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Abstract. Motion estimation in realistic outdoor settings is significantly chal-
lenged by cast shadows, reflections, glare, saturation, automatic gain control, etc.
To allow robust optical flow estimation in these cases, it is important to choose
appropriate data cost functions for matching. Recent years have seen a growing
trend toward patch-based data costs, as they are already common in stereo. Sys-
tematic evaluations of different costs in the context of optical flow have been
limited to certain cost types, and carried out on data without challenging appear-
ance. In this paper, we contribute a systematic evaluation of various pixel- and
patch-based data costs using a state-of-the-art algorithmic testbed and the realis-
tic KITTI dataset as basis. Akin to previous findings in stereo, we find the Census
transformation to be particularly suitable for challenging real-world scenes.

1 Introduction and Related Work

Optical flow estimation has come far since the pioneering works of Lucas/Kanade [16]
and Horn/Schunck [14]. Modern optical flow algorithms are reaching a point where
they become suitable for deployment in real-world vision systems, e.g. [17]. Still, most
state-of-the-art methods continue to be variants of the continuous energy minimization
framework of [14], i.e. they formulate an energy that aggregates data and smoothness
costs over the image as a function of the flow field, and then seek to minimize it.

Aside from the enormous growth in compute power, various factors have driven
the progress of optical flow methods: (i) Every optical flow approach needs to incorpo-
rate prior assumptions due to the ill-posedness of estimating 2D motion vectors from
changes in image brightness (the so-called aperture problem). Robust [3, 6] and non-
local regularizers [24, 27] have greatly improved the ability to estimate flow in areas
where the observed image data is weak or ambiguous. (ii) Also the data costs (respec-
tively likelihoods) have evolved to better deal with noise, lighting changes, etc. While
optical flow methods were originally based on the brightness constancy assumption
[14], and later robust versions of it [3], there has been a recent trend towards more ex-
pressive, usually patch-based cost functions [17, 23], as is already common in stereo
matching [13]. (iii) Sophisticated optimization schemes [7, 8, 29] have made flow esti-
mation much more efficient. Moreover, other algorithmic advances, such as pre-filtering
or outlier removal [26], have further increased the robustness of the estimate.

Designing robust optical flow approaches that work well in realistic settings, such as
challenging outdoor scenes with cast shadows, reflections, glare, saturation, automatic
gain control, etc., requires carefully choosing all components of the approach. Not only
for this reason, benchmarking has a long tradition in optical flow research [1, 2]. Yet, the
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focus of quantitative evaluations typically lies on showing the relative performance of
entire methods, which differ from one another in terms of the regularizer, the mathemat-
ical and algorithmic framework, and sometimes also the data cost. Systematic studies
of the benefit of the individual components are scarce, and have been largely limited
to choices related to the prior and algorithmic aspects [24]. Systematic evaluations of
data costs, especially patch-based ones, are rare and limited to a few metrics [23]. We
address this by evaluating different cost functions for optical flow estimation in a con-
sistent framework, in order to isolate the contribution of the data cost.

We focus on global optical flow methods and use standard total variation [29] and
more powerful total generalized variation [5] regularizers as testbed, along with primal-
dual optimization [8]. Our evaluation relies on two suitable benchmark datasets, the
now classic Middlebury benchmark [1], and the more recent KITTI dataset [9]. Our
testbed matches the performance of other implementations on Middlebury, thus sug-
gesting that it is representative of the current state-of-the-art. We make the following
contributions: (i) We conduct an evaluation and comparison of several data terms –
brightness constancy with and without prefiltering [26], normalized cross correlation
[27], mutual information [18], and the census transform [17] – in a consistent frame-
work; (ii) we introduce a variant of the census transform that allows it to be embedded
in gradient-based inference schemes; (iii) in the course of the evaluation, we achieve
some of the most accurate results reported to date on the challenging KITTI dataset.

