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Abstract —Generic object detection is confronted by dealing with different degrees of variations, caused by viewpoints or defor-
mations in distinct object classes, with tractable computations. This demands for descriptive and flexible object representations
which can be efficiently evaluated in many locations. We propose to model an object class with a cascaded boosting classifier
which integrates various types of features from competing local regions, each of which may consist of a group of subregions,
named as regionlets. A regionlet is a base feature extraction region defined proportionally to a detection window at an arbitrary
resolution (i.e., size and aspect ratio). These regionlets are organized in small groups with stable relative positions to be
descriptive to delineate fine-grained spatial layouts inside objects. Their features are aggregated into a one-dimensional feature
within one group so as to be flexible to tolerate deformations. The most discriminative regionlets for each object class are selected
through a boosting learning procedure. Our regionlet approach achieves very competitive performance on popular multi-class
detection benchmark datasets with a single method, without any context. It achieves a detection mean average precision of
41.7% on the PASCAL VOC 2007 dataset, and 39.7% on the VOC 2010 for 20 object categories. We further develop support
pixel integral images to efficiently augment regionlet features with the responses learned by deep convolutional neural networks.
Our regionlet based method won second place in the ImageNet Large Scale Visual Object Recognition Challenge (ILSVRC
2013).

Index Terms —Object Detection, Regionlet, Boosting, Object Proposals, Selective Search, Deep Convolutional Neural Network
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1 INTRODUCTION method P] inherits HOG window template matching][

ESPITEthe success of face detection. where the targ@t explicitly models deformations using latent variables
D objects are roughly rigid, generic object detectioHSing the DPM, an exhaustive search of possible locations,

remains an open problem mainly due to the challenge sgales, and aspect ratios is c_ritical to localize objeats. |
handling all possible variations with tractable computasi ©rder to alleviate the computational cost, DPM approaches
In particular, different object classes demonstrate tigia Nave been accelerated by coarse-to-fine seaiictbfanch

degrees of deformation in images, either due to theid bound 9], and cross-talk methodso] Third, ob-
nature,eg., living creatures like cats are generally mordECt recognition methods using spatial pyramid matching

deformable than man-made objects like vehicles, or due @@PM) Of bag-of-words (Bow) models/], which can
viewing distances or angles,g., deformable objects may inherently tolerate large deformations, are adopted fer de

appear somewhat rigid at a distance and even rigid objefg§tion Fl. These detectors are applied to thousands of

may show larger variations under different viewing angle§Piect-independent candidate detection windods [9],

These pose a fundamental dilemma to object class reprederi): instead of millions of sliding windows. Recently, deep

tations: on the one hand, a delicate model describing rigi@nvelutional neural networks (DCNNJ).[] have exhibited

object appearances may hardly handle deformable Objeagperior capacities in learning invariance in multipleauj

on the other hand, a high tolerance of deformation m&@tegories from large amounts of training data]{ [17],
result in imprecise localization or false positives foridig @nd they have been successfully adapted to object detection

objects. with a sliding window searchl}] or object proposal based

Prior arts in object detection cope with object deformaearch L0l [19]. _ o
tion with primarily four typical strategies. First, if spat ~ OPIECtS may appear at different scales with different

layouts of object appearances are roughly rigid such §8PEct ratios. Most existing approaché§ [2], [1], [4],

faces or pedestrians at a distance, the classical Adabdgsttrain an object detector at a fixed scale and aspect
detector [] models local variations with an ensemble clag@tio- In the training phase, object bounding boxes are
sifier of fast features. This enables a sliding window sear@prmalized to exactly the same resolution. In the testing
with cascaded classifiers, achieving precise and efficidf{taSe. @ test image is resized to image pyramids in order

localization. Second, the deformable part model (DPME detect objects appearing at scales different from that of
the testing model. Multiple models are usually learned to

detect objects with different aspect ratios. On the one hand
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Candidate detection bounding boxes  the regionlets shown as orange boxes are grouped within
blue rectangular regions. The regionlets and their groups
for one object class are learned in boosting with stable
relative positions to each other. When they are applied to
two candidate bounding boxes, the feature responses of
regionlets are obtained at their respective scales andttaspe
ratios. The effective regionlets configurations are lediine
training and fixed in testing with no spatial configuration
inference (like DPM }]), leading to a fast evaluation speed.
ﬁ> The features extracted from the regionlets in one group
E ‘ are aggregated into a 1-D feature as one weak classifier,
which allows the boosting classifier to incorporate mugipl
types of features flexibly. This requires efficient random
access of features inside arbitrary regionlets duringimgi

N . _ ) .. and testing, which is straightforward for dense features
Fig. 1: lllustration of the regionlet representation. Redet o tacted at a pixel grid but complicated for spatially

