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Abstract

Semantic reconstruction of a scene is important for a va-
riety of applications such as 3D modelling, object recog-
nition and autonomous robotic navigation. However, most
object labelling methods work in the image domain and fail
to capture the information present in 3D space. In this work
we propose a principled way to generate object labelling in
3D. Our method builds a triangulated meshed representa-
tion of the scene from multiple depth estimates. We then de-
fine a CRF over this mesh, which is able to capture the con-
sistency of geometric properties of the objects present in the
scene. In this framework, we are able to generate object hy-
potheses by combining information from multiple sources:
geometric properties (from the 3D mesh), and appearance
properties (from images). We demonstrate the robustness of
our framework in both indoor and outdoor scenes. For in-
door scenes we created an augmented version of the NYU
indoor scene dataset (RGB-D images) with object labelled
meshes for training and evaluation. For outdoor scenes, we
created ground truth object labellings for the KITTI odom-
etry dataset (stereo image sequence). We observe a signifi-
cant speed-up in the inference stage by performing labelling
on the mesh, and additionally achieve higher accuracies.

1. Introduction
In this paper we propose a method to generate a semanti-

cally labelled reconstruction of any scene. In our approach,
the scene is reconstructed in the form of a mesh, computed
from a sequence of depth estimates, and is annotated with
semantic object labels. This provides a more consistent ap-
proach to scene segmentation compared with independent
labelling of a sequence of images. Moreover, by virtue of
working on meshes, our method is highly efficient in the in-
ference stage. This form of semantically annotated 3D rep-
resentation is necessary to allow robotic platforms to under-
stand, interact and navigate in a structured indoor environ-
ment [2, 12, 26] or outdoor scenes [1, 30, 7]. Our labelling
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Figure 1. Semantic Mesh Segmentation: (a) shows the input to our
system which is a sequence of images with depth estimates (here
we show the images of a living room captured using a RGBD cam-
era [24]), (b) the depth estimates are used to generate a mesh based
representation of the scene using the method of [31], (c) the system
combines image level information and geometric contextual infor-
mation from the mesh to perform object class labelling, (d) object
class labelling is performed by establishing a conditional random
field (CRF) on the mesh, with local neighbourhood interactions
defined by the neighbouring faces in the mesh. (Best viewed in
colour)

framework is designed for both types of scenes. For seman-
tic indoor scene reconstruction we use images from RGB-D
sensors, and for the outdoor road scenes, we use a sequence
of stereo images.

The problem of semantic object labelling has been stud-
ied extensively and has seen major improvements [16, 23,
29]. However, most of these algorithms work in the image
domain, where each pixel in the image is classified with an
object label. The image data is intrinsically incomplete as it
consists of a projection from a 3D world into a 2D plane. As
a result, crucial data such as shape, geometric layout and the
scale of objects, which are strong cues for object class seg-
mentation, are lost. Moreover, the independent treatment
of each image of a scene results in a series of inconsistent
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object-class labellings.
The advent of inexpensive depth sensors has signifi-

cantly encouraged developments in scene reconstruction us-
ing streams of depth and RGB data [18, 19]. Large-scale
stereo image sequences have also been used to generate
dense reconstructions of urban road scenes [10]. In most
cases, the scene is reconstructed as a mesh [19]. Segmen-
tation of meshes has been a subject of much research in
computer graphics [14, 5, 13]. However, most of these
methods consider only geometric properties, ignoring the
appearance.

Recently, [15] proposed combining both visual and geo-
metric cues for labelling indoor scene point clouds, but they
use a restricted learning framework and an inefficient (slow)
inference method. Furthermore, the method uses geometric
clustering to establish pairwise connections which can pro-
duce inconsistency along object boundaries. Similarly, an
attempt to label indoor scene images captured using RGB-D
sensor has been made in [24] where a classifier was trained
in the image domain, along with a 3D distance prior to aid
their classification. This was extended in [25] where object
surface and support relations of an indoor scene were used
as a prior to perform indoor scene segmentation. However
both of these methods ignore the full geometric properties
of the objects in the scene. For outdoor scene labelling,
most of the work has concentrated on classification in the
image domain [27, 4, 17] or using a coarse level 3D inter-
pretation [8]. In [22] a semantic 3D reconstruction is gen-
erated but the object labelling is performed in the image
domain, and then projected to the model. As a result, these
methods fail to take advantage of the structured geometry
of the road scenes.

