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Abstract

The trend towards higher resolution remote sensing imagery facilitates a transition from land-use
classification to object-level scene understanding. Rather than relying purely on spectral content,
appearance-based image features come into play. In this work, deep convolutional neural networks
(CNNs) are applied to semantic labelling of high-resolution remote sensing data. Recent advances in
fully convolutional networks (FCNs) are adapted to overhead data and shown to be as effective as in
other domains. A full-resolution labelling is inferred using a deep FCN with no downsampling, obvi-
ating the need for deconvolution or interpolation. To make better use of image features, a pre-trained
CNN is fine-tuned on remote sensing data in a hybrid network context, resulting in superior results
compared to a network trained from scratch. The proposed approach is applied to the problem of la-
belling high-resolution aerial imagery, where fine boundary detail is important. The dense labelling yields
state-of-the-art accuracy for the ISPRS Vaihingen and Potsdam benchmark data sets.

1 Introduction

Land use classification has been a long-standing research problem in remote sensing, and has historically
been applied to coarse resolution multi-spectral imagery (for example, LANDSAT has 30m x 30m ground
sampling distance (GSD), Quickbird 2.2m GSD). More recently, high-resolution aerial imagery has become
available with a GSD of 5-10 cm, so that objects such as cars and buildings are distinguishable. Pixel labelling
becomes a richer semantic representation, but is more difficult. Now instead of classifying a spectral signature
averaged over a large area (one pixel to many objects), individual objects must be segmented (one object to
many pixels). Spectral properties alone may not be sufficient to distinguish objects (e.g. grass from trees,
road from roof), and discriminative appearance-based features are needed. The fine-grained classification of
image pixels is termed semantic labelling.

For such high-resolution imagery, computer vision techniques for object segmentation and semantic la-
belling are eminently applicable. Recently deep convolutional neural networks (CNNs) have become the
dominant method for visual recognition, achieving state-of-the-art results on a number of problems includ-
ing semantic labelling [16, 3, 17]. CNNs have also been applied to remote sensing data [25], but usually on a
patch level. For classification, this involves classifying a cropped out patch of imagery (e.g.airport, forest).
In the case of semantic labelling, the aim is usually to classify the pixel at the centre of the patch, and this
classification is applied to overlapping patches densely over the image, resulting in a fully labelled output.

In this work we apply the recently-developed fully convolutional network [17] to semantic labelling of aerial
imagery, achieving higher accuracy than the patch-based approach. By exploiting the convolutional nature of
the CNN, the classifier can be treated like a convolutional filter both during training and classification. The
result is improved accuracy and computational efficiency. However the FCN produces output at a significantly
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lower resolution than the input imagery due to pooling-and-downsampling layers in the network. This is
undesirable for complete labelling of remote sensing data because the fine boundary details are important.
Here a novel no-downsampling network is presented to maintain the full resolution of the imagery at every
layer in the FCN. The no-downsampling approach boosts the effective training sample size and achieves
higher accuracy than a downsampling FCN, especially when the downsampling factor of the network is
large.

For aerial imagery, a semantic labelling pixel accuracy of around 75% can be achieved simply using
the spectral and elevation information at each individual pixel [25]. To achieve higher accuracy on higher
resolution images, the scene appearance must be exploited using discriminative texture features. We use
pre-trained convolutional features derived from ImageNet data to improve overhead semantic labelling. Pre-
trained networks only take 3-band data as input. To make use of elevation data such as a digital surface
model (DSM) we propose a hybrid network that combines the pre-trained image features with DSM features
that are trained from scratch. The hybrid network improves the labelling accuracy on the highest-resolution
imagery.

The novel contributions of this work are:

1. the use of fully-convolutional networks to semantically label aerial imagery;

2. a no-downsampling approach to FCNs to preserve output resolution;

3. a hybrid FCN architecture to combine imagery with elevation data;

4. the first published results on the ISPRS Potsdam benchmark; and

5. state-of-the-art semantic labelling accuracy for high-resolution aerial imagery.

The remainder of the paper is arranged as follows. Related work on semantic labelling using CNNs on
remote sensing data and FCNs is reviewed in Section 2. The characteristics of high-resolution aerial imagery
are discussed in Section 3 and the data sets used for experimentation are introduced. Section 4 explains
how FCNs are applied to remote sensing data and compares the approach experimentally to patch-based
training. The no-downsampling FCN is introduced in Section 5 and compared with FCNs. Section 6 shows
how pre-trained image features can be combined with a custom FCN with DSM input in a hybrid architecture
to improve segmentation of the very-high-resolution Potsdam data. The paper concludes with Section 7.
Details of the experimental parameters are listed in the Appendix.

2 Related Work

There has been a significant amount of past work on classification and segmentation of remote sensing
imagery, for a recent review see [1, 10]. For classification of very high resolution imagery (GSD on the
order of 10cm or less) the typical approach is to densely extract features which are passed to a classifier
to generate an image of class labels. [26] combined low-level colour and edge features with object-level
features in a hierarchical contextual model for scene parsing of aerial imagery. [5] used colour descriptors to
label Ikonos satellite imagery (1m GSD). [14] performed unsupervised clustering of super-pixel features and
CRF inference to segment buildings in aerial imagery (10cm GSD). [9] applied AdaBoost classification to
super-pixel appearance features for dense labelling of aerial images (9cm GSD). [30] used boosting to select
appropriate features from a large pool of local differences of primitives for 4-class classification of aerial
(20cm GSD) and satellite images. More methods are comprehensively surveyed in the related work section
of [2].