representation can be applied to candidate bounding boxes, se features )., sparse SIFT features not available at
that ha\_/e different sizes and aspect ratlos..Areg|onIee<tta each pixel). To leverage sparse features in the regionlet
model is composed of a number of regions (denoted @étector, we proposesapport pixel integral images (SPII)
blue rectangles), and then each region is represented bﬁééhnique, that utilizes a two-layer indexing scheme to
group of competing regionlets (denoted by the small oranggyjeve integral vectors of spatially sparse features. As
rectangles inside each region). the first layer, we identify spatial locations where the
integral computation is indispensable, referred to as the
set of support pixels, then store and hash these integral
features extracted at the original object resolution to @dfix vectors by their spatial locations for fast access. Thersco
length vector §], regardless of the scale or aspect ratio of 3ayer stores the hashing entries of the integral vector for
object. Therefore, it is feasible to train a single detettor each pixel location. SPII is much faster than conventional
detect objects at their original resolutions without re®jz integral image and substantially reduces the memory usage.
testing images. These detection approaches inspired usate demonstrate the effectiveness of SPII by incorporating
investigate a descriptive and flexible object represemati the responses from a deep convolutional neural network
which delivers the modeling capacity for describing botthto our regionlets framework and improving the detection
rigid and deformable objects in a unified framework angerformance significantly.
handles multiple scales and aspect ratios efficiently. The major contributions of this paper are three-fold.
In this paper, we propose a new object representatioh The novel regionlet-based representation that models
strategy for generic object detection, which incorporateslative spatial layouts inside an object. It accommodates
adaptive deformation handling into both object classifieriations, especially deformations, by the max-poolifig o
learning and basic feature extraction. Each object bogndifeature responses and data-driven regionlet group selec-
box is classified by a cascaded boosting classifier, whafén. 2) The regionlet-based detector efficiently applies t
each weak classifier takes the feature response of a regigbitrary bounding boxes at different scales and aspect
inside the bounding box as its input. The region is ifatios. 3) The support pixel integral image allows fast
turn represented by a group of small subregions, namgecess to feature vectors in arbitrary regions given a set
as regionlets. The sets of regionlets are selected from &f spatially sparse features in an image. As validated in
huge pool of candidate regionlet groups by boosting. Thige experiment, the proposed regionlet detector adaptivel
relative spatial positions of both the regionlets withi® thhandles a varying degree of deformation in diverse object
region and the region within an object bounding box arglasses in a data driven fashion, leading to the state-of-
stable. Therefore, the proposed regionlet representation the-art performance on PASCAL VOC 2007 and 2010
model fine-grained spatial appearance layouts. Moreoveatasets 16] without outside training data. Moreover, this
the feature responses of regionlets within one group aigproach achieved second place on the detection task in the
aggregated into a one-dimensional feature, and the regultimageNet Large Scale Visual Object Recognition Challenge
feature is robust to local deformation. Also, our regionlgiLSVRC 2013) [L7].
model is designed to be flexible enough to take bounding
boxes with different sizes and aspect ratios. The flexybilit
enables our regionlet-based classifier to directly evalua% RELATED WORK
object proposals from selective searci), [which are of- Object detection is arguably an indispensable component
ten thousands of candidate bounding boxes in contrastft® most vision tasks, and it has achieved prominent success
hundreds of thousands (if not millions) of sliding windowsor specific targets such as faced,[[18] and pedestri-
required for exhaustive search. ans 3], [19, [20], [21], [22], [23], [24]. We briefly review
Figure 1 illustrates the regionlet representation, whereelated techniques in object detection.

Regionlet based model Applied to candidate boxes



Discriminative and efficient features are the cornerston8& REGIONLETS FOR DETECTION

for object detection. Viola and Jones's face detectdr [ppject detection is composed of two key components:
employed Haar features in a cascaded boosting classifiegermining where the candidate object locations are in
differentiate facial textures; Dalal and Triggd proposed an image and discerning whether they are the objects
the Histogram of Oriented Gradients (HOG) templatest interests. Beyond the straightforward exhaustive $earc
to model pedestrian silhouettes by a linear SVM. Lategf g |ocations, our regionlet detection approach screens
Wang et al. [2(] showed that the Local Binary Patternspe candidate windows derived from selective seafih [
(LBP) [25] are complementary to HOG features and the§ejective search over-segments an image into superpixels,
combination enhances pedestrian detection performanggq then groups the superpixels in a bottom-up manner to
Tuzel et al. [19) showed that covariance features, Whidﬂ)ropose candidate bounding boxes. The workéinshows
encode the intensity gradients as well as the second orges; such candidate bounding boxes, about 1,&0000
derivati\_/e among pixel locations, can effectively de!ilﬂaeae_ach image, achieve a very high recall. With the proposed
pedestrian appearances. In these methods, the fixed-$jgBnding boxes, the detection task boils down to extraction
templates strictly align features according to their spatiyf g appropriate object representation from each proposed
locations in the classifiers. They are capable of handliggy and learning of a scoring function to rank the boxes.
roughly rigid objects, but they have difficulty in detectingrg this end, we introduce the regionlet-based representati
more deformable generic object classes. for each candidate bounding box. In our proposed method,

The most well-known works on handling object deforVe construct a large regionlet feature pool and then design

mation are the deformable part model (DPM] gnd its a cascaded boosting learning process to select the most
: : discriminative regionlets for detection.

extensions ], [26], [27], [“]. The DPM object detector In this section we describe what the regionlets are and

consists of a root filter and several part filters. Deformagio g

among parts are inferred with latent variables. Since t@é(plam how they are designed to handle deformation.

i ) ! ection4 introduces the support pixel integral image which
resolutions of the object templates are fixed, an exhaustiV, . .
- . . ; ) . allows fast extraction of spatially sparse features for re-
sliding window search ] is required to find objects at

different scales with different aspect ratios. The exhaest gionlets. Sectiorb presents how to construct a regioniet

- 880| and learn a cascaded boosting classifier for an object
search can be accelerated by more efficient search methcatse orv by selecting the most discriminative regionlets
as in B, [29), [4], [6]. [26], [23], [29]. oY J Jomes:

Recently, deep convolutional neural networks][ [13] 3.1 Regionlets definition

demonstrated superior capabilities in leamning a geneggloyiect detection, an object category is essentially éeffin
object representation from large amounts of training daig, 5 ¢|assifier where both object appearance and the spatial
By amortizing the convolution computation among multiple,y o\t inside an object should be taken into account. For
locations [.4] and fine tuning the general representatiogjy ity appearance features are mostly extracted from
to a specific Ob_]eCt cate_gorqu)], D_CNNS have been somerectangular regions within an object, which we refer
successfully applied to object detectiori4], [10]. as feature extraction regions in the paper. Features éxtrac

The proposed regionlet-based detection extends the If{@™ @ small region often provide good localization abjlity

t are vulnerable to variations; a big region tends to

of boosting with efficient representations, which handl | . b b " h
object deformation directly in feature extraction and infolérate more variations but may not be sensitive enoug

corporates HOG, LBP, covariance and DCNN feature@.r accur_ate localization. When large varlat|_ons, esphcial
deformations, occur, a large rectangle region may not be

Our approach differs from standard boosting methods [ . . - .

