, this
approach achieved second place on the detection task in the
ImageNet Large Scale Visual Object Recognition Challenge
(ILSVRC 2013) [17].

2 RELATED WORK

Object detection is arguably an indispensable component
for most vision tasks, and it has achieved prominent success
for specific targets such as faces [1], [18] and pedestri-
ans [3], [19], [20], [21], [22], [23], [24]. We briefly review
related techniques in object detection.



3

Discriminative and efficient features are the cornerstones
for object detection. Viola and Jones’s face detector [1]
employed Haar features in a cascaded boosting classifier to
differentiate facial textures; Dalal and Triggs [3] proposed
the Histogram of Oriented Gradients (HOG) templates
to model pedestrian silhouettes by a linear SVM. Later,
Wang et al. [20] showed that the Local Binary Patterns
(LBP) [25] are complementary to HOG features and their
combination enhances pedestrian detection performance.
Tuzel et al. [19] showed that covariance features, which
encode the intensity gradients as well as the second order
derivative among pixel locations, can effectively delineate
pedestrian appearances. In these methods, the fixed-size
templates strictly align features according to their spatial
locations in the classifiers. They are capable of handling
roughly rigid objects, but they have difficulty in detecting
more deformable generic object classes.

The most well-known works on handling object defor-
mation are the deformable part model (DPM) [2] and its
extensions [2], [26], [27], [4]. The DPM object detector
consists of a root filter and several part filters. Deformations
among parts are inferred with latent variables. Since the
resolutions of the object templates are fixed, an exhaustive
sliding window search [2] is required to find objects at
different scales with different aspect ratios. The exhaustive
search can be accelerated by more efficient search methods
as in [5], [28], [4], [6], [26], [23], [29].

Recently, deep convolutional neural networks [12], [13]
demonstrated superior capabilities in learning a general
object representation from large amounts of training data.
By amortizing the convolution computation among multiple
locations [14] and fine tuning the general representation
to a specific object category [10], DCNNs have been
successfully applied to object detection [14], [10].

The proposed regionlet-based detection extends the line
of boosting with efficient representations, which handles
object deformation directly in feature extraction and in-
corporates HOG, LBP, covariance and DCNN features.
Our approach differs from standard boosting methods [1]
in two aspects: firstly, it defines a flexible representation
which can be adapted to arbitrary detection windows,
while conventional boosting only deals with fixed resolution
windows. Thus our framework can easily deal with objects
at multiple scales and aspect ratios. Secondly, it defines
a max-pooling operation among different features within
a group of regionlets to obtain more robust representation.
The method in [30] shared a similar effort to improve object
recognition and segmentation with multiple features. Our
method is different in feature design as well as the object
detector learning.

Performing object detection with object proposals has
been attracting increasing attentions [31], [32], [33], [34],
[35], [8]. Our regionlets detector is applied to object
proposals obtained from low-level segmentation [8]. It is
also applicable to other object proposal methods [32], [36].

3 REGIONLETS FOR DETECTION

Object detection is composed of two key components:
determining where the candidate object locations are in
an image and discerning whether they are the objects
of interests. Beyond the straightforward exhaustive search
of all locations, our regionlet detection approach screens
the candidate windows derived from selective search [8].
Selective search over-segments an image into superpixels,
and then groups the superpixels in a bottom-up manner to
propose candidate bounding boxes. The work in [8] shows
that such candidate bounding boxes, about 1,000∼2,000
each image, achieve a very high recall. With the proposed
bounding boxes, the detection task boils down to extraction
of an appropriate object representation from each proposed
box and learning of a scoring function to rank the boxes.
To this end, we introduce the regionlet-based representation
for each candidate bounding box. In our proposed method,
we construct a large regionlet feature pool and then design
a cascaded boosting learning process to select the most
discriminative regionlets for detection.

In this section we describe what the regionlets are and
explain how they are designed to handle deformation.
Section4 introduces the support pixel integral image which
allows fast extraction of spatially sparse features for re-
gionlets. Section5 presents how to construct a regionlet
pool and learn a cascaded boosting classifier for an object
category by selecting the most discriminative regionlets.

3.1 Regionlets definition

In object detection, an object category is essentially defined
by a classifier where both object appearance and the spatial
layout inside an object should be taken into account. For
simplicity, appearance features are mostly extracted from
somerectangular regions within an object, which we refer
as feature extraction regions in the paper. Features extracted
from a small region often provide good localization ability,
but are vulnerable to variations; a big region tends to
tolerate more variations but may not be sensitive enough
for accurate localization. When large variations, especially
deformations, occur, a large rectangle region may not be
appropriate for extracting descriptive features of an object
because some parts of the region may not be informative
or even be distractive. This motivates us to define the sub-
regions of a region,regionlets, as the basic units to extract
appearance features, and organize them into small groups,
which are flexible to describe distinct object categories with
different degrees of deformation.