In this work, we tackle the problem of semantic scene
reconstruction (for both indoor and outdoor scenes) in 3D
space by combining both structural and appearance cues.
Our approach to semantic mesh segmentation is illustrated
in Fig. 1. The input to our method is a sequence of im-
ages and their depth estimates. The depth estimates are
used to generate a triangulated mesh representation of the
scene [20, 31], enabling us to capture its inherent geome-
try. We propose a cascaded classifier to learn the geometric
cues from the mesh, and appearance cues from images in
an efficient learning framework [23]. For this purpose, we
augment the NYU depth dataset [24] with semantically an-
notated ground truth meshes for training and evaluation pur-
poses. Furthermore we solve the labelling problem in 3D
by defining a conditional random field (CRF) over the scene
mesh, effectively exploiting the scene geometry. As a re-
sult, we achieve a significant speedup at the inference stage
(20× for outdoor and 1000× for indoor scenes) in com-
parison to the methods of [24, 15, 16]. For outdoor scene
labelling, we use the stereo image sequence of the KITTI
odometry dataset [9], for which we generated ground truth

Figure 2. Reconstruction of a living room from the NYU dataset.
The bottom row shows the depth and the color images of the scene.
The depth images are fused into a single globally consistent scene
representation (top row).

object class labellings for training and evaluation purposes.
In summary, our contributions are:
• The formulation of the labelling problem in the 3D

space resulting in a significant speedup in the inference
stage: §2.

• A cascaded boosting approach to train our classifiers,
combining both geometric and image based appear-
ance cues for object segmentation: §3.

• For indoor scenes, the augmentation of the NYU
dataset with ground truth meshes to facilitate learning
on the mesh. For outdoor scenes, the creation of a per-
pixel object class labelling for the KITTI dataset1: §4.

2. Semantic labelling of the mesh based scene
representation

To generate a semantically annotated meshed representa-
tion of a scene, we use a sequence of depth estimates along
with images describing the scene. They are merged using
the Truncated Signed Distance Function (TSDF) and used to
generate a mesh. Geometric features are computed on the
mesh directly; visual features are computed on the images
and then projected to the corresponding faces of the mesh.
A graph homomorphic to the mesh is then built with the
appropriate potentials. Finally, an approximate MAP infer-
ence on the CRF is solved which gives us the labelling of the
mesh. In the remainder of the section, the above steps are
explained in more detail.

2.1. Mesh Estimation

To estimate a meshed representation of the scene we use
a sequence of depth estimates which are obtained from a
depth sensor (providing a stream of RGB-D images) for in-
door scenes and stereo image pairs for outdoor scenes. The
depth estimates are incrementally fused into a single 3D re-
construction using the volumetric TSDF representation [6].

1project website: http://cms.brookes.ac.uk/research/visiongroup/projects.php



A signed distance function assigns to each voxel a value
equal to the signed distance to the closest surface interface
(zero crossing), with positive increasing values correspond-
ing to free space and negative decreasing values correspond-
ing to points beneath the surface. The representation allows
for the efficient combination of multiple noisy surface mea-
surements, obtained from different depth maps by averaging
signed the distance measures from every depth map at each
voxel. This smoothes out the irregularities in the surface
normals of the individual depth maps. For further details
we refer the reader to [18, 19]. In order to obtain a com-
plete meshed surface, we first infer an iso-surface from the
TSDF field by finding all the zero crossings. A triangu-
lated mesh corresponding to the zero valued iso-surface is
extracted using [20, 31]. Fig. 2 shows an example output of
surface reconstruction along with the images of the scene.

2.2. CRF energy model

We use a Conditional Random Field (CRF) based ap-
proach, defined over a mesh structure, to perform the se-
mantic labelling of the mesh. Consider a set of ran-
dom variables X = {X1, X2, . . . , XN}, where each vari-
able Xi ∈ X takes a value from a pre-defined label set
L = {l1, l2, . . . , lk}. A labelling x refers to any possible
assignment of labels to the random variables and takes val-
ues from the set LN . The CRF is defined over the estimated
mesh (given by a set of face indices F = {1, 2, . . . , N}),
where each mesh face, i ∈ F is associated with its corre-
sponding random variable Xi. This representation allows
us to associate the geometric properties of the face with the
random variable Xi. Each mesh face i is registered to a set
of images through the camera projection matrix, giving a set
τi ⊂ P of image pixels for each mesh face where P is the
set of all the image pixels. LetN be the neighbourhood sys-
tem of the random field defined by sets Ni,∀i ∈ F , where
Ni denotes the set of all the neighbours (in this case ad-
jacent faces) of the variable Xi. The corresponding Gibbs
energy of the mesh is given as:

E(x) =
∑
i∈F

ψi(xi) +
∑

i∈F,j∈Ni

ψij(xi, xj) (1)

The most probable or maximum a posteriori labelling x∗ of
the CRF corresponds to the minimum energy of the graph.
The energy minimisation problem is solved using the graph-
cut based alpha expansion algorithm [3], giving us the la-
belling of the mesh.

Unary potential The unary potentialψi describes the cost
of a mesh face Fi taking a particular object class label. The
form of the unary potential is the negative logarithm of the
normalised output of a boosted classifier. The input to the
classifier is a feature vector composed of image, geometric
and contextual features. For the image level features, we

use the multi-features variant [16] of the TextonBoost algo-
rithm [23]. The geometric features used in our experiments
are surface curvature, singular values extracted from prin-
cipal component analysis (PCA) of local shape, shape di-
ameter feature (SDF), shape contexts (SC) and spin images.
For further details we refer to the paper [14]. Both the im-
age and geometric features are trained together to produce
a contextual feature set.

Pairwise Potential The pairwise potential takes the form
of a contrast-sensitive Potts model:

ψij(xi, xj) =

{
0 if xi = xj
g(i, j) otherwise. (2)

where the function g(i, j) is an edge feature based on the
difference in colour and geometry of neighbouring faces:

g(i, j) = θ1+θ2 exp(−αω(i, j)−
∑
k∈τi,l∈τj d(k, l)

|τi|
) (3)

where ω(i, j) is the measure of the exterior dihedral an-
gle between face i and j and d(k, l) is the Euclidian dis-
tance between the colour values at pixel k and l. The term
d(k, l) = 0 if the pixels k and l do not belong to the same
image while τi and τj denote the set of image pixels regis-
tered to the faces i and j respectively.

3. Cascaded learning
There has been extensive work on image-level segmenta-

tion and promising recent advances on geometry-level seg-
mentation. With the advent of cheap RGBD sensors, there
is a need for a flexible and efficient framework to use and
combine evidence from both domains simultaneously. Our
approach initially treats features from the image and the ge-
ometry separately, and then allows them to be combined
along with contextual features by repeated application of
the JointBoost algorithm [28]. In the following, we use the
shorthand xi to denote the label of the ith element of the
domain (pixel for images, faces for the mesh) on which the
training is performed, and zi as the feature vector associated
with xi. Each step of our method learns a classifier based
on the current set of features z. At the end of each step,
to this set of features is added a feature extracted from the
current estimate of the distribution of labels around each el-
ement xi, which is estimated using the JointBoost classifier
output. The process can be repeated and is summarized in
algorithm 1 (we use S = 3) .

From the images, we train a TextonBoost [23] classifier
provided by visual words. From that step, we project each
pixel onto the mesh. Given the set of pixels that land on a
specific face:

1. Compute the posterior distribution of each of these
pixels using TextonBoost’s classifier and then average
them.



2. Build a cumulative normalized histogram of visual
words that land on that face.

From these two steps we form the feature set zI .
In addition to the image fatures, for each face we also

use 3D features using the procedure described in [14]. From
that step, we extract geometric features and geometric con-
textual features. That set is referred to as zM , and the set
formed by zI and zM to as z.

Finally, we build a set of graphs G to define several
neighbourhoods for each xi. Each graph is built such that
each node is connected to every other node that is within a
specific geodesic distance. We are then able to optimise the
learning on the mesh using that set of graphs and z as input
into algorithm 1.

The unary potential from our energy model corresponds
to the classifer φ(zi, l) extracted from algorithm 1, to which
a softmax was applied. Given the unary potential, we can
set the model parameters θ1, θ2 and α of the pairwise po-
tential by cross validation.

