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Abstract « Pedestrians occupy a narrow image strip and from a

We describe the functional and architectural breakdown  distance may look similar to many background objects
of a monocular pedestrian detection system. We describe Such as trees, poles, parts of parked vehicles, narrow
in detail our approach for single-frame classification based ~ Windows and openings, and so forth.
on a novel scheme of breaking down the class variability ¢ Laterally moving pedestrians form an important sub-
by repeatedly training a set of relatively simple classifiers ~ class for which motion measurements form a powerful
on clusters of the training set. Single-frame classification ~ cue. However, parts of moving vehicles (in slow traffic)
performance results and system level performance figures @ISO generate inward motion signals and motion-based
for daytime conditions are presented with a discussion Segmentation from a moving platform is still a difficult
about the remaining gap to meet a daytime normal weather prob_Iem especially in an evironment rich with other
condition production system. moving structures.

We will present below the functional and architectural

I. INTRODUCTION . . -
) ) ) ) breakdown of a pedestrian detection system, and in more
This paper describes a monocular visual processing Sygatails present a novel single-frame detection algorithm.

tem for pedestrian detection targeting the niche of drivingyna of the key points which emerges from our analysis
assistance on-board vehicles. The development is geargdsingle-frame detection schemes is that it is unrealistic to
towards a serial production sensor qualified initially folgypect a reasonable system level performance using single-
collision warning and ACC Stop & Go applications, andiame classification only. Only by pooling together many
later for active safety collision mitigation systems. Theperceptual decisions can the system hope to segment out
system runs on a prototype development platform (based @R estrians at a sufficiently reliable level. The key therefore
1GHZ microprocessor PPC7457 G4) at a rate of 10Hz ands in the integration of additional cues measured over
is being ported onto a specialized system-on-a-chip (Eye@e (dynamic gait, motion parallax, stability of re-detection
with the target frame rate of 20-25HZ. measures), situation specific features (such as leg positions

Generally speaking, a visual processing system needsdp certain poses), and most importantly via building up
function well under a wide range of visibility conditions 5qitional object categories consisting of vehicles (both in
covering over-cast sky, strong highlights, low visibility duényqtion and stationary) and stationary background structure
to inclement weather, wide dynamic range of imaging €ong,,c, as poles, trees, guardrails, lane markings and so forth.
ditions, change of context, day-time and night-time drivingp ;e 1o space limitations we will focus on the details of the
On top of that, the class of pedestrians is particularlgingle frame detection and describe only in general terms
challenging for a number of reasons: the principles of the multi-frame decisions and end with a

« The image space variability of the class is very larg@jetailed comparative analysis of our classifier and present

as pedestrians appear in various poses, clothing apgsylts and statistics of the system level performance.
various articulations of body parts. The articulation of

body parts also makes the process of tracking a pedes- 1I. FUNCTIONAL BREAKDOWN OF THE SYSTEM

trian along an image sequence somewhat challenging. . . -
ng 9 q ST : NG o appearance of pedestrians in the scene can be divided
« Pedestrians are found mostly in city traffic conditions

where the background texture (from surrounding man'pto a number of categories:

made structures, other vehicles poles and trees) forfifdestrians moving laterallyvisual motion analysis is a
a highly cluttered environment. strong cue for detection provided that the host vehicle
« The background clutter covers both shape (texturéfiotion is factored out. In other words, simple image sub-
and depth. If in an open roadway a pedestrian woullfaction would not apply since the camera is mounted on a
stand out using depth disparity cues (such as by usiﬁgoving platform. Another important cue is the gait pattern
stereopsis), depth cues are unlikely to be useful fd?oth dynamically (change of position of legs over time) [3],
segmenting out pedestrians in city traffic due to thé17], [4] and statically (position of legs in a single frame).
heavy disparity clutter. Stationary pedestrians in primary host vehicle path ("in-



path”): pattern recognition (based on texture/shape) is thecognition process is used both as a discriminant in the
primary source. In some cases the static gait position bsingle-frame classification and multi-frame approval and

comes useful. Motion parallax from the ground plane [13]for a cue for range measurement. More details on the
[11] forms a weak cue for sufficiently close pedestriansprocess of range measurement using the flat roadway
however it might be difficult to extract reliably in a city assumption can be found in [15].