3.1.1 Regionlets defined inside regions
We would like to introduce the regionlets with an example
illustrated in Figure2. The first column in Figure2 shows
three samples of a person that are the target object to be
detected and they are cropped by black bounding boxes in
the second column. A rectangle feature extraction region
inside the bounding box is denoted asR, and will contribute
a weak classifier to the boosting classifier. Within this
region R, we further spot some small subregions (e.g.,
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Fig. 2: Illustration of the relationship among a detection
bounding box, a feature extraction region and regionlets. A
feature extraction regionR, shown as a light blue rectangle,
is cropped from a fixed position from 3 samples of a person.
InsideR, several small subregions denoted asr1, r2 and
r3 (in orange small rectangles) are theregionlets to capture
the possible locations of the hand for person detection.

r1,r2 and r3) and define them as a group of regionlets.
We employ the termregionlet, because the features of
these subregions will be aggregated into a single feature
for R, and they are below the level of a stand-alone feature
extraction region in an object classifier. In summary, in the
proposed method, a detection bounding box is represented
by a number of regions, each of which is composed of a
small set of regionlets.

This example also illustrates how regionlets are designed
to handle deformation. A hand, as a supposedly informative
part for a person, may appear at different locations within
the bounding box of a person. If we extract the feature for
a hand from the whole regionR which roughly covers the
possible locations of the hand, the appearance of some non-
hand regions on the torso or background are also included
in the feature. An ideal deformation handling strategy is
to extract features only from the hand region in all three
cases. To that end, we introduce three regionlets insideR
(In general, a region can contain many regionlets. Here
“three” is mainly for illustrative purpose). Each regionlet r
serves as a possible location of a hand. Then only features
from the regionlets are extracted and aggregated to generate
a compact representation forR. Irrelevant appearances from
background are largely discarded. More regionlets inR will
increase the capacity to model deformations,e.g., a hand
may appear in more than three positions. On the other hand,
rigid objects may only require one regionlet from a feature
extraction region.

3.1.2 Regionlets normalized by detection windows

In this work, the proposed regionlet representations are
evaluated on the candidate bounding boxes derived from
the selective search approach [8]. In principle, they are
also applicable for sliding windows. The selective search
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Fig. 3: Relative regions normalized by a candidate window
adapt to scale and aspect ratio changes. Feature extraction
region for a regionlet/region is jointly determined by the
relative coordinates of the regionlet/region and the target
detection window.

approach groups over-segmented superpixels in a bottom-
up manner to propose some candidate bounding boxes.
This approach typically produces 1000 to 2000 candidate
bounding boxes for each image, in contrast to millions of
windows in an exhaustive sliding window search.

However, these proposed bounding boxes have arbitrary
sizes and aspect ratios. As a result, it is not feasible to use
template regions (or template regionlets) with fixed absolute
sizes that are widely used in sliding window search. We ad-
dress this difficulty by using therelative positions and sizes
of the regionlets and their groups to an object bounding box.
Figure 3 shows our way of defining regionlets in contrast
to fixed regions with absolute sizes. When using a sliding
window search, a feature extraction region is often defined
by the top-left(l, t) and the bottom-right corner(r, b) w.r.t.
the anchor position of the candidate bounding box. In
contrast, our approach normalizes the coordinates by the
width w and heighth of the box and records the relative
position of a region(l′, t′, r′, b′) = ( l

w
, t
h
, r
w
, b
h
) = R′.

As shown in Figure3, if a detection window is scaled up
by two times, traditional feature region definition covers a
visually different patch. Here using normalized coordinates
to specify the regionlets ensures that the visual appearances
captured by a regionlet are the same even the sample is
upscaled or downscaled. Furthermore, these relative region
definitions allow us to directly evaluate the regionlet-
based representation on candidate windows at different
sizes and aspect ratios without scaling images into multiple
resolutions or using multiple components for enumerating
possible aspect ratios.

3.2 Region feature extraction

Feature extraction fromR takes two steps: 1) extracting
appearance features,e.g., the HOG [3] and LBP descrip-
tors [25] from each regionlet respectively; and 2) generating



5

the representation ofR based on regionlets’ features.
In the first step, we need to extract fixed-length features

from individual groups of regionlets, so their features canbe
aggregated in the second step to generate the region feature.
Efficient extraction is straightforward for dense features
where the features are accessible at every pixel location,
e.g., HOG, LBP, and covariance features, yet complicated
for spatially sparse features,e.g., sparse SIFT features
(which will be discussed in Section4). Using the HOG
feature as an example, we compute gradients for all pixels
inside one regionlet. Then these gradient orientations are
used to construct the orientation histogram (8 evenly spaced
bins, without thresholding on the gradient magnitude) for
this regionlet. Hence, we can extract the HOG feature for
an arbitrary regionlet, regardless of its size and aspect ratio.
Note that this is different from extracting HOG features in
a fixed size cell (e.g., 8× 8 cells) followed by pooling and
coding. We apply L2 normalization for HOG features and
L1 normalization for LBP features. Covariance features are
normalized by the corresponding variance.

For the second step, we define a max-pooling operation
over features extracted from individual regionlet. It is
motivated by that a permutation invariant and exclusive
operation over regionlet features allows for deformations
inside these regionlets. DenoteT (R) as the feature repre-
sentation for regionR, andT (rj) as the feature extracted
from thejth regionletrj in R. The operation is defined as
following:

T (R) = max
j

T (rj), (1)

where j ∈ [1, · · · , NR] and NR is the total number of
regionlets in regionR. For one regionletrj , we first extract
its feature vectors, such as HOG or LBP histograms. Then,
we pick a 1-D feature from the same dimension of these
feature vectors in one group of regionlets and apply Equ.1
to form the feature for regionR. We have millions of
such 1-D features in a detection window and the most
discriminative ones are determined through a boosting type
learning process (to be described in Section5.2).