Algorithm 1: Training procedure
Input: A generic set of features z together with the
ground-truth in the selected domain, and a set of
graphs defining different sets of neighbours each xi
Output: A multi label classifier score φ(zi, l)

Algorithm:

Learn an initial classifier φ0(zi, l) using the
JointBoost algorithm provided by z and the ground
truth

for s = 1 to S do
For each xi, extract the posterior distribution for
each label l as exp(φs(zi,l))∑

k∈L exp(φs(zi,k))

foreach g ∈ G do
Using the neighbourhood defined in g,
compute the average posterior distribution in
the neighbourhood of xi. This forms a new set
of features c.

zi := [zi;c]
end

Learn φs(zi, l) using the JointBoost algorithm
provided by the extended feature set and the
ground truth

end

return φs(zi, l)

4. Experiments
To demonstrate the effectiveness of our proposed system,

we have evaluated it using indoor scenes on the NYU depth

dataset [24] augmented with meshes, and for outdoor urban
road scenes, we used the publicly available KITTI dataset
[9].

4.1. Reconstruction of indoor scene

Dataset The NYU dataset [24] comprises indoor scene
video sequences captured using Microsoft Kinect. Ground
truth annotations are provided for 12 object classes. The
class labels are bed, cabinet, picture, television, blind, ceil-
ing, sofa, wall, bookshelf, floor, table and window. We en-
hance the NYU indoor dataset [24] with labelled meshes
for a representative subset of the total number of scenes,
which we use for training and evaluation purposes. Meshes
are estimated using the method described in §2.1. To label
each face of the mesh, we first build an histogram that will
be used to count the number of votes each label gets. We
then project each ground truth pixel onto the correspond-
ing face in the mesh and increase the vote count for the
label associated with that pixel by one. Finally, we pick
the label that has accumulated the most votes. Some of
the scenes have not been considered, as the cameras were
too close to the wall, leading to erroneous ICP registration
and incoherent 3D reconstruction with holes in the mesh.
In our dataset, we selected 33 out of the 64 scenes of the
NYU depth dataset. Our dataset comprises bedroom, bath-
room, living room, kitchen and office scenes. Each of these
meshes have associated ground truth labelled images. We
use 23 mesh scenes (370 ground truth images) for training
and 10 (221 ground truth images) for testing, and train two
stages for each cascade.

Fig. 3 shows the qualitative results on the indoor scenes
from the NYU dataset [24], where the semantically seg-
mented mesh is shown along with the corresponding im-
ages. Fig. 3(a) shows an example of an office scene. The
classes such as floor, ceiling and walls which have a strong
horizontal geometric orientation have been classified cor-
rectly. In the scene, we also see that the bookshelf is classi-
fied as cabinet, which has similar geometric and appearance
properties. Fig. 3(b) shows the semantic mesh correspond-
ing to a living room. Here, we can see the cabinet properly
classified in the mesh, as shown by the arrow in the image.
However, the television is misclassified as a picture, with
which it has strong similarities in terms of geometric struc-
ture. Finally in Fig. 3(c) a kitchen scene is shown where
the kitchen cabinet and the window are correctly classified
in the mesh. The experiments show the strong influence of
learning the contextual features.

Table 1 compares the accuracy of our method with previ-
ous approaches, where we report the percentage of correctly
labelled mesh faces. We compare our method with the re-
sults of [16], evaluating the set of the images corresponding
to our augmented dataset as described in 4.1. To compare
with [16], we used the publicly available ALE library, with



unary, pairwise and higher order terms added in the energy
function. We also note that for our method, we report scores
obtained in the mesh domain only as noisy camera estima-
tions lead to inferior results when back-projecting labelling
results from the mesh domain to the image domain. The
method of [24] achieves a mean recall score of 56.5%, av-
eraged over 10 training/testing splits. However, their result
is evaluated on the entire dataset, and so it is not directly
comparable to ours. Furthermore, we are comparing the la-
belling of meshes rather than using images as is done in
[24]. We also test the effect of the contextual features in
our method for indoor scenes. The learning procedure se-
lects the contribution of each visual and geometric feature.
Table 3 shows the selection percentage for each of these
features at the end of the two stages of cascaded learning
(C3). The change in the level of contribution of geometric
features relative to the image based feature is noticeable in
both stages of C3. In the first stage, the contribution of im-
age level unary features is around 54%, but in the second
stage of C3, it is reduced to 35% and the share of geomet-
ric and contextual features is increased. The results from
table 1 suggest that the proposed learning method and the
accumulation of evidence of the same scene from multiple
angles leads to very strong results using auto-context only.