Since 2012 [15] deep convolutional neural networks (CNNs) have dominated computer vision due to
their relatively high accuracy at image recognition tasks. Moreover it has been found that when trained
on very large image sets such as the ImageNet challenge, CNNs learn re-usable image features that are
directly applicable to other domains, achieving state-of-the-art accuracy versus hand-crafted solutions to
the same problem [27]. CNNs have been previously applied to classification of overhead imagery. [20, 19]
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trained CNNs to detect roads and buildings from automatically-generated noisy ground truth labels. [8]
trained convolutional sparse auto-encoders on unlabelled data to detect specific targets such as planes and
dry docks. Both [2] and [18] performed fine-tuning on pre-trained CNNs to classify overhead image tiles
(30cm GSD). [24] investigated the generalisation ability of pre-trained CNN features for classification of
aerial and satellite image tiles. [31] used pre-trained CNNs on RGB and CIR satellite images (50cm GSD)
to detect buildings. [25] trained CNNs from scratch to learn dense features for semantic labelling of aerial
CIR imagery and DSM data (9cm GSD). None of these approaches employed fully-convolutional training
which is the main topic of this paper.

In the field of computer vision CNNs have achieved the highest accuracy on semantic labelling problems.
This has been demonstrated on social media images in the Pascal VOC challenge [7] and on road scenes in
the Cityscapes benchmark [4]. More recently the best results have come from the so-called fully convolutional
network (FCN) approach [17]. An FCN is trained on all overlapping patches in an image at once by applying
it like a convolutional filter. Due to the down-sampling in the CNN the output label map has a lower spatial
resolution than the input imagery. To compensate, [17] used bilinear interpolation of the class probabilities
and a multi-scale fusion approach named deepJet to restore the output to full resolution. [3] used the hole
or atrous method to expand the support of CNN filters and reduce the down-sampling factor of the network.
Interpolation was still required to upsample by the now-lesser factor. In this work we take this approach
to its extreme and use the atrous method to avoid downsampling altogether. [23] trained a deconvolutional
network consisting of deconvolution and unpooling layers to restore the labelling output to full resolution.
The pooling locations are copied from the corresponding encoding layers. State-of-the-art results are achieved
by [16] using CNNs in both the unary and binary terms of a conditional random fields (CRF). The binary
term network allows patch-to-patch context to be learned by a CNN. The output resolution is still degraded
and is upsampled using interpolation and a dense CRF.

3 Overhead Imagery and Data Sets

The goal of this work is to take semantic labelling methods from computer vision and apply them to high-
resolution geospatial imagery. Processing overhead imagery has some unique challenges compared to the
multimedia images commonly encountered in the computer vision literature. These differences are summed
up in Table 1. Overhead images are typically much larger, containing tens to hundreds of megapixels. In fact
overhead images could be stitched together to cover the entire earth. The implication is that multimedia
images tend to have a bounded context, both spatially and in subject matter, whereas overhead images
do not. The simple approach taken here is to apply processing to a sliding window which provides spatial
context. In most cases this is a valid approach but in some cases a much larger spatial context is required for
interpretation, for example very large buildings. In the case of semantic labelling, both “things and stuff” [11]
(that is, objects and extended background regions) need to be identified, in contrast with multimedia data
such as Pascal VOC that only considers “things” (objects) [7]. Regarding invariances, overhead images do
not usually contain significant out-of-plane transformations which simplifies recognition. However scenes
can be seen from any azimuth so in-plane rotation invariance is essential, in contrast to multimedia images
that usually assume an upright camera with respect to the ground. Overhead imagery tends to be taken at
near-nadir angles or ortho-rectified in post-processing so that occlusion does not usually pose a challenge.

Table 1: Major differences between ground-based multimedia images and aerial imagery
Ground-based images Aerial images

Well-defined scene context A potentially-unlimited continuous scene
Objects are upright Objects can appear at any azimuth (in-plane rota-

tion)
Object scale/distance varies considerably Object scale is known
Arbitrary out-of-plane rotation and occlusion Limited occlusion and close-to-nadir viewpoint
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The overhead imagery used in this work comes from the ISPRS 2D Semantic Labelling Challenge [12]
Vaihingen and Potsdam data sets. Both data sets consist of near infra-red, red, green ortho-rectified imagery
(or colour infra-red, CIR) with corresponding digital surface models (DSMs). The Potsdam data set also
has the blue channel for imagery. The DSM is an array the same size as the input imagery and provides
an elevation value at each pixel. Each training image comes with ground truth labels from the following
set: impervious surface, building, tree, low vegetation, car, unknown. The task is to automatically generate
labels for the unlabelled test imagery. Statistics on the data sets are shown in Table 2. We have also made
used of normalised DSMs made available by the authors of [9]. Contributed results can be seen on the
leaderboard at [12].

Table 2: Statistics on the ISPRS 2D Semantic Labelling Challenge data sets
Property Vaihingen Potsdam

Training images 16 24
Test images 17 14
Total Pixels 168,287,871 1,368,000,000
GSD 9 cm 5 cm
Bands IR,R,G,DSM IR,R,G,B,DSM

In experimentation the labelled training images are broken into two subsets, referred to as the training
and validation sets. The images used for these subsets are listed in Table 3. Experimental comparisons are
based on the validation set results, and the validation set was not used for training. In some experiments,
results are included for the test set, which is the unlabelled data. These accuracies are generated by the
challenge website.

Table 3: Partition of labelled data into training and validation tests
Vaihingen Potsdam

Training set 13, 17, 1, 21, 23, 26, 32, 37,
3, 5, 7

2 10, 3 10, 3 11, 3 12, 4 11, 4 12, 5 10, 5 12,
6 10, 6 11, 6 12, 6 8, 6 9, 7 11, 7 12, 7 7, 7 9

Validation set 11, 15, 28, 30, 34 2 11, 2 12, 4 10, 5 11, 6 7, 7 10, 7 8

4 FCN Versus Patch-Based Methods

CNNs became popular when applied to individual multimedia images with a defined spatial context. When
CNNs are applied to remote sensing problems with large image extent and ambiguous spatial context, the
common approach is to crop out image patches and process these with a pre-trained CNN [22, 18, 21]. The
CNN processing is applied in the context of a single image patch, and gives a single classification for that
patch. To process a whole image it is divided into patches, which are processed in batches for efficiency, and
the CNN outputs are turned back into an image of now lower resolution than the input. When training a
patch-based CNN, there are so many candidate patches in the source image that only a subset is typically
used.