in two aspects: firstly, it defines a flexible representatio"'r’PprOprlate for extracting descr!ptwe features Of. an «:lbje_
which can be adapted to arbitrary detection window ecause some par.ts of the region may not be. informative
while conventional boosting only deals with fixed resolntio®" €VEN be d|strgct|ve: This motivates us to ‘?'ef'”e the sub-
windows. Thus our framework can easily deal with objecf§9'°NS of a regiorgegionlets, as t_he basic units to extract

at multiple scales and aspect ratios. Secondly, it defin@gpearance features, and organize them into small groups,

a max-pooling operation among different features withi ich are flexible to describe distinct object categoriethwi

a group of regionlets to obtain more robust representati l_‘ferent degrees of deformation.
The method in$0] shared a similar effort to improve object 11 Regionlets defined insid .
recognition and segmentation with multiple features. Our ™ €gioniets defined inside regions

method is different in feature design as well as the objeWe would like to introduce the regionlets with an example
detector learning. illustrated in Figure2. The first column in Figure€ shows

three samples of a person that are the target object to be
Performing object detection with object proposals hafetected and they are cropped by black bounding boxes in
been attracting increasing attentionis]] [37], [33], [34], the second column. A rectangle feature extraction region
[35], [8]. Our regionlets detector is applied to objecinside the bounding box is denoted&sand will contribute
proposals obtained from low-level segmentati@h [t is a weak classifier to the boosting classifier. Within this
also applicable to other object proposal methdii, [[36]. region R, we further spot some small subregioresgy,
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Fig. 2: lllustration of the relationship among a detection

bounding box, a feature extraction region and regionlets. Ag. 3: Relative regions normalized by a candidate window
feature extraction regioR, shown as a light blue rectangle,adapt to scale and aspect ratio changes. Feature extraction
is cropped from a fixed position from 3 samples of a persof€gion for a regionlet/region is jointly determined by the
Inside R, several small subregions denotedrasr, and relative coordinates of the regionlet/region and the targe
r3 (in orange small rectangles) are tregionlets to capture detection window.

the possible locations of the hand for person detection.

approach groups over-segmented superpixels in a bottom-

r1,mo and r3) and define them as a group of regionletd!P Manner to propose some candidate bounding boxes.
We employ the ternregionlet, because the features ofThis approach typically produces 1000 to 2000 candidate
these subregions will be aggregated into a single featd¥@unding boxes for each image, in contrast to millions of
for R, and they are below the level of a stand-alone featupéndows in an exhaustive sliding window search.
extraction region in an object classifier. In summary, in the However, these proposed bounding boxes have arbitrary
proposed method, a detection bounding box is represenféées and aspect ratios. As a result, it is not feasible to use
by a number of regions, each of which is composed oftg@mplate regions (or template regionlets) with fixed altsolu
small set of regionlets. sizes that are widely used in sliding window search. We ad-
This example also illustrates how regionlets are designégess this difficulty by using theelative positions and sizes
to handle deformation. A hand, as a supposedly informati@éthe regionlets and their groups to an object bounding box.
part for a person, may appear at different locations withfrigure 3 shows our way of defining regionlets in contrast
the bounding box of a person. If we extract the feature f&® fixed regions with absolute sizes. When using a sliding
a hand from the whole regioR which roughly covers the window search, a feature extraction region is often defined
possible locations of the hand, the appearance of some nB}-the top-left(i, £) and the bottom-right corne-, b) w.r.t.
hand regions on the torso or background are also includé¥§ anchor position of the candidate bounding box. In
in the feature. An ideal deformation handling strategy fgontrast, our approach normalizes the coordinates by the
to extract features only from the hand region in all threwidth w and heighth of the box and records the relative
cases. To that end, we introduce three regionlets in&idePosition of a region(’,#',r", ') = (L.}, 5. %) = R.
(In general, a region can contain many regionlets. Hefts shown in Figures, if a detection window is scaled up
“three” is mainly for illustrative purpose). Each regionte by two times, traditional feature region definition covers a
serves as a possible location of a hand. Then only featutgually different patch. Here using normalized coordasat
from the regionlets are extracted and aggregated to genefgtSPecify the regionlets ensures that the visual appeasanc
a compact representation & Irrelevant appearances fromcaptured by a regionlet are the same even the sample is
background are largely discarded. More regionlet® iwill upscaled or downscaled. Furthermore, these relativerregio
increase the capacity to model deformatioes,, a hand definitions allow us to directly evaluate the regionlet-
may appear in more than three positions. On the other haR@sed representation on candidate windows at different

rigid objects may only require one regionlet from a featur@izes and aspect ratios without scaling images into maltipl
extraction region. resolutions or using multiple components for enumerating

possible aspect ratios.
3.1.2 Regionlets normalized by detection windows

In this work, the proposed regionlet representations afe? Region feature extraction

evaluated on the candidate bounding boxes derived frdfeature extraction fronR takes two steps: 1) extracting
the selective search approacti.[In principle, they are appearance featuresg., the HOG ] and LBP descrip-
also applicable for sliding windows. The selective seardbrs [25] from each regionlet respectively; and 2) generating



the representation ak based on regionlets’ features.

In the first step, we need to extract fixed-length features
from individual groups of regionlets, so their features ban
aggregated in the second step to generate the region feature
Efficient extraction is straightforward for dense features

where the features are accessible at every pixel location, HI II I " UI I
e.g., HOG, LBP, and covariance features, yet complicated = | =011 I I
for spatially sparse featuregg., sparse SIFT features @ The learned dimension

(which will be discussed in Sectiof). Using the HOG
feature as an example, we compute gradients for all pixels_ il

inside one regionlet. Then these gradient orientations are l (///
used to construct the orientation histogram (8 evenly space

bins, without thresholding on the gradient magnitude) for 0 :> 0
this regionlet. Hence, we can extract the HOG feature for e e
an arbitrary regionlet, regardless of its size and aspéict ra Regionlets’ features 1D feature for R

Note that this is different from extracting HOG features in

a fixed size cell€g., 8 x 8 cells) followed by pooling and Fig. 4: Example of regionlet-based feature extraction.
coding. We apply L2 normalization for HOG features and

L1 normalization for LBP features. Covariance features are

normalized by the corresponding variance. sparse features, where the features are only available on
For the second step, we define a max-pooling operatigngma| set of pixel locations. In this section, we intro-
over features extracted from individual regionlet. It i ce a new technique calledpport pixel integral images
motivated by that a permutation invariant and exclusivgpu), which extends the integral imagé] fand integral
operation over regionlet features allows for deformatior}ﬁstogram B7] with a two-layer hashing, for fast access to

inside these regionlets. DendI& R) as the feature repre- gpaiia|ly sparse features. This enables the proposedidetec
sentation for region?, andT'(r;) as the feature extracted;q exploit sparse SIFT or DCNN features.