Timing wise, inference on meshes is computationally
more efficient than inference on images as we do not have
to perform a per-pixel labelling for all the images describ-
ing the scene. As [24, 16], inference is performed using
the graph cut based alpha expansion method of [3]. Our test
set comprises 10 meshed scenes with 221 associated ground
truth object labelled images, each of size 640×480. Overall,
the reconstructed meshed models have 78, 340 vertices and
141, 870 faces. This leads to an approximate 1000x speedup
in the inference stage (see Table 2). Our method performs
the meshing of the scene prior to the inference stage, using
the method of [19]. We compute the timings on a single
core 2.66Ghz Intel Xeon processor and take the average of
three runs.

[16] Our cascaded learning Our full model
77.05% 78.2% 78.5%

Table 1. Quantitative Evaluation for NYU dataset. The figure
shows the percentage of the correctly classified mesh triangles.
The second column presents our results with the unary potential
only and the third column correspons to the results we get with
both the unary and pairwise potentials.

Image Level Inference [16, 24] Ours
1098.76s 1.057s

Table 2. Inference times for Indoor Scene segmentation (in sec-
onds).

4.2. Reconstruction of outdoor scene

Outdoor dataset For the evaluation of our method on
outdoor scenes, we use the KITTI odometry dataset [9].
Stereo images are captured using a specialised car in urban,
residential and highway locations, making it a varied and
challenging real world dataset. We have manually anno-
tated a set of 45 images for training and 25 for testing with
per-pixel class labels. The class labels are road, building,
vehicle, pavement, tree, sky, signage, post/pole, wall/fence.
We intend to release these hand labelled ground truth im-
ages. Due to lack of sufficient training data, we do not have
ground truth meshes to learn geometric cues. Hence we use
only the appearance cues from images and a single cascade
to perform semantic mesh labelling.

For reconstruction from a stereo image sequence, we
need to estimate the camera poses. This comprises two main
steps, namely feature matching and bundle adjustment. We
assume calibrated cameras are positioned on a rigid rig.
To obtain the feature correspondences, we perform both
stereo matching (between left and right pairs) and frame
by frame matching (consecutive images for both left cam-
era and right camera). Once the matches are computed, the
corresponding feature tracks are generated. All the stereo
matches and the corresponding frame-to-frame matches are
kept in the track. As the road scene images are subject to
high glare, reflection and strong shadows, it is important to
generate good feature matches for accurate camera estima-
tion. Having this agreement between both the stereo and
ego motion helps bundle adjustment to estimate the camera
poses and feature points more accurately. Given the fea-
ture track database, the camera poses and the associated
feature points are estimated using a Levenberg-Marquardt
optimiser. As we are dealing with street-level sequences
of arbitrary length, a global optimisation is computationally
infeasible, and may be unnecessary, since only the structure
of the world near to the current frame is of interest in many
applications. Hence, we use only the last 20 frames for the
bundle adjustment which we found to be a good compro-
mise between speed and accuracy. The estimated camera
poses are used to fuse the depth estimates (computed from
stereo disparity) in an approach similar to [19]. Finally, sur-
face reconstruction is performed using the marching tetra-
hedrons algorithm [20] which extracts a triangulated mesh
corresponding to the zero valued iso-surface.

Fig. 4 demonstrates the qualitative results of our ap-
proach for the outdoor sequence from the KITTI dataset
[9]. The scene is reconstructed from 150 stereo image pairs
taken from the moving vehicle. The reconstructed model in
Fig. 4 comprises 703K vertices and 1.4 million faces. Visu-
ally, we can see the accuracy of the reconstructed semantic
model. A close up view of the semantic model is shown in
Fig.5. The reconstructed model captures fine details which
are evident on the pavements, cars, road, fence etc. The ar-



Features Curvature PCA SC GCF SPIN SDF HVW 2D unaries
Stage 1 2% 2% 4% 34% 1% 1% 2% 54%
Features Curvature PCA SC GCF Contextual Features SDF HVW 2D unaries
Stage 2 1.33% 0.66% 4.66% 16% 38% 0.66% 3.33% 35%

Table 3. Feature contribution during the stages of Cascaded learning of C3. (SC=Shape Context, GCF=Geometric contextual features and
HVW=Histogram of visual words).