Figure4 illustrates the process to extractT (R), the 1-D
feature for a regionR. Here we again use the example in
Figure2, where the blue regionR is the one covering the
variation of hand locations. Assuming the first dimension of
the concatenated low-level features is the most distinctive
feature dimension learned for hand, we collect this dimen-
sion from all the three regionlets and representT (R) by the
strongest feature response among the group of regionlets.

4 SUPPORT PIXEL INTEGRAL IMAGES FOR
REGIONLETS

The regionlet-based detector requires efficient access to
features from arbitrary regionlets described in Section3.2,
especially when selecting regionlets in the boosting classi-
fier training. This is not an issue for dense features such
as HOG and LBP histograms, since the computations like
gradient calculation or LBP extraction are amortized among
multiple regionlets. However, this is hard for spatially

1D feature for 

The learned dimension

Regionlets’ features

Fig. 4: Example of regionlet-based feature extraction.

sparse features, where the features are only available on
a small set of pixel locations. In this section, we intro-
duce a new technique calledsupport pixel integral images
(SPII), which extends the integral image [1] and integral
histogram [37] with a two-layer hashing, for fast access to
spatially sparse features. This enables the proposed detector
to exploit sparse SIFT or DCNN features.

4.1 Support pixel integral images

Let us first recapitulate the notations in integral images [1]
that are widely used to speed up feature computation in
object detection. In an integral image, the value of each
pixel I(x, y) is the summation of all the top left pixel values
p(i, j) from the original image. As a result, the summation
of the pixel values in an arbitrary rectangular region is
calculated by only three operations in Equ.2:

sumR(l,t,r,b) = I(r, b) + I(l, t)− I(r, t)− I(l, b), (2)

where
I(x, y) =

∑

i≤x,j≤y

p(i, j). (3)

Here l, t, r, b represents the left, top, right and bottom
coordinates of the rectangular region. The top row and left
column pixel values are not included in the region. Figure5
illustrates how to compute the integral image and randomly
access features in an arbitrary rectangular region.

Certain types of features are only available at a few
spatial locations, unlike HOG and LBP features that are
extracted from every pixel. For example, sparse SIFT
descriptors [38] are extracted on interest points, and the
DCNN may only be evaluated on a few locations. For these
cases, conventional integral images need to accumulate the
feature vectors for each pixel, leading to large memory and
computation costs. For instance, given a 640×480 image, a
SIFT integral image consumes640×480×128×4=150MB
memory (if using 32-bit floating point numbers). The
computation complexity is O(whd), wherew and h are
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Fig. 5: Illustration of an integral image.I(x, y) is the
summation of feature values of all pixels which are located
to the top-left of(x, y), including the pixel itself. The sum
of features in a rectangular region is computed by three
operations on the integral image.

the width and height of the image respectively, andd is the
feature dimension. An integral map is built for each feature
dimension independently without taking advantage of the
spatial sparsity of these features.

To optimize the memory usage and computation cost for
integral images on spatially sparse features, we treat each
feature vector as an entity and build a two-layer indexing
structure to retrieve integral values for features at arbitrary
locations. The first layer stores effective integral vectors on
a set of support pixels. Here we define “support pixels” as
the locations where the integral computation is unavoidable.
The integral vectors of support pixels are further indexed
by a hashing table. The second layer produces a dense
map with the same size as the input image, indicating the
hashing table entry of the corresponding integral vector.

Given spatially sparse features, we investigate how an
integral valueI(x, y) can be represented by one of the
previously computed integral values{I(x′, y′)|x′ ≤ x, y′ ≤
y, (x′, y′) 6= (x, y)}. The integral value at(x, y) is the
summation of feature values from all the pixels inside the
region(0, 0, x, y). An integral image usually starts with the
top-left pixel, and subsequent integral values are computed
by

I(x, y) =

i≤x,j≤y
∑

i=0,j=0

p(i, j)

=

i≤x,j=y
∑

i=0,j=y

p(i, j) +

i≤x,j≤y−1
∑

i=0,j=0

p(i, j)

=

x
∑

i=0

p(i, y) + I(x, y − 1)

= RowSum(x, y) + I(x, y − 1). (4)

It is clear thatI(x, y) = I(x, y−1) if RowSum(x, y) = 0,
so the computation for integral at location(x, y) can be
saved if there is no feature in rowy before the point(x, y).
On the other hand, Equ.4 can be re-formed as

I(x, y) =

y
∑

j=0

p(x, y) + I(x− 1, y)

= ColSum(x, y) + I(x− 1, y). (5)

( , 1) 

RowSum( , ) 

( , ) 

( , ) 

Fig. 6: Inductive integral image computation. The integral
value at current point(x, y) equals to the summation of its
top immediate integral value at(x, y − 1) and the sum of
all the pixel values in the current row till(x, y).

Similarly, the integral value does not change at(x, y)
compared toI(x − 1, y) if the column summation before
(x, y) equals 0. Figure6 shows how Equ.4 and Equ.5
work for constructing an integral image.