from the j'" regionletr; in R. The operation is defined as

following:
4.1 Support pixel integral images
T(R) = maxT(r;), 1) ) . : o :
J Let us first recapitulate the notations in integral imaggs [
wherej € [1,---,Ng] and Ny is the total number of that are widely used to speed up feature computation in

regionlets in regionR. For one regionlet;, we first extract OPJect detection. In an integral image, the value of each
its feature vectors, such as HOG or LBP histograms. TheiX€! (z, y) is the summation of all the top left pixel values
we pick a 1-D feature from the same dimension of thed&?,J) from the original image. As a result, the summation
feature vectors in one group of regionlets and apply EIqu.Of the pixel values in an arb|t'rary 'rectangular region is
to form the feature for regiorR. We have millions of Calculated by only three operations in EGu.

SI_Jch_ 1_-D features in a detec_tlon window and thg most sump(eey = 1r,b) + I(L,t) — I(rt) — I(1,b), (2)
discriminative ones are determined through a boosting type T

learning process (to be described in Sectio). where
Figure4 illustrates the process to extrattR), the 1-D Iy)= Y plij). 3
feature for a regiornRk. Here we again use the example in i<z,j<y

Figure 2, where the blue regio® is the one covering the .
9 9 g (ﬁere l,t,r,b represents the left, top, right and bottom

variation of hand locations. Assuming the first dimension dinat £ th i | ion. The t d left
the concatenated low-level features is the most distiactiyo> o ares OF the rectangular region. 1he top row and e
olumn pixel values are not included in the region. Fighre

feature dimension learned for hand, we collect this dime iustrates how t te the int li q doml
sion from all the three regionlets and represgéqR) by the tustrates how to compute the integral image and randomly

strongest feature response among the group of regionlef"s(?Cess features in an arbitrary rectangular. region.
Certain types of features are only available at a few

4 S spatial locations, unlike HOG and LBP features that are
UPPORT PIXEL INTEGRAL IMAGES FOR extracted from every pixel. For example, sparse SIFT
REGIONLETS descriptors €] are extracted on interest points, and the
The regionlet-based detector requires efficient accessOE&NN may only be evaluated on a few locations. For these
features from arbitrary regionlets described in SecB8dl) cases, conventional integral images need to accumulate the
especially when selecting regionlets in the boosting ¢clas$eature vectors for each pixel, leading to large memory and
fier training. This is not an issue for dense features sucbmputation costs. For instance, given a £480 image, a
as HOG and LBP histograms, since the computations lil&FT integral image consumeég0 x 480 x 128 x 4=150MB
gradient calculation or LBP extraction are amortized amomgemory (if using 32-bit floating point numbers). The
multiple regionlets. However, this is hard for spatiallicomputation complexity is @{hd), wherew and h are
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Fig. 5: lllustration of an integral imagel(z,y) is the Fig. 6: Inductive integral image computation. The integral
summation of feature values of all pixels which are locateflUe at current pointz, y) equals to the summation of its
to the top-left of(z, y), including the pixel itself. The sum top immediate integral value &,y — 1) and the sum of
of features in a rectangular region is computed by thrédl the pixel values in the current row tillz, y).

operations on the integral image.

. . . . . Similarly, the integral value does not change (at y)
the width and height of the image respectively, and the compared tol (x — 1, y) if the column summation before

feature dimension. An integral map is built for each featur .
dimension independently without taking advantage of thx’y) equals 0. Figures shows how Equd and Equ.5

. . work for constructing an integral image.
spatial sparsity of these features. )

To optimize the memory usage and computation cost for '€ Same property holds for integral vectiz, y). Let
integral images on spatially sparse features, we treat eatti~ {(#,¥)[1(z,y) # 0} be the set of pixel locations
feature vector as an entity and build a two-layer indexin‘rf_‘jherfa feature vectors are present, drid is an indicator
structure to retrieve integral values for features at gahjt function whose value is 1 if the feature vector is avail-
locations. The first layer stores effective integral veston able at that location, ptherW|s_e 0. Assume all the integral
a set of support pixels. Here we define “support pixels” #¢ctors before the pointz, y), i.e, {(«,¢)|z" <2,y <
the locations where the integral computation is unavoiglab- (¢';¥') 7 (z,y)}, have been constructed (in a row-first
The integral vectors of support pixels are further indexe®fder), & new integral vectol(z,y) is needed for the
by a hashing table. The second layer produces a de,pé‘gtlpn (x,y) only when the following two conditions are
map with the same size as the input image, indicating tfatisfied:
hashing table entry of the corresponding integral vector.

. Give:w s;iatir;tl(ly s;))arse fbeatures, we ir:jvebstigate h?whangy(x) = {2,y = a9 <y, (2',y) €S} #0D

integral valuel(z,y) can be represented by one of the gl N ro

previously computed integral valugs(z’, /') |z’ < x,y’ < Say) =A@yl =2’ sz, (@ y) € Sy £ 0, (6)

y, (¢',y") # (x,y)}. The integral value atx,y) is the

summation of feature values from all the pixels inside thwheresS,, is the set of feature vector locations along the top
region (0,0, z, y). An integral image usually starts with thevertical direction of(z, y) and 5 is a set of feature vector
top-left pixel, and subsequent integral values are congputications along the left horizontal direction 6f, y).

by Equ. 6 reveals that the integral vector @t, y) shall be
i<z,i<y computed if there are at least two feature vectors that are
I(z,y) = Z (i, 5) located to the left and top dfr, y). In other words, given a
=070 pair of feature point$z1, y1) and(x2, y2), the integral vec-
i<zj—y i<zi<y—1 tor computation a{zs, y3) = (max(z1, z2), max(yi, y2))
- Z p(i, ) + Z p(i, 7) is a must because these three locations satisfy Egas
i—0jey i=07=0 shown in Figure7(c). We call this set of pixelsupport
z pixels if their integral vectors can not be represented by
= Zp(i,y) +I(x,y—1) previously computed integral vectors. The integral vextor
i=0 of support pixels are computed &gz, y)*¥)€51, where
= RowSum(x,y) + I(z,y — 1). 4
Itis clear thatl (z,y) = I(x,y—1) if RowSum(z,y) =0, St ={(z,y)l(z,y) = max((z1,y1), (¥2,52))}
so the computation for integral at locatigm,y) can be subject tdx1,y1) € S, (v2,12) €S, (7)

saved if there is no feature in rowbefore the poinfz, y).