Figure 3. Semantic mesh labelling for an indoor scene [24] along with the images corresponding to the scene. (a) Example of an office
scene. The arrows show the floor and the walls in both the images and output mesh. (b) Living room sequence: the scene shows the
bookshelf (correctly classified) and television that is misclassified as picture. (c) Kitchen sequence: the arrow shows the cabinet and the
window captured in the image and also inferred on the mesh.

Figure 4. Reconstruction of an urban sequence (right) sequence
from KITTI dataset [9]. The right column shows the sequence
of stereo images that are used for reconstruction purposes. The
vehicle traverses around 200 meters capturing 150 stereo image
pairs. The arrow shows the bend in the road in both the image and
the model (best viewed in colour).

rows relate positions in the 3D model and the corresponding
images. Fig. 5(a) shows the fence, hedge and the pole (en-
circled) in the image and the reconstructed model. Fig. 4(b)

shows the right side of the street in the reconstructed model,
showing the car, pavement and the trees in both the images
and the model. In all the above cases, we can see the effec-
tiveness of our method in handling large scale stereo data
sequence to generate a semantic model of the scene.

The quantitative evaluation of our reconstructed seman-
tic model is summarised in Table 4. Evaluation is performed
by projecting the ground truth labels into the mesh using
the estimated camera poses, and taking a vote on the max-
imally occurring ground truth label for a particular mesh
location. ‘Global’ refers to the overall percentage of the
mesh correctly classified, and ‘Average’ is the average of
the per class measures. We compare with the publicly avail-
able ALE library [16] with unary and pairwise added in
the model for image level segmentation. The results from
[16] are projected onto the mesh in a similar fashion to
the ground truth labels. We observe an overall increase in
the measures of global accuracy, average recall and aver-
age intersection-union scores. We observe an increase in
performance for most of the classes in each of these mea-
sures. This can be attributed to the fact that the pairwise
connections in the 3D mesh respect the structure of the ob-
jects, while in the image domain, the connections between
adjacent pixels might violate the occlusion boundaries.

We also evaluate the timing performance for the infer-
ence stage for outdoor scene reconstruction. We compare
our mesh based inference with the image level inference of
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Recall measure
Image Level Segmentation (ALE [16]) 97.2 84.5 77.9 96.2 36.6 75.2 24.5 31.7 65.4 83.9

Ours 96.4 85.4 76.8 96.9 42.7 78.5 24.3 39.3 67.5 84.5
Intersection vs Union

Image Level Segmentation (ALE [16]) 81.6 72.3 65.3 90.5 34.7 61.3 19.8 29.1 56.8
Ours 82.1 73.4 67.2 91.5 40.6 62.1 16.7 25.9 57.4

Table 4. Semantic Evaluation for outdoor scene KITTI dataset [9]

ALE (Image Level) [16] Ours
1177.1±33s 60.3±2s

Table 5. Inference Timing for outdoor scenes (in seconds).

[16] with their unary and pairwise potentials. Our scene is
reconstructed from 150 images, the size of each image be-
ing 1281× 376. As we are trying to reconstruct an outdoor
scene which spans hundreds of meters, our reconstructed
mesh has around 704K vertices and 1.27 million faces. In
comparison to [16], we observe a significant speedup (20×)
at the inference stage when performed on the mesh (see Ta-
ble 5). It is worth noting that our method needs to estimate
the mesh to perform the inference. However that stage can
be sped up by estimating camera poses using [11] and then
TSDF fusion on a GPU [21].

5. Conclusions and Future work

We have presented an efficient framework to perform
3D semantic modelling applicable to both indoor and out-
door scenes. We formulated this problem in 3D space,
thereby capturing the inherent geometric properties of the
scene. Further, we proposed a cascaded training framework
to combine information from multiple sources: geomet-
ric properties (from 3D mesh) and appearance properties
(from images). To facilitate the training/evaluation of our
model, we have augmented the NYU indoor scene datasets
with ground truth labelled meshes and KITTI outdoor scene
dataset with object class labelling. The augmented datasets
will be useful for understanding both indoor and outdoor
scenes. These will be made publicly available. Finally we
demonstrate substantial improvement in the inference speed
(20-1000×) and achieve higher accuracy for both indoor
and outdoor scenes.

The current approach cannot handle large independent
motion of objects, which we would like to address in the
future. We would like to incorporate higher order terms in
the CRF formulation, forcing similar and neighbouring tri-
angles in the mesh to take the same label and investigate the
joint optimisation of object labels and the 3D structure of
the scene.
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