2 Optical Flow Testbed

Given two subsequent images from a video sequence I0, I1 : Ω → R+, defined over
an image domain Ω, we aim to estimate the optical flow v : Ω → R2 composed of a
horizontal and vertical component, v = (u, v). More precisely, we aim to compute the
2D motion field, such that the image points I0(p) and I1(p+vp) are observations of the
same physical scene point. To assess how well a given motion field explains the image
data, a similarity measure ED(I0, I1,v) over matching pixels, termed “data cost”, is
defined. The simplest one is the pixelwise brightness constancy assumption (BCA).

Only demanding data fidelity leaves optical flow estimation ill-posed. This is re-
solved by imposing prior assumptions, such as the smoothness of the motion field,
through a regularizer ES(v). Most modern optical flow algorithms minimize a global
cost function consisting of a weighted combination of both energies:

λED(I0, I1,v) + ES(v) → min
v

(1)

Since the data cost is not convex due to the inherent ambiguity in matching, optimiza-
tion typically proceeds in a coarse-to-fine manner to cope with large displacements [6].

A popular choice for ES(v) is the Total Variation [21, 29] regularizer defined as
TV(v) = TV(u) + TV(v) =

∫
Ω
|∇u| + |∇v| dp. Later, [5] generalized TV to Total

Generalized Variation (TGV). While TV favors piecewise constant flow, TGV allows
for solutions of a higher polynomial degree: a regularizer TGVkα of order k assigns zero
energy to polynomials of order k − 1. In its primal form, TGV2

α can be written as

TGV2
α(u) = min

w

(
α1

∫
Ω

|∇u− w| dp + α0

∫
Ω

|∇w| dp
)
. (2)
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As for TV, we define TGV2
α(v) = TGV2

α(u) + TGV2
α(v). For Middlebury, which has

largely fronto-parallel scenes, we found TV to work better, and consequently use it in
our evaluation. On the contrary, the geometric layout of street scenes causes approx-
imately piecewise linear flow fields when viewed by a forward-moving observer. For
KITTI we thus use TGV2

α, which we found to clearly outperform TV on that dataset.

Estimation algorithm. To minimize TV and TGV we follow [8], which proposes an
efficient primal-dual solver for problems of the type

min
v
F (Dv) +G(v). (3)

Here, it is assumed that the optimization (i.e. the flow field v) is discretized to a regular
M×N pixel grid. To see how this applies to optical flow, we consider the case of TV,
to simplify notation. The derivation for TGV is similar.

We define D : V → Y to be a linear operator that for a (vectorized) flow field
v ∈ V = R2NM yields the horizontal and vertical flow derivatives, approximated by
finite differences, and concatenated into a vector in Y = R4NM . We can now estimate
optical flow according to Eq. (1) by setting G = λED and F (Dv) =

∑
p ||(Dv)p|| =∑

p

√
∇utp∇up +∇vtp∇vp. If both F and G are convex mappings, the primal formu-

lation can be recast as a saddle point problem, via the Legendre-Fenchel transform:

min
v∈V

max
y∈Y

〈Dv,y〉 − F ∗(y) +G(v), (4)

where F ∗(y) = supz∈Y 〈z,y〉 − F (z) is the conjugate function of F . Starting from
v0 ∈ V,y0 ∈ Y , Eq. (4) can now be minimized efficiently [8] by iterating over k and
updating (vk,yk) according to

vk+1 = (I + τ∂G)−1
(
vk − τDTyk

)
(5a)

yk+1 = (I + σ∂F ∗)−1
(
yk + σD(2vk+1 − vk)

)
, (5b)

with σ−1·τ−1≤ ||D||2 =8 to ensure convergence (in practice normally σ=τ=1/
√

8).
The proximal operator (I + τ∂G)−1(v̂), needed to solve Eq. (5a), is then given as

(I + τ∂G)−1(v̂) := arg min
v

1

2τ
||v − v̂||2 +G(v). (6)

The proximal operator for F ∗ is defined similarly and given by a pixelwise projection(
(I + σ∂F ∗)−1(y)

)
p

=
yp

max(1, ||yp||)
, (7)

onto the unit ball. The algorithm for TGV2
α proceeds in the same way, using a different

linear operator, see e.g. [20]. Note that in this case the update step width can be set
individually per pixel (τp, σp), following [19].