On the other hand, Equ. can be re-formed as and (z,y) € S; means pixel(z, y) belongs to the support

Y pixel set. The max operation is independent for horizontal

I(z,y) = Zp(% y)+1(z -1y and vertical coordinates. These support integral vectas a
=0 still sparsely distributed in the image. To retrieve intdgr

= ColSum(z,y) + I(z —1,y). ®)  vectors rapidly at any pixel location, we build a dense
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Fig. 7: lllustration of a support pixel integral image: (ayd-dimensional features at 4 pixel locations, (b) The grid
specified by these 4 locations, (c) The integral vectors enstipport pixels, and (d) The dense hashing map.

hashing map to index the entries of support integral vectorsAlgorithm 1: Support pixel integral image by a two-

. layer hashin
Hast(I(x,y) if S.(y) # 0, 5,(x) #0 Al — .
. Input: Integral vectorsF(z,y)(®¥ €5, image width
I(z,y) = L@ —Ly)  if Suly) #0, Sy(z) =0, w, image heighta, 1(0,0).
I(z,y—1)  if Su(y) =0, Sy(x) #0 begin

140,70
for j < h do
140

(8)
where HashI (z,y)) is the entry ofI(z,y) in the hashing
table. Given an arbitrary rectangular regién= (I, ¢,r,b),

1
2
3
4
the summation of the feature vectors insilés computed ° for i <w do
e 6 if [S.(y)| > 0, |S,(z)| > 0 then
7
8
9
0

I(xz,y) = new integral vector &k, y)
Z(z,y) = Hash(I(z,y))

else

if [Sz(y)| =0 then

‘ I(I,y) = I(.T,y - 1)

FR)=Z '(r,b) = Z7'(1,b) =T ' (r,t) + T '(L,1),
9)
where Z-1(.) is the integral vector retrieved from theil
hashing table entrg(-).

The algorithm to build a support pixel integral image is else
oo . i | Z(x.y) =Z(z — 1,y)
summarized in Alg.1l. Figure 7 presents an example for S
. S 14 141+ 1
the case of 4 feature vectors in (a), the grid given by these et

4 pixels is shown in (b). We compute integral vectors only Output: Integral vectors on the support pixels
on the support pixels as in (c). Then we construct a dense I(z,y)@¥ES1 The dense hashing map

hashing map for fast retrieval as in (d). For example, all the I(z, y)*€0w); vEh)
pixels of the map in the black area stores the same value; -
which is the hashing table entry @.

4.2 SPIll on DCNN responses been demonstrated to be very effective for object recogni-

In this section, we explain how to incorporate a deep coffon-
volutional neural network (DCNN) as a feature generator 10 utilize the DCNN responses as regionlet features, we
in the regionlet framework using support pixel integran@p the response back to its spatial support region in the
images. Our detector requires access to regionlet featupéiginal image. Convolutions and max-pooling in a DCNN
at arbitrary locations. Nonetheless, it is computatignalPreserve their spatial support information, while neurions
inefficient to produce high-order DCNN responses at eaély-connected layers do not. Since spatial configuration
pixel location, considering each DCNN evaluation involve8f Visual appearances are crucial to localize objects, we
millions of operations (though the low-level convolution®nly take the responses from the convolutional layers of a
can be amortized). In contrast, we only utilize the respsns@CNN to augment the feature pool for regionlets.
from the convolutional layer of a DCNN as regionlet We choose the publicly available neural network model
features. It allow us to produce features for hundreds bm [39)] for feature extraction. As illustrated in Figug
locations in one DCNN evaluation. These features are sghe architecture is similar td [] except that the input image
tially sparse and can be efficiently indexed by the suppast227x227. This network includes five convolutional layers
pixel integral image. and three fully-connected layers. We map the responses
A DCNN consists of several convolutional layers, maxtrom the fifth convolutional layer before max-pooling back
pooling layers and fully-connected layers. Responses tat the original image domain. This convolutional layer
higher layers such as the last fully-connected layer hawetputs 13 x 13 x 256 features 39, i.e., 256 response



13 x 13 feature responses are
used as regionlet features

227 x 227 55 x 55 27 x 27 13 x 13 13 x 13 13 x 13
> >
x3 [ 2] x9 x 128 x384 | 7| x384 X 256 4096 [=> 4096 =3 1000
convl conv2 conv3 conv4 convs fc6 fc7 fc8