The same property holds for integral vectorI(x, y). Let
S = {(x, y)|1(x, y) 6= 0} be the set of pixel locations
where feature vectors are present, and1(·) is an indicator
function whose value is 1 if the feature vector is avail-
able at that location, otherwise 0. Assume all the integral
vectors before the point(x, y), i.e., {(x′, y′)|x′ ≤ x, y′ ≤
y, (x′, y′) 6= (x, y)}, have been constructed (in a row-first
order), a new integral vectorI(x, y) is needed for the
position (x,y) only when the following two conditions are
satisfied:

Sy(x) = {(x
′, y′)|x′ = x, y′ ≤ y, (x′, y′) ∈ S} 6= ∅

Sx(y) = {(x
′, y′)|y′ = y, x′ ≤ x, (x′, y′) ∈ S} 6= ∅, (6)

whereSy is the set of feature vector locations along the top
vertical direction of(x, y) andSx is a set of feature vector
locations along the left horizontal direction of(x, y).

Equ. 6 reveals that the integral vector at(x, y) shall be
computed if there are at least two feature vectors that are
located to the left and top of(x, y). In other words, given a
pair of feature points(x1, y1) and(x2, y2), the integral vec-
tor computation at(x3, y3) = (max(x1, x2),max(y1, y2))
is a must because these three locations satisfy Equ.6, as
shown in Figure7(c). We call this set of pixelssupport
pixels if their integral vectors can not be represented by
previously computed integral vectors. The integral vectors
of support pixels are computed asI(x, y)(x,y)∈SI , where

SI = {(x, y)|(x, y) = max((x1, y1), (x2, y2))}

subject to(x1, y1) ∈ S, (x2, y2) ∈ S, (7)

and (x, y) ∈ SI means pixel(x, y) belongs to the support
pixel set. The max operation is independent for horizontal
and vertical coordinates. These support integral vectors are
still sparsely distributed in the image. To retrieve integral
vectors rapidly at any pixel location, we build a dense
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Fig. 7: Illustration of a support pixel integral image: (a) Two-dimensional features at 4 pixel locations, (b) The grid
specified by these 4 locations, (c) The integral vectors on the support pixels, and (d) The dense hashing map.

hashing map to index the entries of support integral vectors:

I(x, y) =















Hash(I(x, y)) if Sx(y) 6= ∅, Sy(x) 6= ∅

I(x− 1, y) if Sx(y) 6= ∅, Sy(x) = ∅

I(x, y − 1) if Sx(y) = ∅, Sy(x) 6= ∅

,

(8)
where Hash(I(x, y)) is the entry ofI(x, y) in the hashing
table. Given an arbitrary rectangular regionR = (l, t, r, b),
the summation of the feature vectors insideR is computed
as:

F (R) = I−1(r, b)− I−1(l, b)− I−1(r, t) + I−1(l, t),
(9)

where I−1(·) is the integral vector retrieved from the
hashing table entryI(·).

The algorithm to build a support pixel integral image is
summarized in Alg.1. Figure 7 presents an example for
the case of 4 feature vectors in (a), the grid given by these
4 pixels is shown in (b). We compute integral vectors only
on the support pixels as in (c). Then we construct a dense
hashing map for fast retrieval as in (d). For example, all the
pixels of the map in the black area stores the same value,
which is the hashing table entry ofI0.

4.2 SPII on DCNN responses

In this section, we explain how to incorporate a deep con-
volutional neural network (DCNN) as a feature generator
in the regionlet framework using support pixel integral
images. Our detector requires access to regionlet features
at arbitrary locations. Nonetheless, it is computationally
inefficient to produce high-order DCNN responses at each
pixel location, considering each DCNN evaluation involves
millions of operations (though the low-level convolutions
can be amortized). In contrast, we only utilize the responses
from the convolutional layer of a DCNN as regionlet
features. It allow us to produce features for hundreds of
locations in one DCNN evaluation. These features are spa-
tially sparse and can be efficiently indexed by the support
pixel integral image.

A DCNN consists of several convolutional layers, max-
pooling layers and fully-connected layers. Responses at
higher layers such as the last fully-connected layer have

Algorithm 1: Support pixel integral image by a two-
layer hashing

Input: Integral vectorsF (x, y)(x,y)∈S , image width
w, image heighth, I(0, 0).

1 begin
2 i← 0, j ← 0
3 for j < h do
4 i← 0
5 for i < w do
6 if |Sx(y)| > 0, |Sy(x)| > 0 then
7 I(x, y) = new integral vector at(x, y)
8 I(x, y) = Hash(I(x, y))
9 else

10 if |Sx(y)| = 0 then
11 I(x, y) = I(x, y − 1)
12 else
13 I(x, y) = I(x− 1, y)
14 i← i+ 1
15 j ← j + 1

Output: Integral vectors on the support pixels
I(x, y)(x,y)∈SI . The dense hashing map
I(x, y)x∈[0,w), y∈[0,h).

been demonstrated to be very effective for object recogni-
tion.

To utilize the DCNN responses as regionlet features, we
map the response back to its spatial support region in the
original image. Convolutions and max-pooling in a DCNN
preserve their spatial support information, while neuronsin
fully-connected layers do not. Since spatial configurations
of visual appearances are crucial to localize objects, we
only take the responses from the convolutional layers of a
DCNN to augment the feature pool for regionlets.