traffic environment due to clutter and low visibility of the

roadway due to occlusions. The four basic steps above are also coupled with support-
Pedestrians moving longitudinallysimilar to stationary ing functions such as host vehicle ego-motion (of Yaw and
pedestrians as the longitudinal motion is too weak to bBitch) [14], close range motion segmentation (for extracting
reliably picked up by image processing. strong inward motion regardless of shape classification),

Stationary pedestrians out-of-patistationary pedestrians robust tracking (which can handle non-rigid motion and
out of the host vehicle path need to be detected in order ggclusions induced by pedestrians crossing each other)
minimize the detection delays in case the pedestrian decides @nd of primary importance the classification scores of
to move inwardly — no external action is expected from th&ackground sub-classes which include licensed vehicles,

system upon detection of stationary out-of-path pedestriaR@!es, guard-rails, repetitive texture, lane mark interpre-
thus a certain level of false positives is allowed. tation, bridges and other man-made horizontal structures,

and pedestrian walking zone areas. The sub-class scores

The pedestrian system architecture loops through thglay an important role in the final decision-tree multi-frame
fOllOWing modules: approva| process.
(1) Generate candidate regions of interesta systematic =~ We describe next our approach for single-frame classifi-
scan of the image for rectangular shaped regions at @éation and present a novel scheme designed to reduce the
positions and all sizes would be computationally unwieldyclass variability to smaller pieces by repeatedly training a
An attention mechanism filters out windows based on lacket of relatively simple classifiers on clusters of the training
of distinctive texture properties and incompliance wittset.
perspective constraints on range and size of the candldatem_ SINGLE FRAME CLASSIFICATION ALGORITHM

pedestrian. On average, the attention mechanism generates ) ) ) .
75 windows (out of the many thousands of candidates The changing pose and articulation of the limbs suggests

which could be generated otherwise) per frame which a/@Classifier based on the integration of local image represen-
fed to the classifier. tations as opposed to a holistic (global) representation. A lo-

cal image representation breaks down the class variability to
local parts each with its own variability which is presumably
much smaller than that of the entire shape. Moreover, the
(3) Multi-frame Approval Process: candidates which representation by components compensate for pose and ar-
survive the single frame classification thresholds argcylation changes by allowing a flexible geometric relation
likely to correspond to pedestrians . However, due t@mong the components during classification. The integration
the high variability of the object class and the highof the |ocal representations in the classification stage can
levels of background clutter it is conceivable thale rather degenerate such as the nearest neighbor approach
coincidental arrangements of image texture may have \ghich employs relatively sophisticated local features such
high detection score — an ambiguous situation which igs those used by [9], or integration via a cascaded classifier
likely to be unavoidable. Additional information collectedgych as the hierarchical SVM approach used by [8].

over a number of frames are used in the system for goth |ocal feature integration approaches are problematic
further corroboration. Measures that are collected ovgh gyr application domain. The nearest neighbor approach
multiple frames include (i) dynamic gait pattern based oRas heen proven very effective for matching against a single
periodicity, (ii) inward motion analysis scores (coupled Withexemplar (as opposed to a class of objects), when the
ego-motion [14]), (iii) motion parallax (when available), number of descriptors is relatively large (in the thousands)
(iv) consistency measure of the single-frame classifier ovelh,g when the local descriptors are localized on richly
time, and (v) tracking quality measures. The approvakxtured regions [9]. In our application domain, the image
process is based on a decision-tree type of classifigggions surrounding a typical pedestrian are often poorly
trained by a training set. The length (number of frameSpytured and because of the small region size it is difficult
of the approval process depends on the type and qualily generate a large number of distinct descriptors. The
of the collected information. For example, a strong inwar@ierarchical SVM runs an SVM [1] classifier separately
motion ranks highly in the decision process and inducesn each local region thereby mapping each sub-region to
an immediate approval. a real number (distance to local decision surface) — which
(4) Range measurement: candidate regions are fit can be considered as a local discriminant function. The
to pedestrians in such a way that the lower part ofesults of the local discriminants are integrated by running
the rectangular region is aligned with the feet. A gaiBn SVM classifier on the feature vector comprising of