Datasets. The Middlebury dataset [1] has been the standard optical flow benchmark
for several years. It is widely used (90 entries as of July 2013) and has very precise,
dense ground truth. Its main limitations are the somewhat artificial scenes, with strong
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contrasts, well-saturated colors, and little deviation from diffuse surface shading. Also,
the scenes have a bias towards piecewise planarity and fronto-parallel depth layers.

The more recent KITTI dataset [9] is recorded outdoors from a moving vehicle. The
images exhibit more realistic imaging conditions, with cast shadows, glare, specular
reflections, changes in camera gain, etc., complicating flow estimation. Weaknesses
include the ground truth from a laser scanner, which is only available at a sparse set
of points. These points are irregularly distributed with a noticeable “near-field bias”:
Surfaces closer to the camera have many more ground truth points (thus influence on
the error); also the maximum depth in the field of view regularly exceeds the scanner’s
depth range, and the scenes are almost completely static except for the ego-motion.1

3 Evaluated Data Costs

We first introduce the different data terms independent of a particular optimization
framework, and defer details on how to embed them in the specific algorithm used
here (i.e. how to efficiently solve the corresponding proximal maps). Note that for all
patch-based data terms we warp I1 based on the current motion field, and evaluate the
similarity w.r.t. the warped image. This is in contrast to approaches that assume fronto-
parallel patch motion, cf . also [4]. Even though interesting, we do not consider explicit
models of brightness changes, e.g. [11], in this necessarily limited study.
BCA. Probably the simplest and most common data cost embodies the brightness con-
stancy assumption (BCA), i.e. penalizing grayvalue changes of a moving surface point:

BCA(v) =

∫
Ω

|I0(p)− I1(p + v)| dp. (8)

It is common to linearize the BCA (cf . Sec. 3.1) and employ a robust penalizer, e.g.
L1 (Eq. 8) or a differentiable approximation. In real scenes the BCA is often violated
due to non-Lambertian reflectance, varying illumination, etc. To mitigate the impact of
brightness changes, one can apply structure-texture (TV-L2) decomposition (STT, [21])
as a preprocessing step, cf . [26]. The images are separated into a piecewise constant
“structure” part and a high-frequency “texture” part, from which the flow is estimated.
NCC. Another popular data cost is the normalized cross correlation (NCC, [23, 27]).
For a single pixel location p, the NCC is defined as the integral over a small neighbor-
hood N (p), specified with a box filter B,

NCC(p,v) =

∫
Ω

(
I0(y)−µ0(p)

)(
I1(y+vy)−µ1(p+vp)

)
σ0(p)σ1(p + vp)

BN (p− y) dy, (9)

with the mean µ and variance σ calculated over the same neighborhoodN (p).The NCC
is by construction invariant to linear brightness changes (offset and contrast scaling). In
practice, it can be computed efficiently after discretization to the pixel raster, with the
help of discrete box filters and integral images. Moreover, truncating the NCC ignores
negative correlations [27]: TNCC(p,v) := min(1, 1− NCC(p,v)). The full data cost
is then simply the integral over the image domain: TNCC(v) =

∫
Ω

TNCC(p,v) dp.

1 Some methods thus explicitly enforce the epipolar constraint (“motion stereo”). We refrain
from this, as we consider it an instance of stereo matching rather than optical flow estimation.



An Evaluation of Data Costs for Optical Flow 5

Mutual information. The mutual information (MI) is a data cost from the alignment
literature [25], with even stronger invariance properties. It is popular in stereo matching
[13] and has been integrated into optical flow [18]. MI expresses the statistical depen-
dence between two random variables, here image intensities:

MI(I0, I1(v)) = H(I1(v))−H(I1(v)|I0) = H(I0) + H(I1(v))−H(I1(v), I0), (10)

where H(I1(v), I0) is the the joint entropy. Mutual information is high if the intensity
I1 can be predicted well from the corresponding I0; accordingly the negative MI serves
as data cost. In practice, intensity statistics are approximated with histograms over pixel
values, usually smoothed with an isotropic Gaussian Kω with kernel size ω.