We choose the publicly available neural network model
from [39] for feature extraction. As illustrated in Figure8,
the architecture is similar to [13] except that the input image
is 227×227. This network includes five convolutional layers
and three fully-connected layers. We map the responses
from the fifth convolutional layer before max-pooling back
to the original image domain. This convolutional layer
outputs 13 × 13 × 256 features [39], i.e., 256 response
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Fig. 8: The Deep CNN architecture used to extract features

maps spanned over13 × 13 regions with a stride16 × 16
in a 227× 227 image. Thus one evaluation of this DCNN
produces169 256-dimensional feature vectors. We did not
normalize the feature vectors. To produce such feature
vectors for images larger than227 × 227, we shift the
evaluation window of the DCNN to generate features for
the entire image. The resulting features for an image are
256-dimensional feature vectors with a16×16 pixel stride.

These features induced from a DCNN responses are
evenly distributed in an image both vertically and horizon-
tally. For two locations(x1, y1) ∈ S and (x2, y2) ∈ S, we
have (x1, y2) ∈ S and (x2, y1) ∈ S, so the support pixel
set of integral vectors in Equ.7 is exactly the set of DCNN
response features:

SI = {(x, y)|(x, y) ∈ S}. (10)

The total number of integral vectors to compute is|SI | ≈
w
16 ×

h
16 = wh

256 .
Conventional integral images accumulate the integral

vector for each pixel location, leading to a computation
complexity of O(whd). The SPII method only requires a
computation complexity of O(|SI |d), which is about 256
times faster if the feature map stride is16 × 16. Using
the two-layer hashing of integral vectors on the support
pixels, the memory cost is also reduced by approximately
256 times1.

While DCNN response features are extracted with a fixed
stride, regionlets can have arbitrary sizes. Thus a regionlet
may cover multiple DCNN responses. We simply apply
average pooling over these features to produce the feature
for the regionlets.

5 LEARNING THE REGIONLET MODEL

We follow the boosting framework to learn the discrimina-
tive regionlet groups and their configurations from a huge
pool of candidate regions and regionlets.

5.1 Regions/regionlets pool construction

Deformation may occur at different scales. For instance, in
person detection, deformation can be caused by a moving
finger or a waving hand. A set of small regionlets that

1. The storage used for hashing entries is less than 1% of storage for
saving integral vectors at each pixel.

is effective to capture finger-level deformation may hardly
handle deformation caused by hand movements. In order to
account for diverse variations, we build an over-complete
pool for regions and regionlets with various positions,
aspect ratios, and sizes. Before regionlet learning, a region
R′ or a regionletr′ is not applied to a detection window yet,
so we callR′ a feature region prototype andr′ a regionlet
prototype.

We first explain how the pool of region feature prototypes
is constructed. Using the definition in Section3.1.2, we
denote the 1-D feature of a region relative to a bounding
box as R′ = (l′, t′, r′, b′, k) where k denotes thekth
element of the low-level feature vector of the region.R′

represents a feature prototype. The region pool is spanned
by X ×Y ×W ×H×F , whereX andY are respectively
the space of horizontal and vertical anchor position ofR in
the detection window,W andH are the width and height
of the feature extraction regionR′, andF is the space of
low-level feature vectors (e.g., the concatenation of HOG
and LBP, or the DCNN response features). Enumerating
all possible regions is impractical and not necessary. We
employ a sampling process to reduce the pool size. Algo-
rithm 2 describes how we sample multiple region feature
prototypes.

Afterwards, we propose a set of regionlets with random
positions inside each region. Although the sizes of region-
lets in a region could be arbitrary, we restrict regionlets in
a group to have the identical size because our regionlets are
designed to capture the same appearance in different possi-
ble locations due to deformation. The sizes of regionlets in
different groups could be different. A region may contain
up to 5 regionlets in our implementation.

So the final feature space used as the feature pool for
boosting is spanned byR×C, whereR is the region feature
prototype space, andC is the configuration space of re-
gionlets. Therefore, we augment a region feature prototype
R′ = (l′, t′, r′, b′, k, c) with a regionlet configurationc.

5.2 Training with boosting regionlet features

We use RealBoost [40] to train cascaded classifiers for our
object detector. One boosting classifier consists of a set
of selected weak classifiers. Similar to [18], we define the
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Algorithm 2: Generation of region feature prototypes
Input: Region width stepsw and height stepsh;

maximum widthW and heightH of region
prototypes; horizontal steppx and vertical step
py for the region anchor position; minimum
width wmin and heighthmin of region
prototypes; the number of featuresN to extract
from one region

1 begin
2 w ← wmin, h← hmin, i← 0
3 for w < W do
4 h← hmin

5 for h < H do
6 h← h+ sh
7 l← 0, t← 0
8 for l < W − w do
9 t← 0

10 for t < H − h do
11 for k=1,. . . N do
12 r ← l + w, b← t+ h

R′ = (l/w, t/h, r/w, b/h, k)
R ← R∪ {R′}

13 t← t+ py, i← i+ 1
14 l← l + px
15 h← h+ sh
16 w ← w + sw

Output: Region feature prototype poolR

weak classifier using a lookup table:

h(x) =
n−1
∑

o=1

vo1(B(x) = o), (11)

whereh(x) is a piece-wise constant function defined by a
lookup table,vo is the table value for theoth entry,B(x)
quantizes the feature valuex into a table entry, and1(·)
is an indicator function.n is the number of bins which we
set to be 8. In each round of the training,vo is computed
based on the sample weight distribution asvo = 1