Patch-based classification is wasteful, since redundant operations are performed on neighbouring patches.
It was realised that the CNN could be applied more efficiently to all overlapping patches by interpreting it as
an image filter: the first layer convolutions are applied to the entire input image rather than just a patch; the
second layer convolutions are applied to the outputs of the first, and so on resulting in a 2D output matrix
of class labels rather than a single classification [32, 28]. The convolutional approach was taken one step
further in [17] where it was applied also to training of the CNN, making it fully convolutional. Now rather
than having to select some patches for training, effectively all overlapping patches are used in a manner that
is efficient computationally. Fully convolutional training is also efficient in terms of GPU RAM, since the
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alternative is to load a batch of overlapping patches that share the same pixels. These efficiencies mean that
FCNs can be trained on more data resulting in higher accuracy, as was demonstrated on three public data
sets in [17]. Here we show that these benefits extend to remote sensing data, and how FCNs can be applied
to large images.

4.1 The CNN as an Image Filter

Initially CNNs were considered as a classifier, generating a single class label given an input image (for
example Figure 1(a)). For clarity let us refer to this modus opperandi as a CNN classifier. In the FCN
framework the CNN can be interpreted as an image filter, here referred to as a CNN filter. Suppose a CNN
classifier is trained on images of fixed size n × n pixels. It can then be applied as a CNN filter on images
larger than n × n, and the spatial support of the CNN filter is n × n. This is illustrated in Figure 1(b).
To make the CNN a filter, the fully-connected layers must be turned into convolutional layers [17]. If the
last convolutional layer of the CNN classifier has spatial extent wc × hc, then the first fully-connected layer
becomes convolutional with filter size wc × hc. All subsequent fully-connected layers become convolutional
with 1× 1 filters.

(a) Example 1-dimensional slice of a CNN classifier
with two convolution-and-pooling layers, two fully-
connected layers and five output classes.

(b) Example of a CNN filter with a downsampling factor of
4, due to two pooling layers. Therefore the CNN filter stride
is s = 4 pixels.

Figure 1: Diagrams showing the difference between a CNN applied as an image classifier and an image filter.

Using the CNN as a filter introduces design considerations on the network architecture. Typically CNN
classifiers are designed with zero padding in some layers in order to arrive at the desired values of wc, hc
at the last convolutional layer (see Figure 2(a)). In the case of CNN filters, padded areas do not contain
zeros (except at the image boundaries), rather they contain adjacent features. This could be problematic if
the CNN was trained as a classifier and zeros are expected at the filter support boundary. When padding
is used in the CNN filter architecture it increases the effective spatial support of the filter (Figure 2(b)).
Alternatively if the first fully-connected layer becomes convolutional with a filter smaller than wc × hc, the
effective spatial support of the CNN filter is reduced.

In general the output of the CNN filter has a lower spatial resolution than the input, which is undesirable
for applications like semantic labelling. The downsampling factor from input to output is the product of the
strides from all layers. For example if there are 4 max-pooling layers each with a stride of 2 (i.e.downsampling
factor of 2), the overall downsampling factor of the CNN filter is s = 24 = 16. The downsampling factor s
could be viewed as the stride of the CNN filter, as demonstrated in Figure 1(b). Methods for restoring the
output to the same resolution as the input include interpolation, shift-and-stitch, and learned multi-resolution
deconvolution (deepJet) [17].
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(a) Padding of convolutional layers in a CNN clas-
sifier. Zero padded regions (in green) expand the
input array to the next layer.

(b) Padding in a CNN filter increases the effective input im-
age size. Instead of zeros, the padding region now contains
features computed from the previous layer. This increases the
support of the CNN filter.

Figure 2: Diagrams showing the effect padding of convolutional layers has on FCNs.

4.2 FCN Training on Tiles

In [17] the FCN was trained on images of modest size using a minibatch size of 20. While such multimedia
data fits comfortably into GPU RAM, remote sensing images are typically much larger and the whole image
cannot be accommodated on the GPU. In our experiments input images and corresponding target label
images are divided into non-overlapping tiles. During training the tiles are treated as separate images and
processed in minibatches. During classification each tile is processed separately to generate a tile of predicted
class labels. These prediction tiles are mosaiced to form a single output image. To avoid artefacts at tile
boundaries they are made to overlap by half the CNN filter support.

FCN training is superior to patch-based training for two reasons. First, it is more memory efficient.
The patch-based approach crops out the patches and puts them in a minibatch. Since the patches overlap,
the minibatch might contain the same pixel multiple times. With FCN training each pixel only appears
in a minibatch once. Second, the FCN effectively trains on more data and so should be more accurate.
In the patch-based case not all patches are used for training, rather a random subset is selected. In FCN
training all possible overlapping patches are used for training. For a given tile, all overlapping patches form
a minibatch and contribute to the weight update. The downside is that in natural imagery neighbouring
patches are highly correlated. In patch-based training the samples in a minibatch are randomised and the
stochasticity of the weight updates acts as a regulariser. In contrast, care must be taken with FCN training
because although the tiles in a minibatch can be shuffled, the patches within the tile cannot and so minibatch
samples are not so random. In our experiments it was found that smaller batches of tiles produced better
results.