Census Transform. The original Census transform [28] and its ternary variant [22]
have recently found more widespread use, particularly addressing challenging outdoor
lighting conditions [17]. This includes methods ranking high in the KITTI benchmark
[12, 20]. The (ternary) Census data term at location p is defined as

Cen(p,v) =
∫
Ω
1cε(I0,p,y) 6=cε(I1,p+v,y+v)BN (p− y) dy (11)

with cε(I,p,q) = sgn(I(p)− I(q))1|I(p)−I(q)|>ε, (12)

where 1 is the indicator function, B is again a box-filter, and N (p) denotes the corre-
sponding neighborhood. The full Census data cost for a flow field v is again obtained
by integrating over the image domain, Cen(v) =

∫
Ω

Cen(p,v) dp. Although Census
has been incorporated in continuous optimization approaches to optical flow, we are
not aware of any work that explains how this is done in detail. The Census cost is a
piecewise constant function that is neither locally convex nor continuous. Its gradient is
0 or∞ everywhere, thus there is no obvious linearization (Fig. 1).

To facilitate optimization, we here propose a convex approximation of Eq. (11):

CSAD(p,v) =

∫
Ω

|I0(p)− I0(y)− (I1(p + v)− I1(y + v))|BN (p− y) dy, (13)

where the “soft” L1-norm serves as a proxy for the hard thresholding step. We denote
the new data term by CSAD, as it is formally a sum of centralized absolute differences.
Note that by using absolute differences one foregoes some of the robustness of the
ternary census, but gains tractability. As before the full data cost is given by integration
over the image domain, i.e. CSAD(v) =

∫
Ω

CSAD(p,v) dp. Note also that CSAD
bears connections to the widely used gradient constancy assumption (GCA, [6]). Very
recently, [10] showed that a continous variant of Census is a generalization of GCA;
the discretization bears some resemblance to Eq. 13 and aggregates derivatives of pixel
differences.

3.1 Data costs in the primal-dual framework

Several modern optical flow estimation techniques [8, 29], including the primal-dual
scheme used here, decouple the optimization of prior and data term, hereby allowing to
optimize the data cost independently per pixel. We now describe the update steps (i.e.,
the proximal operator (I + τ∂G)−1) for the different data terms, restricted to a single
pixel for readability. We first recall the following soft thresholding scheme [15]:
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Soft Thresholding. The solution x̄ to the optimization problem:

arg min
x∈R

n∑
i=1

wi|x− bi|+ F (x) (14)

with bi ≤ bi+1,∀i andWi = −
∑i
j=1 wj+

∑n
j=i+1 wj ,∀i, and F being strictly convex

and differentiable with a bijective derivative F ′, can be computed via a median

x̄ = median(b1, . . . , bn, a0, . . . an), (15)

where ai = (F ′)−1(Wi). If a data termG can be written as a component-wise weighted
sum of L1-norms as in Eq. (14), one can set F (x) = x2/(2τ) and directly solve the
proximal map pointwise, through Eq. (15).

BCA. In order to employ Eqs. (4,5), we require a convex data cost G. To that end,
we rely on the usual first order Taylor expansion of the brightness of the warped image
around an initial solution for the flow field, v0: I1(p+v) ≈ I1(p+v0)+(v−v0)T∇I1.
Our convexified data cost becomesGBCA(v) = λ|I1(p+v0)+(v−v0)T∇I1−I0(p)|.
With that we can write the proximal map for the BCA data cost at pixel p as

(I+τ∂G)−1(v̂) = arg min
v

1

2τ
(v̂−v)2+λ|I1(p+v0)+(v−v0)T∇I1−I0(p)|. (16)

One important observation here is that due to the isotropy of the quadratic term in the
proximal map, Eq. (16) can be reduced to a one dimensional problem. In particular,
setting v = v̂ + δ∇I1/|∇I1|+ δ+∇+I1/|∇+I1| the proximal map reduces to:

arg min
δ

1

2τ
δ2 + λ|∇I1|

∣∣∣∣∣ I1(p + v0) + (v̂ − v0)T∇I1 − I0(p)

|∇I1|︸ ︷︷ ︸
=:Ĝ(v̂)