2 ln(
Uo

+

Uo

−

),
whereUo

+ is the summation of the weights of the positive
examples whose feature values fall into theoth entry of
the table. TheUo

− is defined in a similar manner for the
weights of negative examples. Let’s denoteQ as a candidate
object bounding box,R′(Q) as a rectangular region inQ,
andT (R′(Q)) as the one-dimensional feature computed on
R′(Q). Substitutingx in Equ.11 with the extracted feature,
we can get the weak classifier in thetth round of training
for the bounding boxQ:

ht(T (R
′(Q))) =

n−1
∑

o=1

vot1(Bt(T (R
′(Q))) = o), (12)

wherevot is the table value of theoth entry at thetth round
of training. Then, for each boosting classifier, the learning
process obtains a set of weak classifiersH for separating

+

+

+

A single model on an 

image pyramid 

Multiple models on 

the original image  

Ours, a single model 

on the original image 

Fig. 9: The regionlet-based detector learns a single clas-
sification model but automatically adapts to objects with
arbitrary sizes and aspect ratios, without building image
pyramids.

the positive samples from negative ones:

H(Q) =

T
∑

t=1

βtht(T (R
′
t(Q))), (13)

whereR′
t is the selected region and its regionlets configu-

ration in thetth round of boosting training, andβt is the
weight of the selected weak classifier. The classification
result of the bounding boxQ is determined by the final
round of cascade if it passes all previous ones, and it is
expressed asf(Q) = sign(H∗(Q)) whereH∗ denotes the
last stage of cascade.

In each cascade training, we generate 100 millions of
candidate weak classifiers. A reduced set of 20K weak
classifiers are sampled uniformly to fit into memory. Each
round of cascade training except the last cascade terminates
once the error rates (37.5% for negative samples and 1%
for positive samples) are achieved. The cascade rejection
threshold is chosen to reject 37.5% of the negative training
samples. The last round stops when it collects 5K weak
classifiers. The training usually finishes in 6-7 rounds.

5.3 Testing with regionlets

Given a test image, we first propose a number of candidate
object bounding boxes [8]. Then, each bounding box is
passed along the cascaded boosting classifiers. Because of
early rejections, only a small number of bounding boxes
reaches the last stage of the cascade. Therefore, our method
yields a very fast testing speed. Unlike most methods which
learn multiple models for different object aspect ratios or
build image pyramids to detect objects at different scales,
our approach utilizes a single model to handle objects at
different scales or with different aspect ratios, which is
possible due to the definition of regionlets by normalized
coordinates. This advantage is illustrated in Figure9.

6 EXPERIMENTS

Following most of recent work on generic object detec-
tion, we evaluate our object detection performance on the
challenging PASCAL VOC 2007 and VOC 2010 datasets.
The PASCAL VOC datasets contain 20 object categories.
They are popular benchmark datasets for generic multi-
class object detection. Detection performance of each cat-
egory is measured by the average precision. The overall
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performance is reported by the mean of average precisions
(mAP) over all classes. The PASCAL VOC datasets have
two evaluation tracks: with or without external training
data, named comp3 and comp4 respectively. Our approach
competes in comp3 when we do not use DCNN features and
comp4 when we use them. Our method is further validated
on the much larger ImageNet object detection dataset
(ILSVRC2013) [17] which has 200 object categories.

6.1 Experiment on PASCAL VOC datasets

We implement the selective search method [8] to generate
candidate detection bounding boxes. HOG [3], LBP [25]
and covariance features [19] are adopted as candidate
features for the regionlets. To validate the advantages of
the proposed approach, we compare it with three baselines:
deformable part-based model [2] which is one of the most
effective sliding window based detectors, and two recent
approaches based on object proposals [32], [8].

Accuracy: Table 1 presents the performance on the
PASCAL VOC 2007 dataset, from which we gain some
interesting insights from the comparison between the first
two baselines. In [2] features from each small8×8 patches
are aligned inside the detection window for the root filter,
allowing local deformation for parts with misplacement
costs, while [8] builds spatial pyramids over detection
windows. Felzenszwalbet al. [2] enforces a strict spatial
constraint in the root filter but allows for small local
deformations, while [8] ignores spatial configuration to a
large extent. From Table1, we observe that [2] is excellent
at detecting rigid objects (such as buses or cars) or objects
with well defined contours, but without abundant global
deformations (such as horses or people). In contrast, [8]
performs better for objects with significant global defor-
mations such as cats, cows, and sheep, as expected. It is
very interesting that [8] significantly outperforms [2] in the
aeroplane and tvmonitor categories, both of which seem to
be rigid objects. After taking a closer look at the data we
found that it is because these categories have very diverse
viewpoints, or rich sub-categories.