4.3 Experiments

Patch-based training is compared with FCN training on the Vaihingen data set. In the patch-based case the
CNN is trained on patches, but applied convolutionally at test time. In both cases the following standard
network architecture is: 5x5x32 convolution, Relu, 2x2 max pooling; 5x5x64 convolution, Relu, 2x2 max
pooling; 3x3x96 convolution, Relu, 2x2 max pooling; 3x3x128 convolution, Relu, 2x2 max pooling; fully-
connected layer as 3x3x128 convolutional layer, Relu, dropout; 1x1x128 convolution, Relu, dropout; 1x1x5
softmax output layer. With 4 pooling layers the downsampling factor is s = 16. During training the softmax
layer outputs are upsampled by a factor of 16 to full resolution with bilinear interpolation. Further details
of the experimental setup are given in Appendix A.

The results are shown in Table 4. The FCN is trained with two versions of the data, one with only 90
degree augmentations of the data, and the other with all 36 ten degree rotations. The 90-degree version was
included to make the results comparable with [25]. The improvement from patch-based to fully-convolutional
training is quite significant, showing the importance of the increased effective training set size brought about
by FCNs. Examples of labelling in the two cases are shown in Figure 3. In the third row it can be seen that
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Table 4: FCN semantic labelling results on Vaihingen data set, validation set results.
Imp. surf. Building Low veg. Tree Car Overall F1 Overall Acc.

Patch-based Training [25] 86.07% 92.79% 72.85% 82.85% 54.63% 77.84% 83.46%
FCN with 4 rotation augmentations 89.46% 93.93% 76.57% 86.88% 67.35% 82.84% 86.98%
FCN with 36 rotation augmentations 89.49% 94.20% 77.03% 86.99% 66.54% 82.85% 87.17%

increasing the amount of rotation augmentation on the data only produced an incremental improvement to
accuracy, indicating that the original data contains a good diversity of structure orientations. Nevertheless
the 10-degree rotated data was used in all subsequent experiments.

Figure 3: Example semantic labelling output for Vaihingen data set. From left to right: input CIR image,
ground truth labels, patch-based training, FCN training. Classes are impervious surface (white), building
(blue), low vegetation (cyan), tree (green), car (yellow).

5 Downsampling and Upsampling in CNNs

Overhead images contain both things and stuff (objects and extended regions), and the accuracy at region
boundaries is crucial. Therefore the output labels are required at the same spatial resolution as the input
image. As we have seen an FCN can be viewed as an image filter with a stride or downsampling factor
that is dictated by the number of pooling layers. The typical solution is to upsample, either with bilinear
interpolation or with learned deconvolution [17]. This approach is sub-optimal because the starting point
is a sub-sampled function of the input pixels. Intuitively if the FCN is applied to shifted versions of the
input, it generates sub-sampled outputs on intervening points on the pixel grid that can be interleaved to
produce a full-resolution output. This is the so-called shift-and-stitch approach. Here we show that the
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same result can be achieved more efficiently by pooling without downsampling. This approach requires the
filter size to increase with layer depth. To avoid very large convolutional filters, the atrous method is used
to introduce holes in the filters. Another way to address the loss of resolution is to combine features from
multiple resolutions, as in [16] and the deepJet method of [17].

5.1 No-Downsampling FCN

If pooling and downsampling reduces resolution, which is undesirable, then why downsample at all? Pooling
has been found to be an essential component of CNNs in summarising feature responses and introducing
shift tolerance at multiple scales [15]. In our proposed approach we retain pooling, but do not downsample.
As layer depth increases, the size of the convolution and pooling filters must increase exponentially (see
Figure 4). This would increase the number of parameters in the model severely and cause over-fitting. As
suggested in [3] the atrous method is used to interleave the convolutional filter coefficients with zeros so
that the number of weights remains the same but the spatial support increases. For the pooling layers holes
are not introduced. The architecture of the no-downsampling network used in our experiments is shown in
Table 5.

(a) Regular downsampling FCN. The downsampling factor after 2 layers is s = 4.

(b) A no-downsampling FCN. The stride at each layer is 1. The output is equivalent to inter-
leaving the responses to (s− 1) shifted versions of the input.

Figure 4: Comparison of convolutional layers with and with out downsampling (1-D slice). In both cases
there are two layers of convolution, pooling and 2× downsampling. The bottom-most layer is the input to
the CNN.

At test time, the no-downsampling FCN is equivalent to a downsampling FCN applied with shift-and-
stitch, but more computationally efficient since the convolution at each layer is performed only once. In
contrast, the downsampling FCN would have to be applied to the image s2 times using the shift-and-stitch
approach. At training time, no-downsampling increases the effective training set size, because all shifted-and-
interleaved versions of the input image are used in backpropagation. However this comes at a computational
cost: now the outputs at each intermediate layer of the network are the same spatial resolution as the input
image. Training requires much more GPU memory and computation time. The effective increase in training
sample size is expected to be of modest benefit because shifted versions of the input are highly correlated
with one another.
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Table 5: Architecture of the no-downsampling FCN. In all layers the filtering stride is 1 pixel.
layer filter size number of filters filter dilation padding

conv1 5× 5 32 1 2
pool1 3× 3 - - 1

conv2 5× 5 96 2 4
pool2 5× 5 - - 2

conv3 3× 3 128 4 4
pool3 9× 9 - - 4

conv4 3× 3 196 8 8
pool4 17× 17 - - 8

fc5 3× 3 1024 16 16
fc6 1× 1 1024 - -
softmax 1× 1 5 - -

5.2 Testing with No Downsampling

An interesting aspect of the no-downsampling approach is that a regular downsampling FCN can be turned
into a no-downsampling FCN at test time. The output is equivalent to the shift-and-stitch approach, where
shifted versions of the input are processed and the results interleaved into a full resolution output. The
advantage is that computation is much more efficient. Suppose there are L repetitions of convolution, pooling
and 2× downsampling layers in a CNN. The stride of the CNN filter is s = 2L. Shift-and-stitch would require
processing the input s2 times. To give an example, the popular VGG-16 pre-trained network [29] has s = 32,
requiring the input to be processed 1024 times! In contrast, the no-downsampling network processes the
input image only once.