(2) Single frame classification: this is the heart of the
detection process. Details are presented in Section lll.



the local discriminant results. Due to the relatively small
number of local regions (of the order of 10), one would
require each sub-region to be highly discriminatory, be
localized in order to maximize the discrimination ability
and to be subject to a relatively sophisticated component
classifier which in the context of SVM translates to a high
order feature map (polynomial of Radial Basis Function).
The number of support vectors (templates used during
the classification stage) for high order feature maps are
relatively large (roughly 10% of the training set) thus make
the classification stage costly in computing resources. In [8]
a quadratic polynomial component classifier is used whefgg. 1. The configuration of the nine sub-regions is displayed
the integration of local discriminants is done by a lineaPVer the gradient image. The distribution of the arrows in each
classifier. In our domain, mainly due to the small imag&{l 'égion is measured (see the text). In addition, four pair
. . . . . combinations are constructed (regions 10, 11, 12, 13).
size of interest regions (candidate regions are warped to a
12 x 36 window which is fed to the classifer) and the poorly

defined sub-regions which make accurate localization ofricylar design of the descriptor vector is borrowed from
component regions very challenging, such an approach isyig|qgically inspired model implemented by [9] following
not strong enough for an effective single-frame classifigfecessary changes due to the relatively small size of our
(see comparative results in Section V). sub-regions. In particular, image gradient magnitudes and
orientations are sampled and the robustness against local
shifts is achieved by creating orientation histograms over
. o 2 x 2 sample regions (i.e., the sub-region is further divided
Our approach to the single-frame classification stagg 5 o « 2 configuration). Each orientation histogram has
borrows from the idea of the recognition-by-componenty ,riantation bins whose level are weighted by a smoothed
using a 2-stage classifier algorithm. Namely, we breakdowy,jon of the gradient magnitudes. Taken together, the local
the region of interest into sub-regions, create a local Vegscription consists afx 2 x 8 = 32 element feature vector
tor representation per sub-region, feed each of the locghimajized to unit length (the normalization reduces the
feature vectors to a discriminant function and integratggeacts of illumination changes).
the local _disc_riminant results by a seco_nd-stage clgssifi_er.-l-he 32-element feature vector (per sub-region) undergoes
The crucial difference from the conventional paradigm i, jinear weighting using Ridge Regression [7]. Briefly, let
the way we handle the training set. Since the numbgy, - p32 he the desired weight vector which ideally forms
of local sub-regions are small we generate multiple loc hyperplane which separates the negative and positive
discriminants (one per local sub-region) by dividing theexamples of the training cluster (the process below is
training set into mutually exclusiviaining clusterswhere applied separately to each training cluster). ketbe the

each cluster represents a training collection fromaparticulﬂ{put local descriptors corresponding to the ith training
pose, a particular articulation and a particular iIIuminatiori1m‘,71ge (at the particular location of sub-region) and let
condition — all together 9 different subsets of the training  ~ |1 yenote the class label. The Ridge Regression

dataset. The idea behind the subset division of the trainir]:é(ocedure seeks which minimizes the objective function:
set is to breakdown the overall variability of the class into

manageable pieces which can be captured by relatively allw||? +Z(yi —w'x)?,

simple component classifiers. In other words, rather than i

seeking sophisticated component classifiers which cover thgare o, is a pre-determined fixed positive constant. The
entire variability space (of the subregions) we apply priogs|ytion of the optimization problem can be described in

knowledge in the form of clustering (manually) the training|gsed form as follows. Lef/ be the Gram matrix. i.e.
set. Each component classifier is trained multiple times ;= X X;, let A = [x;, X, ...] hold the input vectors as
7 ’ 9 9 e

once per training cluster — while the multiple discriminantis solumns. and ley = (
values per subregion and across subregions are combingequaﬂ to:
tboeg:;tl\rller via Adaboost [5]. Details of this approach are given W= A(K +al)"ly.