+ δ

∣∣∣∣∣, (17)

hence δ+ = 0. Here ∇+ is a vector orthogonal to the gradient. This can also be gen-
eralized to different data terms by using brightness linearization of the warped image.
Applying Eq. (15) we can solve for the optimal δ and derive a soft-thresholding scheme:
(I + τ∂G)−1(v̂) := v̂ +∇I1/|∇I1| ·median{−Ĝ(v̂),±λτ |∇I1|}.
NCC. The (T)NCC cost function is not convex, and a closed form solution for the
proximal map does not exist. Following [27], a second order Taylor expansion can be
used to build a convex approximation; off-diagonal entries of the Hessian are dropped
to make it positive definite. At pixel p the convexified data term GTNCC becomes

GTNCC(v)=λ
(
TNCC(p,v0)+(v−v0)T∇TNCC+

1

2
(v−v0)T∇2

+,TNCC(v−v0)
)
, (18)

where the Taylor expansion was developed at v0 = (u0, v0), and the modified Hessian
is given by ∇2

+,TNCC = diag(max(0, ∂2TNCC/∂2u),max(0, ∂2TNCC/∂2v)).

Mutual information. The local convexification of the MI data cost from [18] is similar
to the second order approximation introduced in Eq. (18), but here applied to the MI
data cost GMI = −λMI. We again modify the second order term to ensure positive
definiteness, and reduce the problem to 1D (Eq. 17). For details please refer to [18].
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Fig. 1. Optimization of the ternary
census data cost: The proximal map is
the sum of the piecewise constant cen-
sus score and a quadratic.

CSAD. Similar to the BCA, we linearize the intensity around the center pixel, which
allows reducing the problem to 1D (Eq. 17). The proximal map at p again takes the form
of Eq. (14), which can be solved using the soft-thresholding scheme. Due to the constant
weights, the solution to the proximal map reduces to an efficient median search. In
preliminary experiments we also considered the generalization of GCA described in
[10], by introducing appropriate spatial weights. The weighting did not improve the
results, thus we did not pursue it further. Moreover, we note that we find CSAD to work
best with larger windows (see below), suggesting a benefit over GCA.

Census. Rather than use the CSAD approximation to the ternary census, we now show
how to solve the proximal map directly for the census data cost. We start by linearizing
the brightness in Eq. (11) (at the patch center). Following the same reasoning as for
BCA (cf . Eq. 17), the optimal displacement must be in the direction of the image gra-
dient. Hence, we again need to solve a one-dimensional optimization problem and use
I1(p+v0)+δ∇I1/|∇I1| as replacement for the intensity at the center pixel in Eq. (11);
the intensity is now a function of δ. By inspection of that function (Fig. 1), we can iden-
tify discontinuities, i.e. locations where one summand of the census cost changes (or
can change). The trick is to precompute these at most 2|N (p)| locations {δn}, which
we sort in increasing order. At each δn we determine whether the cost increases or de-
creases by 1, or stays constant. We can then determine the value of the census cost using
a cumulative sum of the cost changes. This allows us to efficiently find the minimum
of the proximal map by considering the identified candidate locations, and taking into
account the quadratic penalty 1

2τ δ
2. The data cost changes depend only on I0 and can

be computed once per pyramid level of the coarse-to-fine scheme; the respective {δn}
need to be computed and sorted only once per warp.

4 Evaluation

We evaluate the different data costs on two datasets, the well established Middlebury
data set [1], containing 8 test images with ground truth, and the more recent KITTI
dataset [9] with 194 scenes. See Sec. 2 for a discussion. Parameters have been deter-
mined empirically, for best performance on the KITTI training set. In all experiments
we apply coarse-to-fine estimation with a pyramid scale factor of 0.9, 40 warps and 5
inner iterations per pyramid level, and outlier removal through median filtering after
each pyramid level [26]. Derivatives are computed with bicubic interpolation [24]. For
our evaluation on KITTI we use TGV2

α regularization with α0 = 5, α1 = 1. In case
of Middlebury, we use TV instead. The weight for the data cost is set to: λ = 8/9 for
TNCC, λ = 80/|N − 1| for CSAD and Census, and to λ = 25 for BCA. The threshold
for Census is set to ε = 0.005. For MI we use a 15×15 Gaussian filter with ω = 3.
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Fig. 2. Histograms of endpoint errors for different data costs, on complete KITTI training set.
Methods are ordered w.r.t. the number of pixels with endpoint error < 1.5px. See text for details.