The shift-and-stitch approach uses a downsampling FCN, so there are fewer computations per layer.
However this does not compensate for the s2 factor described above. For example in the first layer, the
whole input image must be convolved s2 times in comparison to once for the no-downsampling FCN. Let
us estimate the reduction in the number of computations required for the convolutional filters of the no-
downsampling FCN compared with shift-and-stitch. For simplicity, we assume all convolutional layers have
a downsampling factor of 2 in the traditional architecture. Define the following:

L : number of convolutional layers

W,H : dimensions of input image

wl, hl : size of convolutional filters in layer l

nl : number of convolutional filters in layer l

λ0 : number of computations for shift-and-stitch

λ : number of computations for no-downsampling

λ0 = 22L
L∑

l=1

2−2(l−1)W.H.wl.hl.nl.nl−1

= W.H

L∑
l=1

4L−l+1wl.hl.nl.nl−1
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Table 6: FCN semantic labelling results on the Vaihingen validation set, trained with no-downsampling.
The configurations marked “DST X” correspond to the leaderboard submissions, see Table 9 for the hold-out
test set results.

Imp. surf. Building Low veg. Tree Car Overall Overall
F1 Acc.

FCN trained with downsampling 89.49% 94.20% 77.03% 86.99% 66.54% 82.85% 87.17%
FCN trained with no-downsampling (DST 1) 90.19% 94.49% 77.69% 87.24% 76.77% 85.28% 87.70%
FCN trained with no-DS + RF + CRF (DST 2) 90.41% 94.73% 78.25% 87.25% 75.57% 85.24% 87.90%

λ = W.H

L∑
l=1

wl.hl.nl.nl−1

The speed-up ratio is:

η =

∑L
l=1 4L−l+1wl.hl.nl.nl−1∑L

l=1 wl.hl.nl.nl−1

(1)

Note that although the filters have larger spatial support in higher layers of the no-downsampling FCN,
the computational cost is the same due to the holes placed in the filter. Here the computational cost of the
pooling operation is ignored because max pooling can be performed in O(W ×H) independent of the filter
size.

η was computed for some popular pre-trained CNNs. For AlexNet [15], η = 73.24. For VGG-16 [29],
η = 21.29. Note that these figures are theoretical and deviate from actual values, due to the constant
computational costs incurred by GPUs and the pooling layers.

5.3 Experiments

Here the issue of output resolution is addressed experimentally.

Training with No Downsampling The effect of training with no-downsampling is investigated. The
same network architecture was used but adapted to pool but not downsample, so that the output is the same
resolution as the input. This network is compared to the pool-and-downsample network on the Vaihingen
data set, which uses bilinear interpolation to restore the output to full resolution. The results are shown
in Table 6. The overall improvement by training with no-downsampling is 0.53%, but the improvement for
the car class is 10.23%. No-downsample training effectively produces finer sampling of the training patches.
Since cars constitute about 1% of the data, this class benefits greatly from increased representation in the
training sample.

In [25] the labelling results from a patch-based CNN were combined with hand-crafted features and
the results smoothed with a CRF, resulting in a 1.9% accuracy improvement on the Vaihingen data. We
added this strategy to the no-downsampling FCN, the results are found in Table 6. These complimentary
components only improve the accuracy by 0.2%. The improved smoothness and increased effective training
size of the no-downsampling FCN has already exploited the benefits that were previously afforded by the
hand-crafted features and CRF. Example outputs for these networks are shown in Figure 5.

The experiment is repeated for the Potsdam data set. The same network architecture is used, but due to
its higher resolution the stride of the first convolutional layer is set to 2. Consequently the CNN filter stride
of the network is s = 32. All five channels of data are fed as input to the network: RGB, infra-red (IR), and
DSM. The results are shown in Table 7. The improvement of 1.98% is much more significant than for the
Vaihingen data set due to the increased downsampling rate of the network (32 for Potsdam, 16 for Vaihingen);
see Section 5.3 for more discussion on this point. The accuracy for cars improved dramatically, by almost
20%. The accuracy on fine structures is most severely effected by downsampling and interpolation. These
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Figure 5: Example semantic labelling output for Vaihingen data set using networks trained with no-
downsampling. From left to right: ground truth labels, downsampling FCN, no-downsampling FCN, no-
downsampling FCN with CRF.
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Table 7: FCN semantic labelling results on the Potsdam validation set, trained with no-downsampling.
Imp. surf. Building Low veg. Tree Car Unknown Overall Overall

F1 Acc.

FCN trained with downsampling 84.39% 89.95% 81.09% 75.71% 71.04% 67.97% 78.36% 82.16%
FCN trained with no-downsampling 86.52% 90.78% 83.01% 78.41% 90.28% 68.67% 82.94% 84.14%

Table 8: The effect of no-downsampling on computation time in CNNs.
training test

data set downsampling no-downsampling downsampling no-downsampling

Vaihingen 1.5 hrs 2 days 14 hours 1.05 s/MPix 3.9 s/MPix
Potsdam 8 hrs 15 min 16 days 16 hours 1.2 s/MPix 4.3 s/MPix

fine structures benefit the most from the high resolution of the no-downsampling network. A comparison of
the labelling outputs is shown in Figure 6.

To compare the no-downsampling FCN approach to other methods, the network was applied to the
unlabelled test images of the Vaihingen data set and the results submitted to the challenge moderator.
The network was only trained on the training images listed in Table 3. The result is shown in Table 9 as
DST 1, giving a higher overall accuracy than competing methods (at the time of writing) including the work
of [25]. Adding the hand-crafted features and CRF steps to improve the labelling (entry DST 2) results in
the highest overall accuracy of 89.1%.