The candidate region is divided into a fixed configuratiomhe discriminant ofx is the inner-productv ' x. Given a
of 9 overlapping sub-regions with positions illustrated irparticular training cluster, the inner-product between the 9
Fig. 1). We next compute for each subregion a local imageeight vectors (one per sub-region) and their corresponding
descriptor designed to be insensitive to local shifts ofub-region local descriptor vector form a feature vector of 9
image structure that may be caused by change of pos&ements. Four additional elements are added by concatenat-
and articulation of the pedestrian’s arms and limbs. Thimg selectedairs (illustrated in Fig. 1) of sub-regions into
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A. Multi-training Classification by Components: Our Ap-
proach

Y1, Y2, -..). The weight vectomw



local descriptors with 64 elements each which are turned
into 4 elements by the Ridge Regression procedure above.
Taken together, we have 13 elements per training cluster,
thus making a single feature vector®f 13 = 117 elements
representing the candidate region.

Note that breaking apart the training set into clusters is a t
crucial ingredient in this procedure, because otherwise the
linear discriminant (per sub-region) would be too weak of
a classifier to be of practical use. Our findings show that
simplifying the variability space (induced by the training I e 2 e,
clusters) is much more powerful than seeking a stronger ! ! '
local discriminant — most likely because the local image
structure is not sufficiently discriminatory for such a wideFig. 2. ROC curves of three_ classifit_ers: our_classifier is the top
variability space. Also note that the choice of the local degurve‘ the global SVM classifer [12] is the middle curve, and the

. : -stage SVM classifier [8] is the bottom curve.
scriptor allows us to bypass the need llacalizedfeatures,

i.e., searching for distinguishable parts such as arms, legs,

head, and so forth. o . . . .
The 117 elements are combined with Adaboost usin@f distinctive texture properties and incompliance with

the entire training set. Each of the 117 elements can bgerspec_tive constraints on range and_size of the candidate
considered as a "weak lerner” in the sense that it form@€destrian. In other words, the negative examples are not
a class discrimination. The main idea of AdaBoost is t§2ndom image fragments. On average, the attention mech-
assign each example of the training set a weight. At th@niSm generates 75 windows per frame which are fed to

beginning all weights are equal, but in every round the wedle classifier. The test dataset consisted of 15,244 instances,
learner returns a hypothesis, and the weights of all examplé&1ere both the training and test sets cover a wide variety of
classified wrong by that hypothesis are increased. That w&ytime conditions including scale (range to camera from
the weak learner is forced to focus on the difficult examples™ © 25m), pose, articulation, illumination, background
of the training set. The final hypothesis is a combination dXture, weather conditions, and a spectrum of visibility
the hypotheses of all rounds, namely a weighted majori ndltlo'ng (mostly due to inclement weather conditions).
vote, where hypotheses with lower classification error hayEe training and test sets were extracted from 50 hours
higher weight. of driving covering city traffic conditions around the world
This completes the description of the 2-stage classificd2cluding Japan, Munich, Detroit and Israel.

tion algorithm. In the next section we compare our approach Fig. 2 shows the ROC curve (the top curve) of test
to holistic SVM and 2-stage SVM and demonstrate &lataset. We can see from the curve that our classifier would

significant improvement in the ROC curve. achieve, for example, a detection rate of 90% at a false
rate of 5.5% (which means 1 false positive for every 18
IV. EXPERIMENTAL RESULTS windows inspected). We chose the tradeoff with 93.5%