Middlebury. Table 1 reports the average endpoint error (AEP) for the Middlebury
training set. The accuracy difference of the pixel-based data terms appears to be rather
small: MI is on par with simple BCA; preprocessing with STT does not appear to help
at all, performing worse than BCA in every case. Among the patch-based data terms
CSAD achieved the best results. Compared to Census, soft rather than hard thresholding
of brightness differences allows for a more fine-grained localization, see Fig. 2. Median
filtering visibly increases the smoothness of the Census flow vectors especially for the
smallest patch size. In general, larger patch sizes appear to perform better than smaller
ones. The most important finding for Middlebury is that pixel-based data costs perform
as well as patch-based ones.2 We attribute this to the controlled lighting conditions.
Difficulties lie rather in the non-rigid motion patterns, occlusions, or repetitive texture.
Illumination invariant patch-based data costs cannot improve the results under these
conditions. Importantly, however, the results do not deteriorate either.

KITTI. On the full KITTI training set in contrast (Tab. 2, left), we observe a clear per-
formance improvement of the patch-based data costs over the pixel-based ones. Among
the pixel-based ones, MI clearly outperforms BCA (with and without STT preprocess-
ing). For the patch-based data terms, every measure is best for at least two settings, thus
showing no clear winner. However, Census at the largest patch size can be identified as
the overall winner. Interestingly, the performance of NCC peaks at small window sizes,
while for CSAD and Census a larger patch size works best. However, the performance
gain w.r.t. patch size saturates at 7×7 for all patch-based costs.

Fig. 2 shows the endpoint error distribution for all data costs, ordered by decreasing
number of inliers (< 1.5px). CSAD and NCC show a higher fraction of flow vectors
with low EPE (< 0.38), i.e. they offer a higher localization accuracy than the other
data costs. We also evaluated one data cost (CSAD, 5×5) on the official test portion

2 We note that patch-based data costs are challenged by rotational motion, however these are not
very prominent here (nor in many other application scenarios).

data cost win.size Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus
BC — 0.19 0.21 0.64 0.21 0.15 0.35 0.69 0.34
BC+STT — 0.22 0.22 0.67 0.21 0.15 0.39 0.85 0.39
MI — 0.17 0.21 0.65 0.20 0.12 0.35 0.73 0.33

3× 3 0.24 0.25 0.66 0.18 0.14 0.37 0.79 0.34
CSAD 5× 5 0.19 0.23 0.64 0.18 0.12 0.36 0.68 0.33

7× 7 0.18 0.23 0.61 0.18 0.12 0.36 0.63 0.32
3× 3 0.21 0.22 0.74 0.18 0.12 0.36 0.63 0.34

NCC 5× 5 0.18 0.20 0.70 0.19 0.13 0.34 0.61 0.34
7× 7 0.17 0.21 0.72 0.20 0.15 0.35 0.69 0.34
3× 3 0.31 0.24 0.72 0.22 0.17 0.45 0.74 0.40

Census 5× 5 0.25 0.22 0.68 0.20 0.14 0.41 0.59 0.38
7× 7 0.24 0.21 0.66 0.19 0.14 0.39 0.56 0.36

Table 1. Average endpoint error [px] on Middlebury training dataset.
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full KITTI training set Illumination Changes
KITTI metric AEP KITTI metric AEP

occluded pix. × √ × √ √ √

2px 3px 4px 5px 2px 3px 4px 5px #44 #11 #15 #74 Av. #44 #11 #15 #74 Av.
BC — 20.7 17.2 15.0 13.4 28.9 25.1 22.6 20.7 3.9 7.7 45.6 35.6 67.1 90.6 59.7 11.2 9.7 21.0 45.7 21.9
BC+STT — 14.3 11.5 10.0 8.8 23.0 19.8 17.9 16.3 2.8 6.7 28.7 29.0 40.7 64.2 40.7 9.3 9.0 8.4 23.2 12.5
MI — 12.2 9.4 7.9 6.9 20.9 17.5 15.5 13.8 2.5 5.3 22.5 33.8 19.9 62.0 34.6 6.3 10.2 5.7 20.1 10.6