Max Max Max
pooling pooling pooling

Fig. 8: The Deep CNN architecture used to extract features

maps spanned ovei3 x 13 regions with a stridd6 x 16 is effective to capture finger-level deformation may hardly
in a227 x 227 image. Thus one evaluation of this DCNNhandle deformation caused by hand movements. In order to
producesl69 256-dimensional feature vectors. We did noaccount for diverse variations, we build an over-complete
normalize the feature vectors. To produce such featyseol for regions and regionlets with various positions,
vectors for images larger tha227 x 227, we shift the aspect ratios, and sizes. Before regionlet learning, amegi
evaluation window of the DCNN to generate features faR’ or a regionlet’ is not applied to a detection window yet,
the entire image. The resulting features for an image ase we callR’ a feature region prototype and a regionlet
256-dimensional feature vectors withlé x 16 pixel stride. prototype.
These features induced from a DCNN responses arewe first explain how the pool of region feature prototypes
evenly distributed in an image both vertically and horizorns constructed. Using the definition in Secti@nl.2 we
tally. For two locations(z1,y1) € S and (zz2,y2) € S, we denote the 1-D feature of a region relative to a bounding
have (z1,y2) € S and (zq,y1) € S, so the support pixel hox as R’ = (I',¢/,',b,k) where k denotes thekth
set of integral vectors in EqU.is exactly the set of DCNN element of the low-level feature vector of the regidgf.
response features: represents a feature prototype. The region pool is spanned
_ by X x Y x W x H x F, whereX and) are respectively
Sr=A{@y)ly) € S} (10) the space of horizontal and vertical anchor positiodzdh
The total number of integral vectors to computd 33| ~ the detection window)V and are the width and height
1% X % = ;”T’é of the feature extraction regioR’, and F is the space of
Conventional integral images accumulate the integrimw-level feature vectorse(g., the concatenation of HOG
vector for each pixel location, leading to a computatioand LBP, or the DCNN response features). Enumerating
complexity of Qwhd). The SPIl method only requires aall possible regions is impractical and not necessary. We
computation complexity of QS;|d), which is about 256 employ a sampling process to reduce the pool size. Algo-
times faster if the feature map stride i§ x 16. Using rithm 2 describes how we sample multiple region feature
the two-layer hashing of integral vectors on the suppoptototypes.
pixels, the memory cost is also reduced by approximately Afterwards, we propose a set of regionlets with random
256 times®. positions inside each region. Although the sizes of region-
While DCNN response features are extracted with a fix@gks in a region could be arbitrary, we restrict regionlets i
stride, regionlets can have arbitrary sizes. Thus a reglionh group to have the identical size because our regionlets are
may cover multiple DCNN responses. We simply applyesigned to capture the same appearance in different possi-
average pooling over these features to produce the featgl€ locations due to deformation. The sizes of regionlets in

for the regionlets. different groups could be different. A region may contain
up to 5 regionlets in our implementation.
5 LEARNING THE REGIONLET MODEL So the final feature space used as the feature pool for

We follow the boosting framework to learn the discriminaP00sting is spanned By xC, whereR is the region feature

tive regionlet groups and their configurations from a hug&ototype space, and is the conﬁgura_ltlon space of re-
R = (U',t,r", b, k,c) with a regionlet configuratiom.

5.1 Regions/regionlets pool construction

Deformation may occur at different scales. For instance, in o ) ) )

person detection, deformation can be caused by a moving  'r@ining with boosting regionlet features

finger or a waving hand. A set of small regionlets th"’\}\/e use RealBoost![] to train cascaded classifiers for our

1. The storage used for hashing entries is less than 1% afgetdor object detector. One '90_05“”9_ C!aSSifier ConSiSt.S of a set
saving integral vectors at each pixel. of selected weak classifiers. Similar tog], we define the



Algorithm 2: Generation of region feature prototypes

- - - A single model on an
Input: Region width steps,, and height stepy,; image pyramid D *

maximum width7 and heightH of region

prototypes; horizontal step, and vertical step Multiple models on DDD . T

p, for the region anchor position; minimum the original image =

width w,,;, and heighth,,;, of region Ours, a single model D o it

prototypes; the number of featur@sto extract on the original image : -

from one region
1 begin Fig. 9: The regionlet-based detector learns a single clas-
2 | W4 Wmin, b hipin, 0 sification model but automatically adapts to objects with
3 for w < W do arbitrary sizes and aspect ratios, without building image
4 h < hpin pyramids.
5 for h < H do
6 h < h+ sy
7 1+0,t<0 the positive samples from negative ones:
8 for < W —w do T
0 t+0 H(Q) =3 Aul(T(R(Q))), (13)
10 for t < H—h do t=1
1 for k=1,...N do where R, is the selected region and its regionlets configu-
12 " l+w bet+h ration in thetth round of boosting training, and, is the

R = (l/w,t/h,r/w,b/h, k) weight of the selected weak classifier. The classification
R<RU {R,/} result of the bounding box) is determined by the final

3 tettpyicitld round of cascade if it passes all previous ones, and it is
“ Ll po expressed ag(Q) = sign(H*(Q)) where H* denotes the
15 e htsn last stage of cascade.
16 W WA S In each cascade training, we generate 100 millions of

Output: Region feature prototype pod candidate weak classifiers. A reduced set of 20K weak

classifiers are sampled uniformly to fit into memory. Each
round of cascade training except the last cascade terminate

weak classifier using a lookup table: once the error rates (37.5% for negative samples and 1%
for positive samples) are achieved. The cascade rejection
n—1 threshold is chosen to reject 37.5% of the negative training
h(z) = Z v’1(B(x) = 0), (11) samples. The last round stops when it collects 5K weak
o=1 classifiers. The training usually finishes in 6-7 rounds.

whereh(x) is a piece-wise constant function defined by 8 3 Testing with regionlets

lookup table,w® is the table value for theth entry, B(x) . . ) .
) . Given a test image, we first propose a humber of candidate
quantizes the feature valueinto a table entry, and(-)

) S . : . . object bounding boxes 8]. Then, each bounding box is
is an indicator functionn is the number of bins which we : o
C T passed along the cascaded boosting classifiers. Because of

set to be 8. In each round of the training, is computed Co .
based on the sample weight distributionuds lln(U—i) early rejections, only a small number of bounding boxes

. P 'g . 2 \u2/r  reaches the last stage of the cascade. Therefore, our method
whereU? is the summation of the weights of the positivgie|ds a very fast testing speed. Unlike most methods which
examples whose feature values fall into Wi entry of |eam multiple models for different object aspect ratios or

the table. Thel’” is defined in a similar manner for theyjig jmage pyramids to detect objects at different scales,
weights of negative examples. Let's denQi@s a candidate oy approach utilizes a single model to handle objects at

object b/ounding boxR'(Q) as a rectangular region i3,  gifferent scales or with different aspect ratios, which is
andT (R'(Q)) as the one-dimensional feature computed Qfhssiple due to the definition of regionlets by normalized

R/(Q). Substituting in Equ. 11 with the extracted feature, coordinates. This advantage is illustrated in Figare
we can get the weak classifier in thih round of training

for the bounding boxQ: 6 EXPERIMENTS

1 Following most of recent work on generic object detec-
/ _ o ' _ tion, we evaluate our object detection performance on the
m(T(E(Q)) ;vtﬂ(Bt(T(R @))=0). (12 challenging PASCAL VOC 2007 and VOC 2010 datasets.
The PASCAL VOC datasets contain 20 object categories.