The single frame pedestrian classification phase has be@etection rate — achieved at a false positive rate of 8%
a subject of past research (cf. [2], [6], [8], [12]) with pub-Which is roughly one false positive for every 12 windows
lished performance figures. In general, the performance #fspected. Fig. 3 shows a sample of false positives (upper
any classification system is subject to a tradeoff between tfiew) and false negatives of the single frame classification
rate of miss-detections (false negatives) and the rate of falpgase. Note that a window containing a pedestrian at a
detections (false positives). For example, the performance ¥fong scale is also considered a false positive since the
detection drops as one imposes more stringent restrictiofgstem cannot reliably track these regions over time and
on the rate of false positives. This tradeoff is captured by tH&us the region will be eventually dropped during the multi-
so called ROC curve which plots the error in miss-detectioffame classification phase.
against the false alarm rate. The reader may notice that these figures are strikingly

The images were captured at6d0 x 480 resolution poorer than previously published results. For example, [12]
with a horizontal field of view of 47 degrees. Regionsapplies a global SVM on windows of sizgt x 128 and
of interest were scaled (up or down) to fill a region ofreports a detection rate of 81.6% at a false positive rate of
size 12 x 36 pixels which were fed into the single-frame 1 window per 15,000 windows inspected. The difference in
classifer. The training dataset consisted of 54,282 instance=ported results may arise from a number of sources: (i)
roughly split equally between positive (pedestrians) anthe test set in [12] consisted of 165 positive examples only,
negative examples. The negative examples were generaféll negative examples were generated by systematically
automatically by sampling the windows produced by thescanning the image — therefore many of the negative
system’s attention mechanism. It is important to note thaxamples were "very easy”, as opposed to the negative
the attention mechanism filters out windows based on lackkamples generated by our attention mechanism, (iii) dif-



Going back to the ROC curve of our classifier, a simple

'I calculation would show that it is not realistic to expect a
- | reasonable system level performance from a single-frame

1 classification only. As mentioned previously, about 75 win-
= dows are inspected per frame, and given a processing rate

of 10HZ we arrive at a number of 2.7 million classification

gueries in one hour of driving. Allowing for one false
r} detection per 3 hours of driving, we would require a false
i L alarm rate ofLl0—® which is roughly 6 orders of magnitude
! better than what is displayed in the best ROC curve of
; J J Fig. 2. Such an improvement is not likely to happen by
|
- |

finding a better classifier or a better scheme for representing
descriptors (local or global). The key therefore lies in the
integration of additional cues measured over time (dynamic
Fig. 3. Some misclassifiaction examples. Upper row: false positivgait, motion parallax, stability of re-detection measures),
examples. Bottom row: false negative examples. situation specific features (such as leg positions at certain
poses), and most importantly via building up additional
object categories consisting of vehicles (both in motion
ferent window size ofi4 x 128 suggests that high detailed and stationary) and stationary background structure such as
pictures of pedestrians were used as opposed to the oftesles, trees, guardrails, lane markings and so forth.
impoverished images our system must handle, (iv) training The details of the system level integration and the extrac-
and test sets in [12] cover only rear and front poses wheretisn of the additional cues are beyond the scope and space
in our case all poses are covered, and (v) it is unclear whiatitations of this paper. However, we will briefly present
level of variability (i.e., degree of challenging situations)below some of the performance results of the complete
are covered by a particular dataset and thus it becomggstem.
difficult to make comparisons. Similar performance figures
on the component-based 2-stage SVM were reported in [§} The Complete System Performance
citing an ROC curve with a 90% detection rate with a false As mentioned in Section Il, the inspected windows which
positive rate of 1 to 10,000 windows inspected. pass the single-frame classification stage undergo a multi-
Since it is difficult to establish a baseline for comparingrame approval process. The accuracy requirements of the
the various approaches from the published performandimal decision depends on the location of the pedestrian
figures alone, we have run the global SVM and a 2-stagend whether the pedestrian is stationary or moving laterally
SVM using our training and test tests — thus establishingnwards towards the host vehicle path). The most stringent
a common baseline for comparative performance evaluatisaquirements are set on inward moving pedestrians and on
of the single-frame classification phase. The middle RO@-path stationary pedestrians. For these situations the false
curve in Fig. 2 corresponds to a quadratic polynomial class&larm rate should be less than 1 per 3 hours of driving with a
fier trained using SVM (with the quadratic kernel function)detection rate of above 95%. Accuracy requirements for out-
using the procedure described in [12]. The lower ROC curvef-path stationary pedestrians are set for a false alarm rate
corresponds to a 2-stage SVM (following [8]) where theof 360 false positives per hour of driving (roughly 1 per 10
9 sub-regions and 4 pairs of sub-regions were classifieconds of driving) at a detection rate of 95%. As mentioned
using a quadratic polynomial SVM and the componentsarlier, out-of-path stationary pedestrians are detected for
combination was done with a linear SVM. The reader mapurpose of advanced lock-in in order to minimize the
wonder why the component 2-stage SVM performs pooratetection delays in case the pedestrian decides to move in
than the global SVM — contrary to the results of thean inward motion — no external action is expected from the
original authors. The reason lies, in our opinion, with thesystem upon detection of stationary out-of-path pedestrians.
poor texture definition of the small sub-regions which make We collected performance statistics over 5 hours of
each of them not sufficiently discriminatory over the entiralaytime driving in dense city traffic (mostly in down-
variability space. This underscores the importance of oduown Tokyo and Jerusalem) under bright illumination with
approach to breakdown the variability to smaller piecesormal weather conditions. Although weather conditions
thus enabling the small sub-regions to become sufficientlyere normal, bright illumination (as opposed to over-cast
discriminatory. In comparison, the sub-regions in [8] weresky) introduces much difficulty to the detection process as
relatively large (ranging fron28 x 28 to 69 x 46) thus shadows and highlights are emphasized in the scene and
allowing the underlying image texture to become morereate in turn unstable contrast changes over the image and
discriminatory. In anycase, both ROC curves are uniformlynake the exposure control quite challenging due to the high
poorer that the ROC curve of our classifier by a significardlynamic range of the scene. The detections were divided
amount. into the following categories: (i) inward moving pedestri-