Effect of Downsampling on Accuracy The effect of CNN filter stride on no-downsample training
accuracy is further examined in the following experiment. A series of networks of increasing depth is trained
on the Vaihingen data set. The network starts as a single fully-connected layer turned convolutional, and is
made deeper and deeper. The 5 architectures examined are shown in Table 10. The second fully-connected
layer has 512 neurons. The network is trained as an FCN and the validation set accuracy is shown in the
table. The results get progressively better as the network gets deeper, validating the paradigm of deep
learning. This also decreases the spatial resolution of the last convolutional layer, making it easier for the
fully connected layers to learn spatial feature relationships. Consequently as the network gets deeper, the
output downsampling becomes more severe, which negatively impacts the accuracy of semantic labelling.
Despite this effect, the accuracy still improved with depth. The output is restored to full resolution using
bilinear interpolation.

Next each network is trained using the no-downsampling version of the network, which has the same
number of parameters. Again, accuracy improves with depth, and is generally more accurate than the

Table 9: ISPRS Challenge Vaihingen Leaderboard Results [12]. DST 1 is FCN, DST 2 is FCN+RF+CRF,
corresponding to the validation set results in Table 6.

Imp. surf. Building Low veg. Tree Car Overall Acc.

UT Mev 84.3% 88.7% 74.5% 82.0% 9.9% 81.8%
SVL 3 86.6% 91.0% 77.0% 85.0% 55.6% 84.8%
HUST 86.9% 92.0% 78.3% 86.9% 29.0% 85.9%
ONE 5 87.8% 92.0% 77.8% 86.2% 50.7% 85.9%
ADL 3 89.5% 93.2% 82.3% 88.2% 63.3% 88.0%
UZ 1 89.2% 92.5% 81.6% 86.9% 57.3% 87.3%
DLR 1 90.2% 92.1% 82.2% 89.5% 80.5% 88.4%
DLR 2 90.3% 92.3% 82.5% 89.5% 76.3% 88.5%
DST 1 90.3% 93.5% 82.5% 88.8% 73.9% 88.7%
DST 2 90.5% 93.7% 83.4% 89.2% 72.6% 89.1%
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Figure 6: Example semantic labelling output for Potsdam data set using networks trained with no-
downsampling. From left to right: input RGB image, ground truth labels, downsampling FCN, no-
downsampling FCN.
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Table 10: The effect of downsampling on CNN accuracy. Five FCNs with increasing numbers of convolution,
pooling and 2× downsampling layers are trained on the Vaihingen data set, with and without the no-
downsampling strategy. Columns 5 and 6 show the validation set accuracy with downsampling and with
no-downsampling, and the last column shows their difference. As depth increases so does the accuracy, and
the downsampling rate (convolutional filter stride). No-downsampling has greater effect for FCNs with more
downsampling.

Config. Convolutional Layers FC Downsample Validation No-DS Diff
Layer 1 factor Accuracy val. acc.

1 n/a 64x64x32 1 79.83 n/a 0.00
2 5x5x32+pool (out=30x30) 30x30x144 2 84.25 83.99 -0.26
3 5x5x32+pool;

3x3x64+pool (out=14x14)
14x14x661 4 86.59 86.75 0.16

4 5x5x32+pool;
3x3x64+pool;
3x3x96+pool (out=6x6)

6x6x3578 8 86.87 87.41 0.54

5 5x5x32+pool;
3x3x64+pool;
3x3x96+pool;
3x3x128+pool (out=2x2)

2x2x31920 16 87.11 (**)87.52 0.41

version trained with downsampling. We would expect the improvement to be more pronounced for deeper
networks where the downsampling factor is higher. This is borne out by the last column of Table 10: although
the improvement is not monotonic, it is generally higher for deeper networks. These results indicate that
no-downsample training can give significant improvements for deep networks with a high downsample factor
(i.e.high FCN filter stride).

6 Pre-Trained CNNs

Pre-trained CNN weights have been found to be effective for a variety of visual tasks [27]. In [24] pre-trained
CNNs were applied to classification of aerial imagery patches and found to out-perform hand-crafted features.
This is remarkable since the network is trained on multimedia images like dogs and cats, and generalises to
overhead imagery. Here we propose to use pre-trained networks for overhead semantic labelling. The first
reason is that even though we have a very large number of overlapping image patches for training, they are
highly correlated and over-fitting may occur during training. Instead of training from random initialisation,
fine-tuning pre-trained features might improve generalisation. The second reason is that randomly initialised
networks might focus too much on the spectral scene properties since this information is more readily
exploitable. However for good generalisation the network should rely more on appearance-based features
and less on spectral content. Using pre-trained networks should encourage the network to make use of texture
features.

Fine-tuning pre-trained networks on 3-channel imagery has been performed many times in the literature
and is straightforward. However in our experiments we also use a normalised DSM channel, akin to depth
information. CNNs have previously been applied to RGB-D data such as that generated by a Kinect sensor
for object recognition. In [6] the depth channel is converted to RGB using scene constraints and fed to a
second three-channel pre-trained network. The features are combined with the output of an RGB pre-trained
network using a late fusion layer. In our case those scene constraints are not relevant. Our proposed approach
is a hybrid network: three spectral bands are fed to the convolutional layers of a pre-trained network, whereas
the single DSM channel is fed to randomly initialised convolutional layers. These two sets of convolutional
features are concatenated and serve as input to two randomly initialised fully-connected layers. The network
architecture is illustrated in Figure 7. The architecture of the DSM sub-network is the same as the standard

14



FCN, specified in Section 4.3.

Figure 7: Schematic of the hybrid network architecture, combining pre-trained image features with DSM
features trained from scratch.