Our method significantly outperforms the baselines, as
we won 16 out of 20 categories. Our approach performs
decently for both rigid objects and those objects with local
or global deformations. Compared to [8], our edge comes
from our regionlet representation encoding of an object’s
spatial configuration. Compared to [2], our improvement on
accuracy is led by the joint deformation and misalignment
handling powered by the regionlets’ representation with
multiple resolution features. If we limit the number of
regionlets in a region to one, our method obtains a mean
average precision of 36.8%. Allowing multiple regionlets
consistently improves the object detection accuracy for
each class and pushes the number to 41.7%, which to our
knowledge is the best performance reported on the VOC
2007 dataset without using outside training data.

The DPM+Objectness approach [32] is one of the orig-
inal approaches applying detectors to object proposals. It
achieves 0.6% improvement in mAP over the original DPM

which reported 26.8% mAP. This attempt suggests that the
objectness score does not add much to the discriminative
power of the DPM detector. Table3 compares the perfor-

Fig. 10: Statistics of number of regionlets used for each
class. Deformable objects generally prefer more regionlets.

mance of using different regionlet feature configurations.
Figure 10 shows the average number of regionlets used
per region for each class. Deformable object categories
such as bird, cat, sheep, person and dog,etc. prefer
more regionlets than rigid object classes like bicycle, bus,
diningtable, motorbike, sofa and train. An interesting yet
consistent phenomenon has been observed for rigid objects
like aeroplane and tvmonitor, as in the comparison of [2]
and [8]. Our algorithm selects even more regionlets. We
speculate the regionlets in these two cases may help to
handle misalignment due to multiple viewpoints and sub-
categories.

TABLE 3: Performance of different features on the PAS-
CAL VOC 2007 dataset.

Feature HOG LBP COV HOG+LBP HOG+COV LBP+COV
mAP 35.1 33.5 33.7 38.47 37.3 37.7

Table2 shows our detection performance compared with
the baselines on the VOC 2010 dataset. Our regionlet
approach again achieves the best mean average precision.
Table 4 compares our approach with other state-of-the-art
methods on both VOC 2007 and VOC 2010 datasets in
terms of mean average precision over the 20 categories.
While the accuracies of [34] and [41] are close to ours,
both of them explore context information. In contrast,
our approach does not utilize any context cues and the
context information will likely further benefit our detection
approach.

Table5 and Table6 shows the performance of regionlets
using HOG, LBP, Covariance, and DCNN response fea-
tures. It is reasonable to think that adding DCNN responses

2. We obtained the latest results from the author’s website
http://www.cs.berkeley.edu/~rbg/latent/index.html.

3. We read the performance from the figure in [8].
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TABLE 1: Performance comparison with the baselines on the PASCAL VOC 2007 dataset (average precision %).DPM:
deformable part based model.SS SPM: selective search with spatial pyramid features.Regionlets-S: our regionlets
approach with a single regionlet per region.Regionlets-M: our regionlets approach allowing for multiple regionlets per
region.mAP is the mean average precision over all the 20 categories.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM [2]2 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

SS SPM [8]3 43.5 46.5 10.4 12.0 9.3 49.4 53.7 39.4 12.5 36.9 42.2 26.4 47.052.4 23.5 12.1 29.9 36.3 42.2 48.8 33.8
Regionlets-S50.8 44.6 17.0 23.5 16.7 48.9 67.6 39.1 16.5 32.4 44.0 18.9 52.1 46.6 36.6 13.8 33.8 27.6 55.5 50.4 36.8

Regionlets-M 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7

TABLE 2: Performance comparison with the baselines on the PASCAL VOC 2010 dataset (average precision %).

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM [2] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6

SS SPM [8] 58.2 41.3 19.2 14.0 14.3 44.8 36.7 48.8 12.9 28.1 28.739.4 44.1 52.5 25.8 14.1 38.8 34.2 43.1 42.6 34.1

Regionlets-M 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7

TABLE 5: Performance of Regionlets using DCNN responses on the PASCAL VOC 2007 dataset (average precision %).
Our result is directly comparable with the R-CNN approach using pooling 5 layer features.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Regionlets-M 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.6 57.0 54.5 43.4 16.4 36.6 37.7 59.4 52.3 41.7

Regionlets-CNN pool5 59.3 63.1 35.4 31.8 25.0 56.2 70.4 64.3 21.9 45.6 56.7 47.1 61.6 60.4 51.4 21.4 44.0 49.8 64.7 56.0 49.3

R-CNN pool5 [10] 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.8 56.6 58.7 42.4 23.4 46.1 36.7 51.3 55.7 44.2

R-CNN FT fc7 BB [10] 68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 33.4 62.9 51.1 62.5 64.8 58.5

TABLE 6: Performance of Regionlets using DCNN responses on the PASCAL VOC 2010 dataset (average precision %).

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Regionlets-M 65.0 48.9 25.9 24.6 24.5 56.1 54.5 51.2 17.0 28.9 30.2 35.8 40.2 55.7 43.5 14.3 43.9 32.6 54.0 45.9 39.7

Regionlets-CNN pool5 66.8 55.4 38.1 27.7 24.9 58.3 53.7 66.8 18.9 35.1 35.9 55.8 50.7 63.8 50.9 19.8 46.1 37.5 56.2 46.2 45.5

R-CNN FT fc7 BB [10] 71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 41.4 70.0 62.0 69.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

TABLE 4: Comparison with state of the arts using mAP
over 20 classes. “WC” means the method utilizes context
cues. We do not use any context information in our method.