(b)

Fig. 4. (a) and (b) illustrate a typical image from the 1 hour test ride in one of the busiest Tokyo districts. The numbers below each
bounding box represent range. (c),(d) contain false positive examples: the horse legs in (c) and what may appear as an out-of-path
pedestrian at a range of 23m in (d). The region size at a distance of 23m is ro®ighiyt pixels. Square like bounding box represents

a vehicle in (d) and (e). An example of a miss detection (where the arrow is located) in (e).

ans, (i) stationary pedestrians in-path, and (iii) stationarfor the remaining functionalities the gap which remains
pedestrians out-of-path. Pedestrians moving longitudinalig relatively small for meeting a daytime normal weather
were counted as stationary. Stationary pedestrians out-ajpecification.
path which were occluded (such as by parking vehicles and
other obstructions) were not considered. The detection rate

of inward-moving pedestrian stands on 96% with 1 falsél] B.E. Boser, .M. Guyon, and V.N. Vapnik. A training algorithm for
optimal margin classifier. IfProc. 5th Workshop on Computational

positive created during a host vehicle turning maneuver. The | eaming Theorypages 144-152, 1992.
average delay for inward moving pedestrians at the rang® A. Broggi, M. Bertozzi, A. Fascioli and M. Sechi. Shape Based

up to 15m was 4.6 frames (the minimal delay stands at Pedestrian Detection. IiEEE Inteligent Vehicle Symposium (1V2000)
pp. 215-220, Dearborn, 2000.
4 frmaes), 11.2 frames for 15m-25m and 21.7 frames f@§) R cutler and L. Davis “Robust Real-Time Periodic Motion Detection,

pedestrians at the range of 25m—30m. The detection rate of Analysis and ApplicationlEEE Trans Patt. An. Mach. Int.Vol 22(8),

stationary in-path was calculated from a 1 hour drive in a_ PP- 781-796, 2000. _ _ . _
y P 4] A. Efros, A. Berg, G. Mori and J. Malik “Recognizing Action at a

busy diSt_ri_Ct of Tokyo (See_ Fig. 4a,b) stands on 93% Wit_h Distance’|EEE International Conference on Computer Vision (ICCV)
false positives. The detection rate of out-of-path pedestrians pp. 726-733, 2003.