6.1 Experiments

The VGG-16 pre-trained network [29] is applied to fully-convolutional semantic labelling of the Potsdam
data. The VGG net is transformed to a fully-convolutional network using the net surgery approach of [17].
While the convolutional weights are pre-trained, the fully-connected layers are randomly initialised. All
pre-trained layers are fine-tuned using a lower learning rate of 0.0001. In the first experiment, the RGB
channels are fed as input to the network. The results are shown in the first row of Table 11. When compared
with the randomly-initialised network that uses all five input channels there is a considerable improvement
to the overall accuracy of almost 1.91% (see Table 7). The value of pre-trained features for analysis of this
high-resolution imagery (5cm GSD) is evident. Next the CIR channels are used as input instead of RGB.
Row 2 of Table 11 shows a marked increase in accuracy of 1.13%. The 1.82% improvement in accuracy for
low vegetation demonstrates the discriminative power of the near infra-red band for plant-life. Examples of
the labelling outputs are shown in Figure 8. Comparing columns 2 and 3, the CIR data facilitates improved
delineation of vegetation. The worst-classified class is the unknown category (shown in red), which is any
pixel not belonging to the other five classes. The training data covers a limited geographic area; a significantly
more varied training set would be required to accurately label the unknown class.

In [25] it was shown that adding the DSM data to the CNN input improved the accuracy significantly,
by more than 3% on the Potsdam data set. The DSM data is combined with pre-trained features computed
from CIR data using the hybrid architecture shown in Figure 7. The results in row 3 of Table 11 show
only a small improvement over the CIR-only result, indicating that late fusion does not make the most of
the height information. Next a no-downsampling version of the hybrid network is trained. The network is
much larger than the standard FCN used in other experiments, and using a stride of 1 pixel in all layers
exhausts the GPU’s memory. Therefore the no-downsampling strategy is applied only partially, resulting in
a convolutional filter stride of 8 that is followed with bilinear interpolation to produce the output. In row 4
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Table 11: FCN semantic labelling results on Potsdam data set, fine-tuning of VGG-16 pre-trained model,
validation set results. The configurations marked “DST X” correspond to the leaderboard submissions, see
Table 12 for the hold-out test set results.

Imp. Building Low Tree Car Unknown Overall Overall
surf. veg. F1 Acc.

VGG as FCN, RGB, pre-trained 88.96% 92.49% 83.84% 82.11% 86.13% 73.09% 84.44% 86.05%
VGG as FCN, CIR, pre-trained (DST 1) 89.77% 92.97% 85.66% 83.55% 87.85% 74.27% 85.68% 87.28%
VGG as FCN, CIR, pre-trained + DSM
FCN rand. init. (DST 3)

89.84% 93.80% 85.43% 83.61% 88.00% 74.48% 85.86% 87.42%

VGG as FCN, CIR, pre-trained + DSM
FCN rand. init., no-DS (DST 5)

89.95% 93.73% 85.91% 83.86% 94.31% 74.62% 87.06% 87.69%

VGG as FCN, RGB, pre-trained + IR-
DSM FCN rand. init.

89.78% 93.85% 84.55% 82.40% 87.74% 74.09% 85.40% 86.92%

DST 1 + CRF (DST 2) 89.98% 93.05% 85.86% 83.21% 87.76% 75.28% 85.86% 87.43%
DST 3 + CRF (DST 4) 90.04% 93.92% 85.73% 83.35% 87.85% 75.59% 86.08% 87.63%
DST 5 + CRF (DST 6) 90.01% 93.83% 86.15% 83.59% 92.97% 75.87% 87.07% 87.84%

Table 12: ISPRS Challenge Potsdam Leaderboard Results. See Table 11 for configurations corresponding
to DST x submissions.

Imp. surf. Building Low veg. Tree Car Overall Acc.

SVL 1 83.5% 91.7% 72.2% 63.2% 62.2% 77.8%
DST 1 91.4% 95.3% 85.1% 87.3% 88.7% 89.1%
DST 2 91.8% 95.9% 86.3% 87.7% 89.2% 89.7%
DST 3 92.0% 96.2% 86.4% 88.3% 89.5% 90.1%
DST 4 92.0% 96.3% 86.5% 88.1% 89.5% 90.1%
DST 5 92.5% 96.4% 86.7% 88.0% 94.7% 90.3%
DST 6 92.4% 96.4% 86.8% 87.7% 93.4% 90.2%

of Table 11 the results show another small improvement in accuracy due to the no-downsampling approach,
but a significant improvement for the car class (6.31%). Row 5 shows the result when incorporating all five
input channels in a hybrid network. The results are worse than CIR-only again indicating that late fusion
is a sub-optimal approach. The last three rows of the table show the previous approaches followed with a
CRF for non-linear smoothing of the labels. In each case the CRF improves accuracy. The labelling outputs
are exemplified in Figure 9. Comparing columns 1 and 3, the no-downsampling network does a better job
of labelling the finely-detailed parts of the scene.

The pre-trained and hybrid networks trained on the Potsdam data were applied to the hold-out data set
and the results submitted to the Potsdam labelling challenge. The leaderboard results are shown in Table 12.
These are the first externally-contributed results to the Potsdam challenge (at the time of writing). The FCN
approach makes a significant improvement over the baseline method, achieving a best accuracy of 90.3%.

These experiments focus on the Potsdam data due to its higher GSD. Pre-trained features were found
to not improve the labelling of the Vaihingen data compared with the standard FCN. The Vaihingen data
is lower resolution than the Potsdam data, and does not benefit as much from the textural features. In this
case early fusion of the DSM information is more beneficial than the addition of pre-trained features.