3×3 9.9 7.5 6.3 5.3 17.2 13.9 12.1 10.7 1.8 4.3 24.0 24.4 15.6 57.6 30.3 11.8 7.4 5.0 22.8 11.8
CSAD 5×5 9.6 7.2 6.0 5.1 17.0 13.8 11.9 10.6 1.7 4.2 22.1 23.3 16.4 59.8 30.4 10.2 6.6 3.7 23.3 10.9

7×7 9.7 7.3 6.0 5.1 17.1 13.9 12.1 10.7 1.7 4.3 19.7 24.2 17.7 58.6 30.1 7.4 7.2 3.9 23.0 10.4
3×3 10.3 7.3 5.9 5.0 17.2 13.5 11.4 10.0 1.8 3.8 18.1 33.6 14.2 60.5 31.6 6.1 13.6 4.9 23.4 12.0

NCC 5×5 10.1 7.3 6.0 5.1 17.2 13.6 11.6 10.2 1.8 3.7 21.3 32.9 15.5 59.3 32.3 9.3 13.6 4.4 23.3 12.7
7×7 10.7 7.9 6.5 5.5 17.8 14.3 12.2 10.8 1.9 4.1 17.9 32.9 16.9 58.7 31.6 6.2 13.2 4.2 23.4 11.8
3×3 10.4 7.7 6.4 5.5 17.7 14.2 12.3 10.9 2.0 4.5 19.2 27.8 18.6 59.9 31.4 6.4 9.0 6.6 23.9 11.5

Census 5×5 9.7 7.0 5.7 4.8 17.0 13.5 11.6 10.2 1.7 4.0 19.0 25.3 17.1 59.0 30.1 6.6 7.3 6.0 23.6 10.9
7×7 9.6 6.9 5.6 4.7 16.9 13.3 11.4 10.0 1.7 3.7 18.7 24.4 15.9 59.5 29.6 6.3 6.3 5.0 23.7 10.4

Table 2. KITTI metric (percentage of flow vectors above 2/3/4/5 pixels of endpoint error) and
average endpoint error [px], for the complete KITTI training set, as well as for the illumination
images selected for the GCPR special session.

of the KITTI benchmark, where our method (“Data-Flow”) is ranked 6th at the time of
publication, which shows that our testbed is state-of-the-art. We observe 8.2% outliers
excluding and 15.8% outliers including occluded regions.

Illumination changes. We also report results for particularly challenging test images
as part of the Robust Optical Flow Challenge (Tab. 2, right). We did not adapt the pa-
rameters in any way. While the outlier percentages are generally high, owing to the
difficulty of the challenge, the patch-based data costs allow the approach to signifi-
cantly outperform the official baseline techniques. On average 7×7 Census and 7×7
CSAD perform slightly better than the remaining patch-based data costs. The gap to
the pixel-based error metrics is again large, with the exception of MI, which produces
only 5% more outliers than the best patch-based measure. On the selected subset our
TNCC implementation has about 20% fewer outliers than [27], which uses the same
data term, but TV regularization. This might be an indication that the data term alone
cannot compensate for using a prior that is not suitable for the scenario.

5 Conclusion

Based on a state-of-the-art testbed and challenging image data, we provided an evalua-
tion of several pixel-based and patch-based data costs. While on the standard Middle-
bury dataset, patch-based measures cannot provide a clear benefit, they show signifi-
cant gains on the more challenging KITTI dataset. Overall, the Census transform and
the proposed CSAD variant, which is well-suited for standard continuous optimization,
show a slight overall performance lead. By avoiding thresholding, CSAD showed to be
particularly well suited for accurate flow localization.
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