was determined from the same 1 hour session and starféls Y- Freund and R. E. Schapire. Experiments with a new boosting
algorithm. In Proceedings of International Conference on Machine

on 85% with 102 false positives. Learning (ICML), pp. 148—156, 1996.
V. SUMMARY [6] D. Gavrila “Pedestrian Detection from a Moving Vehicletoc. of the
: European Conference on Computer Vision (ECG)) 37-49, Dublin,
We have presented the functional requirements and ar- 2000.

. . . . ] A.E. Hoerl and R.W. Kennard. Ridge regression: Biased estimation
chitecture of a pedestrian detection system targeting ol for nonorthogonal problems. Technometrics, 12(3):55-67, 1970.

board driving assistance applications. We presented o[ A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object
approach for the single-frame classification stage which detection inimages by components. In IEEE Transactions on Pattern

. . Analysis and Machine Intelligence (PAMI), 23:349-361, April 2001.
is based on a novel scheme of breaking down the cla D. G. Lowe. Distinctive image features from scale-invariant keypoints.

variability by repeatedly training a set of relatively simple ~ International Journal of Computer Vision, 2004.
classifiers on clusters of the training set. Together with B0] O. Mano, G. Stein, E. Dagan and A. Shashua. Forward Collision

e . o . . Warning with a Single Camera IEEE Intelligent Vehicles Symposium
shift-invariant local description of image sub-regions and 5004} june. 2004, Parma Italy.

discriminant integration using Adaboost we have obtained[@1] R. Okada, Y. Taniguchi, K. Furukawa and K. Onoguchi. Obstacle de-
powerful classifier that outperforms the leading approaches tection using projective invariant and vanishing lineslriternational

. . L . Conference on Computer VisigftCCV), 2003.
(for which a detailed description exists and can be r 12] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna and T. Poggio

produced). One of the key points made in this work is the ~Pedestrian detection using wavelet templatesComputer Vision and
observation that it is not realistic to expect a reasonable Pattern RecognitiofCVPR), June 1997.

. . .. .. [13] A. Shashua and N. Navab. Relative affine structure: Canonical model
system level performance using single-frame classificatidh for 3D from 2D geometry and applicationdEEE Transactions on

only. The path from single-frame to system level per- Ppattern Analysis and Machine Intelligen¢BAMI), 18(9):873-883,
formance must include the integration of additional cues ]129% Stein. O. M 4 A Shashua. A Robust Method for

. . . . T . P ein, O. Mano an . ashua. opus ethoa ror Com-
measured OYer time (dy”am'9 galt_’ motion .p.arallax, stabilit puting Vehicle Ego-motion INEEE Intelligent Vehicles Symposium
of re-detection measures), situation specific features (such (1v2000) Oct. 2000, Dearborn, M.
as |eg pOSitionS at certain pOSES), and most importantl%ﬁ] G P. Stein, O. Mano and A. Shashua, “Vision-based ACC with a

. o " . . P Single Camera: Bounds on Range and Range Rate AccutB&E
via bwldlng up additional ObJECt categories consisting of Intelligent Vehicles Symposium (1V2003une 2003, Columbus, OH.

vehicles (both in motion and stationary) and stationaryse] P. Reisman, O. Mano, S. Avidan and A. Shashua. Crowd Detection
background structure such as poles, trees, guardrails, lane iJn Wdegogiql;encesllfﬁEE Intelligent Vehicles Symposium (1V2004)

. . une. , Parma ltal Y.
markings and.so. forth. The experimental resu_lts of OU[;”';7] P. Viola, M. Jones and D. Snow “Detecting Pedestrians using Patterns
system so far indicate that for some of the functions (such ~of Motion AppearancelEEE International Conference on Computer
as inward moving pedestrian detection) the performance is Vision (ICCV) pp. 734-741, 2003.

satisfactory for daytime and normal weather conditions, and
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