7 Conclusion

In this paper the benefits of fully-convolutional networks for semantic labelling have been shown to extend to
high-resolution aerial imagery. A novel no-downsampling approach to FCNs was introduced that preserves
the full input image resolution at every layer. Training with no downsampling takes considerable computa-
tional resources, however for detailed high-resolution imagery the labelling accuracy is significantly improved.
The extra computational cost of no-downsampling at test time is modest (≈ 4×) when compared with the
equivalent shift-and-stitch approach to interpolation (≈ 20 − 70×). In [17] the benefits of shift-and-stitch
were found to not outweigh the computational cost; perhaps by using a no-downsampling network a different
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Figure 8: Comparison of pre-trained VGG FCN on different input channels for Potsdam data. From left to
right: ground truth, VGG on RGB, VGG on CIR (DST 1), VGG on CIR + CRF (DST 2).
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Figure 9: Results of pre-trained VGG FCN combined with DSM FCN, for Potsdam data set. From left
to right: VGG on CIR + DSM FCN (DST 3), DST 3 + CRF (DST 4), VGG on CIR + DSM FCN no-
downsampling (DST 5), DST 5 + CRF (DST 6)
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conclusion would be reached. Although the no-downsampling network produces dense outputs, the spatial
feature resolution still decreases with layer depth. To improve the detail in the labelling results this work
should be extended to combine features from multiple scales, see for example [16].

The same pre-trained CNN features that have been applied successfully to so many other computer vision
problems were also found to benefit semantic labelling of the higher-resolution Potsdam aerial imagery.
However it is not straightforward to incorporate extra bands of information, namely the DSM. A hybrid
network was proposed to combine a pre-trained FCN with a DSM-only FCN trained from scratch using late
fusion in the fully-connected layers. Whilst this did improve labelling accuracy somewhat for the higher-
resolution Potsdam data, input-level fusion of the DSM without pre-trained features gave a bigger boost to
the Vaihingen data set results. Determining how pre-trained features can be fused at a lower level would be
a beneficial topic of future work.

The proposed semantic labelling methods have been applied to two publicly-available benchmark data
sets and, at the time of writing, achieved state-of-the-art accuracy. In order for this method to work in
practice, the key issue is generalisation - extending the labelling to a wider variety of scenes. To achieve this
a much larger labelled training set is needed. The labels provided with the challenge data were painstakingly
created by hand, and repeating this effort across the globe is not feasible. Automatic generation of labels or
pseudo-labels, for instance from OpenStreetmap, is the most promising way forward. Learning would need
to take into account noise in these less-accurate labels [19]. Another factor important for generalisation is
extension to different input bands, in particular the DSM might not be available in many scenarios. This
paper has shown that high accuracy results can be achieved without elevation data, relying on image features
only (89.7% on Potsdam). With improved generalisation and a more complete set of class labels, semantic
labelling of aerial imagery would provide a semantic image layer that would benefit a great many geospatial
application.
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Appendix A Experimental Setup

In all experiments the FCN filter support is 64x64 pixels for the Vaihingen data, 128x128 pixels for Potsdam,
and 224x224 pixels in the case of pre-trained networks. For 64x64 input, non-overlapping tiles of size 128x128
pixels are cropped out of the input images and ground truth labels. It was found that larger tiles give
equivalent accuracy. In all other cases the tile size is 256x256 pixels. In general a batch size of 2 tiles is used,
with larger batch sizes resulting in poor convergence and over-fitting. For pre-trained nets a larger batch size
is beneficial, but due to GPU RAM limitations 6 tiles are used per batch. The input data is augmented by
flipping and rotating each input image before tiling. Images are rotated in 10 degree increments, resulting
in 72 augmentations per image (36 angles by 2 flips). Only the largest rectangle fitting inside the valid area
of the rotated image is used for training. With augmentations the Vaihingen data set has 123,330 tiles and
Potsdam has 417,114 tiles.

Unless otherwise stated, the input image for Vaihingen has 4 layers (infra-red, red, green, normalised
DSM) and for Potsdam 5 layers (red,green,blue,infra-red,normalised DSM). Each input channel has the
training sample mean subtracted. The following standard parameters are used when training the networks:
learning rate = 0.001, momentum = 0.9, weight decay = 0.0005, initial weights drawn from a Normal
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distribution with standard deviation = 0.01. In drop-out layers the ratio is 0.5. Networks are trained with
150,000 iterations (weight updates). The learning rate is decreased by a factor of 10 two-thirds of the way
through training.

A modified version of Caffe [13] is used for all experiments, in conjunction with NVIDIA Titan X and
Tesla K80 GPUs. Due to the large size of overhead images, the amount of RAM on the GPU is a limiting
factor. Each of the graphics cards used has 12 GB of RAM.

Trained FCNs are applied to the large overhead images by tiling the image, applying the FCN to each
tile, and assembling the tiled results back into a full-sized image. To avoid boundary artefacts the tiles are
overlapped by half of the FCN input size. These tiles are generally 512x512 pixels but sometimes have to
be made smaller to fit into GPU RAM, depending on the network. Whenever the output resolution is lower
than the input resolution, the class probabilities are bilinearly interpolated to the full resolution and the
class with the highest probability used as the output label.

The protocol for accuracy assessment on the Vaihingen and Potsdam data sets is described on the
challenge website [12]. Overall accuracy – the percentage of correctly labelled pixels – can be considered the
main accuracy measure. F1 scores for each of the classes are also presented. For the Vaihingen data set our
classifiers do not produce the “unknown” class due to its scarcity, and the unknown class is not included in
validation set metrics. The unknown class is included fully for the Potsdam data set. A three-pixel boundary
between ground truth regions with different labels is ignored in the accuracy assessment to allow for human
error in the ground truth.

In some experiments a pixel-wise 4-connected conditional random field (CRF) is used to non-linearly
smooth the output labels. The CNN output probabilities are used as unary potentials and the binary
potentials are based on Canny edges derived from the input data. The method is described in more detail
in [25]. In the case of the Potsdam data, the binary edge mask is the combination of CIR, RGB and NDVI
edges.
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