wherewy is the table value of theth entry at thetth round They are popular benchmark datasets for generic multi-
of training. Then, for each boosting classifier, the leagnirclass object detection. Detection performance of each cat-
process obtains a set of weak classifiefsfor separating egory is measured by the average precision. The overall
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performance is reported by the mean of average precisiomich reported 26.8% mAP. This attempt suggests that the
(mAP) over all classes. The PASCAL VOC datasets hawbjectness score does not add much to the discriminative
two evaluation tracks: with or without external trainingpower of the DPM detector. Tablé compares the perfor-
data, named comp3 and comp4 respectively. Our approach

competes in comp3 when we do not use DCNN features Average number of region-lets used per region
comp4 when we use them. Our method is further valida aeropane [ |
on the much larger ImageNet object detection datz "%

(ILSVRC2013) [.7] which has 200 object categories. botie

bus

car

cat

chair

cow
diningtable

6.1 Experiment on PASCAL VOC datasets
We implement the selective search meth8Htp generate  nael

candidate detection bounding boxes. HO, LBP [25] ooraon
and covariance featureslq are adopted as candidat sheep
features for the regionlets. To validate the advantages  wan
the proposed approach, we compare it with three baselii ™™
deformable part-based modéel] jwhich is one of the most
effective sliding window based detectors, and two rec.... Number of region-fets

ang;rgs; b'?:sl((ja in[Srzjsgrgtzriﬁzsig}gﬁ#ance on thé:ig' 10: Statistics of_number of regionlets used for each
PASCAL VOC 2007 dataset, from which we gain sOmglass. Deformable objects generally prefer more regisnlet
interesting insights from the comparison between the first i ) i i _
two baselines. In7] features from each smaix 8 patches mance of using different regionlet feature configurations.

are aligned inside the detection window for the root ﬁltefIgure 10 shows the average number of regionlets used

allowing local deformation for parts with misplacemenP®' region for each class. Deformable object categories

costs, while §] builds spatial pyramids over detectionSUch as bird, cat, sheep, person and de, prefer

windows. Felzenszwaliet al. [2] enforces a strict spatial MOre regionlets than rigid object classes like bicycle,, bus
constraint in the root filter but allows for small localdiningtable, motorbike, sofa and train. An interesting yet
deformations, while q] ignores spatial configuration to aconsistent phenomenon has been observed for rigid objects

large extent. From Tabl&, we observe that 7] is excellent like aeroplane a”‘?' tvmonitor, as in the compqrisonZ}f [
at detecting rigid objects (such as buses or cars) or objeBR¢ BI]' OUL algor!thrln se!ecti even more reglonleti. l\Ne
with well defined contours, but without abundant globaiPeculate the regionlets in these two cases may help to

deformations (such as horses or people). In contrag}, [Handle misalignment due to multiple viewpoints and sub-

performs better for objects with significant global deforcategories.

C:;S?rr:tse;ii&;?hgg]sgi;ﬁmscéﬁx (;stiziff’o?;sz)](?r?ﬁ;d. LI‘A'%LE 3: Performance of different features on the PAS-
%AL VOC 2007 dataset.

aeroplane and tvmonitor categories, both of which seem
be rigid objects. After taking a closer look at the data We reaturd HOG LBP COV HOG+LBP HOG+COV LBP+COV
found that it is because these categories have very diverSeapl 351 335 337  38.47 373 37.7
viewpoints, or rich sub-categories.
Our method significantly outperforms the baselines, as
we won 16 out of 20 categories. Our approach performsTabIeZ shows our detection performance compared with
decently for both rigid objects and those objects with loc#te baselines on the VOC 2010 dataset. Our regionlet
or global deformations. Compared t8] [ our edge comes @pproach again achieves the best mean average precision.
from our regionlet representation encoding of an object&ble 4 compares our approach with other state-of-the-art
spatial configuration. Compared té[our improvement on Methods on both VOC 2007 and VOC 2010 datasets in
accuracy is led by the joint deformation and misalignmef@fms of mean average precision over the 20 categories.
handling powered by the regionlets’ representation witf¥/hile the accuracies of3f] and [41] are close to ours,
multiple resolution features. If we limit the number offoth of them explore context information. In contrast,
regionlets in a region to one, our method obtains a me&Hr approach does not utilize any context cues and the
average precision Of 36.8%. A”0W|ng mu|t|p|e region|et§0ntext information W|” I|ke|y further beneﬁt our deteO[l
consistently improves the object detection accuracy f@Pproach.
each class and pushes the number to 41.7%, which to oufable5 and Table5 shows the performance of regionlets
knowledge is the best performance reported on the Va&8ing HOG, LBP, Covariance, and DCNN response fea-
2007 dataset without using outside training data. tures. It is reasonable to think that adding DCNN responses
The DPM+Objeciness approach?] is one of the orig- 2. We obtained the latest results from the author's website

inal approaches applying detectors to object proposals.pdh.:/mwww.cs.berkeley.edu/~rbg/latent/index.html.
achieves 0.6% improvement in mAP over the original DPM 3. We read the performance from the figure . [

26 2.71 2.82 2.93 3.04
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TABLE 1: Performance comparison with the baselines on thE®AL VOC 2007 dataset (average precision ZiPM:
deformable part based mod&S SPM: selective search with spatial pyramid featurBegionlets-S: our regionlets
approach with a single regionlet per regidegionlets-M: our regionlets approach allowing for multiple regionlets p
region.mAP is the mean average precision over all the 20 categories.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM [2]?[33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.020.0 24.1 26.7 12.7581 48.2 432 12.0 21.1 36.1 46.0 43.5 33.7
SS SPM [E]°]43.5 46.5 10.4 12.0 9.3 49.4 537 39.4 125 36.9 422 26.4 4BR4 235 121 29.9 36.3 42.2 48.8 33.8
Regionlets-$50.8 44.6 17.0 23.5 16.7 48.9 67.6 39.1 165 324 440 18.9 526.6 36.6 13.8 33.8 27.6 555 50.4 36.8
Regionlets-M 54.2 52.0 20.3 24.0 20.1 555 68.7 42.6 19.2 442 491 266 57.0 545 434 164 36.6 37.7 594 523 417

TABLE 2: Performance comparison with the baselines on thE@®AL VOC 2010 dataset (average precision %).