VOC 2007 VOC 2010 Results year

DPM(WC) [2] 35.4 33.4 2008

UCI 2009 [42] 27.1 N/A 2009

INRIA 2009 [43] 28.9 N/A 2009

NLPR(WC) [16] N/A 36.8 2010

MITUCLA(WC) [ 16] N/A 36.0 2010

UVA [ 16] N/A 32.9 2010

MIT 2010 [27] 29.6 N/A 2010

Songet al. (WC) [41] 37.7 36.8 2011

Li et al. (WC) [44] 35.2 N/A 2011

SS SPM [8] 33.8 34.1 2011

Cinbis et al. (WC) [45] 35.0 N/A 2012

Cinbis et al. (WC) [34] 40.4 38.4 2013

Ours (Regionlets) 41.7 39.7 2013

to the regionlet feature pool significantly improves the de-
tection performance (49.3% mAP on VOC 2007 and 45.5%
mAP on VOC 2010). This shows that the regionlets are
effective at combining diverse types of features. Note that
the DCNN is trained on a much larger outside dataset [39]
(ImageNet 2010 classification dataset). Our method out-

performs the directly comparable R-CNN approach using
the pooling-5 layer feature from a DCNN. The R-CNN
achieves better performance with the fully-connected layer
feature and object location regression. Our approach runs
at 0.5 second per image while the R-CNN approach runs at
2 minutes per image. Sample detection results are shown
in Figure11.

Speed: We conducted our experiments on 12-core Xeon
2.1GHz blade servers. Multi-threading is utilized to speed
up the training and testing procedures. Training for one
category on a single machine takes 4 to 8 hours, depending
on how difficult the category is. The detection runs at 50
frames per second on a server or 5 frames per second using
a single core if the object region proposals are given. It runs
at 2 frames per second using a single core if computing
object proposals from scratch with our implementation.
Recently, Chenget al. [46] show that real-time object
proposal generation can be achieved.

When augmenting features from a DCNN with millions
of parameters, our detection system still consumes afford-
able computation. It runs at two frames per second with
a multiple thread implementation. This is mainly because
1) our system only needs to run around 10 neural network
forward passes to extract their responses for an image, and
2) the support pixel integral image efficiently computes
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integral images for these neural network responses.

6.2 Experiment on ImageNet Object Detection

Using the training set for training and the validation set
for testing, we demonstrate the scalability of the regionlet-
based detection on the ImageNet object detection task. With
20 machines (each machine has 8-12 cores), our training
finishes in 2.5 days. The testing finishes in roughly 1 hour.
The DPM performance is obtained by applying the DPM
v5 (version 5) code on ImageNet4. The mAP over the
200 object categories is reported in Table7. Our approach
outperforms the latest DPM by 6.3% (mAP) across the 200
categories; this is a significant improvement. The objects
in the ImageNet dataset have large variations in terms of
deformation and sub-categories. The proposed approach
tackles both issues by learning the regionlet-based cascaded
boosting classifiers, which are capable of depicting multiple
modes of spatial layouts and appearance variations for one
object category.

TABLE 7: Comparison with the DPM on the ImageNet
dataset, trained on the training data and tested on the
validation data.

ImageNet validation 2013 (mAP) Results year

DPM v5 [2] 10.0 2013
Ours (Regionlets) 16.3 2013

TABLE 8: Object detection performance in the ImageNet
2013 Challenge, trained on the training + validation data
and tested on the test data.

ImageNet test 2013 (mAP) Results year

UvA-Euvision 22.6 2013
Regionlets+DCNN 20.9 2013

OverFeat-NYU 19.4 2013
Toronto A 11.5 2013

SYSU Vision 10.4 2013
GPU UCLA 9.8 2013

Delta 6.1 2013

We augmented the HOG, LBP and Covariance features
with the DCNN features to participate in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC 2013).
Our system produced a mean average precision of 20.9%
on 200 object categories. It was ranked the second in all
submissions. Results are shown in Table8. The competitive
performance of the regionlet-based detectors validates the
effectiveness and scalability of boosting with descriptive
competing local regions for generic object detection.

7 CONCLUSION

In this paper, we propose a regionlet-based approach for
generic object detection. Regionlets provide a radically

4. We thank our intern Miao Sun from University of Missouri for
evaluating the DPM performance on the ImageNet.

different way to model object deformation compared to ex-
isting BoW approaches and DPM approaches. Our regionlet
model can adapt itself for detecting rigid objects, objects
with small local deformations or large long-range deforma-
tions. The regionlet-based framework is able to incorporate
various types of features,e.g., dense HOG, LBP, Covariance
features and sparse DCNN response features by support
pixel integral images. This flexibility enables the potential
of optimizing for a specific object class using certain types
of features. Validated on the challenging PASCAL VOC
datasets and the ImageNet object detection dataset, the
proposed regionlet approach demonstrates very competitive
performance compared to the existing approaches.
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(a) aeroplane detection

(b) bicycle detection

(c) bird detection

(d) boat detection

(e) bottle detection

(f) bus detection

(g) car detection

(h) person detection

Fig. 11: Example detections on the PASCAL VOC 2007 dataset