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv. mAP
DPM [Z] 456 49.0 11.0 11.6 27.2 50.5 43.1 23.617.2 23.2 10.7 205 425 445 413 8.7 29.0 18.7 40.0 345 29.6
SSSPM [8] |58.2 41.3 19.2 14.0 143 448 36.7 48.8 129 28.1 2894 441 525 258 141 38.8342 431 426 34.1
Regionlets-M 65.0 48.9 259 24.6 24.5 56.1 545 51.2 17.0 289 30.2 358 40.2 557 435 143 439 32.6 540 459 39.7

TABLE 5: Performance of Regionlets using DCNN responsesherPASCAL VOC 2007 dataset (average precision %).
Our result is directly comparable with the R-CNN approacimgigooling 5 layer features.

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv. mAP

Regionlets-M 54.2 52.0 20.3 24.0 20.1 55.5 68.7 42.6 19.2 44.2 49.1 26.® 545 434 164 36.6 37.7 59.4 52.3 41.7
Regionlets-CNN pogl [59.3 63.1 35.4 31.8 25.0 56.2 70.4 64.3 21.9 45.6 56.7 47.5 6860.4 514 214 44.0 49.8 64.7 56.0 49.3
R-CNN pook [10] 51.8 60.2 36.4 27.8 23.2 52.8 60.6 49.2 18.3 47.8 44.3 40.% 568.7 424 234 46.1 36.7 51.3 55.7 44.2

R-CNN FT fc; BB [10][68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 545 61.21 683.6 58.7 334 629 51.1 62.5 64.8 58.5

TABLE 6: Performance of Regionlets using DCNN responsesherPASCAL VOC 2010 dataset (average precision %).

aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Regionlets-M 65.0 48.9 259 24.6 245 56.1 545 51.2 17.0 28.9 30.2 35.2 465.7 435 143 43.9 32.6 54.0 459 39.7
Regionlets-CNN pogl |66.8 55.4 38.1 27.7 24.9 58.3 53.7 66.8 18.9 35.1 35.9 55.9 563.8 50.9 19.8 46.1 37.5 56.2 46.2 455

R-CNN FT fc; BB [10]171.8 65.8 53.0 36.8 359 59.7 60.0 69.9 27.9 50.6 41.4 70.0 689.0 58.1 29.5 59.4 39.3 61.2 52.4 53.7

TABLE 4: Comparison with state of the arts using MARerforms the directly comparable R-CNN approach using
over 20 classes. “WC” means the method utilizes contexfs pooling-5 layer feature from a DCNN. The R-CNN
cues. We do not use any context information in our methoghieves better performance with the fully-connectedrlaye
feature and object location regression. Our approach runs

DPMOWC) ] Vogs_zfm vo;:;:uo Reszu(l)tosgyear at 0._5 second per image while the R—QNN approach runs at
UCI 2000 /7] 271 NA 2009 2 m_mutes per image. Sample detection results are shown
INRIA_2009 [/]] 28.9 N/A 2009 in Figure 11.

NLPR(WC) [16] N/A 36.8 2010 Speed: We conducted our experiments on 12-core Xeon
MITUCLA(WC) [16] N/A 36.0 2010 2.1GHz blade servers. Multi-threading is utilized to speed
UVA [16] N/A 32.9 2010 up the training and testing procedures. Training for one
MIT_2010 7] 29.6 N/A 2010 category on a single machine takes 4 to 8 hours, depending
Songetal. (WC) [4] | 37.7 36.8 2011 on how difficult the category is. The detection runs at 50
Li et al. (WC) [44] 352 N/A 2011 frames per second on a server or 5 frames per second using
i%;:g aj[é](wc) 75 ggﬁ i:/l/.xl 282 a single core if the object region proposals are given. ISrgn
Cinbiset al, (WC) 04| 40.4 84 2013 at _2 frames per second using a _smgle core if compqtlng
Ours (Regioniets) a7 397 2013 object proposals from scratch with our implementation.

Recently, Chenget al. [46] show that real-time object
proposal generation can be achieved.

When augmenting features from a DCNN with millions
to the regionlet feature pool significantly improves the desf parameters, our detection system still consumes afford-
tection performance (49.3% mAP on VOC 2007 and 45.5%ble computation. It runs at two frames per second with
mAP on VOC 2010). This shows that the regionlets are multiple thread implementation. This is mainly because
effective at combining diverse types of features. Note th&) our system only needs to run around 10 neural network
the DCNN is trained on a much larger outside datas&} [ forward passes to extract their responses for an image, and
(ImageNet 2010 classification dataset). Our method o} the support pixel integral image efficiently computes
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integral images for these neural network responses. different way to model object deformation compared to ex-
isting BoW approaches and DPM approaches. Our regionlet

6.2 Experiment on ImageNet Object Detection model can adapt itself for detecting rigid objects, objects

Using the training set for training and the validation Séﬁnth small local deformations or large long-range deforma-

for testing, we demonstrate the scalability of the regibnle lons. The regionlet-based framework is able to incoryorat

based detection on the ImageNet object detection task. V\é’t%”ous types of featuresg,, dense HOG, LBP, Covariance
: . . features and sparse DCNN response features by support
20 machines (each machine has 8-12 cores), our tramln&

finishes in 2.5 days. The testing finishes in roughly 1 hou? el integral images. This flexibility enables the potaht

. X . f optimizing for a specific object class using certain types
The DPM performance is obtained by applying the Dpl\gf features. Validated on the challenging PASCAL VOC
v5 (version 5) code on ImageNetThe mAP over the

200 object categories is reported in TaBleOur approach datasets and the ImageNet object detection dataset, the

outperforms the latest DPM by 6.3% (MAP) across the 2(%oposed regionlet approach demonstrates very competitiv

categories; this is a significant improvement. The objec?serformance compared to the existing approaches.
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Fig. 11: Example detections on the PASCAL VOC 2007 dataset
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