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For more than two decades, many efforts have been made to develop methods for extracting urban
objects from data acquired by airborne sensors. In order to make the results of such algorithms more
comparable, benchmarking data sets are of paramount importance. Such a data set, consisting of airborne
image and laserscanner data, has been made available to the scientific community by ISPRS WGIII/4.
Researchers were encouraged to submit their results of urban object detection and 3D building recon-
struction, which were evaluated based on reference data. This paper presents the outcomes of the eval-
uation for building detection, tree detection, and 3D building reconstruction. The results achieved by
different methods are compared and analysed to identify promising strategies for automatic urban object
extraction from current airborne sensor data, but also common problems of state-of-the-art methods.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction and object detection. Apart from making different approaches
The automated extraction of urban objects from data acquired
by airborne sensors has been an important topic of research in
photogrammetry for more than two decades (Mayer, 2008). Urban
object extraction is still an active field of research, with the focus
shifting to detailed representations of objects, to using data from
new sensors, or to advanced processing techniques. However,
scanning the relevant literature in photogrammetry and remote
sensing (Schindler et al., 2011; Sohn et al., 2013; Stilla et al.,
2011), it has become obvious that there is a lack of publicly avail-
able benchmark data sets with ground truth that can be used for
the evaluation of their methods by the authors of research papers.
As a consequence, the authors usually evaluate their methods on
different data sets and using different evaluation criteria, which
makes a comparison of the methods difficult and hampers a critical
assessment of the pros and cons of each of the methods. In com-
puter vision, the success of the Middlebury Stereo Vision test
(Scharstein and Szeliski, 2002) and other benchmarks such as the
Pascal VOC data set (Everingham et al., 2010) has shown the impor-
tance of providing common data sets with ground truth for com-
paring different approaches to problems such as image matching
comparable, benchmarks can trigger progress by giving indications
about the most promising strategies for the solution of a given task
and by identifying common problems of existing approaches, thus
showing new directions of research.

However, using standard benchmarks for object extraction from
computer vision such as the Pascal VOC data set for a comparison
of object extraction techniques from remote sensing imagery is not
necessarily fair to the latter. Methods tailored for remote sensing
data, usually characterised by vertical viewing directions, cannot
rely on the availability of a reference direction such as the vertical
in terrestrial images with horizontal viewing directions. Thus, on
the one hand, they may perform poorly in comparison to methods
that are tailored to such data and, for instance, employ priors for
the location of objects in an image, modelling that the sky is usu-
ally the highest object in a scene and that roads are most likely at
the bottom of an image (Yang and Förstner, 2011), whereas on the
other hand, they cannot exploit features such as the NDVI that can
be extracted from images taken by modern multispectral sensors.
There is an obvious need for benchmark data sets consisting of air-
borne data that can serve as test beds for developments in the field
of topographic object detection and 3D reconstruction, in particu-
lar in urban areas.

There have been attempts in the past to distribute benchmark
data sets for object extraction. The authors particularly acknowl-
edge the efforts of OEEPE/EuroSDR (European Spatial Data
Research), who provided data sets for building (Kaartinen et al.,
2005) and road extraction (Mayer et al., 2006) and for automated
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updating of maps (Champion et al., 2009). As far as data from aerial
sensors are concerned, these data sets are outdated. The first two
data sets (building and road extraction) rely on scanned image;
the data set for automated map updating does include one ortho-
photo from a modern multi-spectral camera (Champion et al.,
2009), but the airborne laserscanner (ALS) data only consist of first
echoes that are augmented by a scanned aerial image. There is a
need for new standard test sites for urban object extraction making
use of the benefits of modern airborne sensors such as multiple-
overlap geometry, increased spectral and radiometric resolution
of images and, in case of ALS data, the recording of multiple echoes.

These considerations led to the establishment of a benchmark
on urban object extraction. A modern data set consisting of digital
aerial image and ALS data along with reference data was generated
and made available to the research community via the ISPRS web
site (ISPRS, 2013). Unlike previous benchmark data sets on urban
object detection, the reference data include 2D outlines of multiple
object types and 3D roof landscapes. It also contains different types
of urban development. Researchers are given access to the sensor
data and encouraged to carry out one or more of several urban ob-
ject extraction tasks:

Task 1: Urban object detection, i.e. the determination of the 2D
outlines of urban objects in the input data. The focus of the eval-
uation is on the thematic and geometrical accuracy of the
results.
Task 2: 3D building reconstruction, i.e. the reconstruction of
detailed 3D roof structures in the test areas. The focus of eval-
uation is on the quality of the roof plane segmentation and on
the geometrical accuracy of the roof polygons.

Up to the time of writing (October 2013), we have received re-
sults from more than 20 research groups. Some groups have sub-
mitted results achieved by different algorithms, mostly for the
detection of buildings and trees and for 3D building reconstruction.
It is the main goal of this paper to give an overview about the
benchmark and to describe and analyse the results submitted so
far, in order to highlight the potential of current state-of-the-art
methods for solving the tasks. We also aim to show common prob-
lems and limitations of current methods in order to identify un-
solved problems in urban object extraction. As far as object
detection is concerned, we focus on buildings and trees, because
hardly any results for other object types have been received so far.

This paper is structured as follows. In Section 2, we briefly pres-
ent the test data sets. The tasks to be solved by the participants and
the evaluation methodology are explained in Section 3. Section 4
gives a very brief overview over the methods for which we have re-
ceived results. These results are evaluated and analysed in Section 5.
Section 6 presents our conclusions and our plans for future work.
2. Data sets

2.1. Data set 1: Vaihingen (Germany)

This is a subset of the data used for the test of digital aerial cam-
eras by the German Association of Photogrammetry, Remote Sens-
ing, and Geoinformation (DGPF; Cramer, 2010). It contains twenty
16 bit pan-sharpened colour infrared (CIR) images with a ground
sampling distance (GSD) of 8 cm. The images were acquired with
65% forward lap and 60% side lap using an Intergraph/ZI DMC hav-
ing a focal length of 120 mm. Orientation data with pixel-level
accuracy are distributed with the images. Furthermore, the data
set contains ALS data acquired using a Leica ALS50 system with a
point density between 4 and 7 points/m2. Multiple pulses were re-
corded. A digital surface model (DSM) with a grid width of 25 cm
was interpolated from the ALS points corresponding to the last
echo of each pulse. Three test sites were selected for generating
reference data:

Area 1 (37 buildings and 105 trees; 125 m� 200 m) is character-
ised by dense development consisting of historic buildings hav-
ing rather complex shapes along with roads and trees.
Area 2 (14 buildings and 162 trees; 170 m � 190 m) is charac-
terised by a few high-rising residential buildings that are sur-
rounded by trees.
Area 3 (56 buildings and 155 trees; 150 m � 220 m) is a purely
residential area with detached houses and many surrounding
trees.

In these test areas, reference data were generated by manual ste-
reo plotting. The reference for building detection consists of roof
outline polygons with a planimetric accuracy of about 10 cm. The
reference for tree detection consists of circles approximating the
crown outlines of all trees higher than 1.5 m. The circle centres give
approximate positions of the tree stems with a geometrical accuracy
of about 0.5–1.5 m. The reference for building reconstruction con-
sists of 3D building models corresponding to the level of detail
LoD2 according to the CityGML standard (Gröger et al., 2008). They
are detailed roof models without roof overhangs or façade details.
The accuracy is about 10 cm in planimetry and height.
2.2. Data set 2: Toronto (Canada)

This second data set was captured over downtown Toronto (Can-
ada). It also consists of image and ALS data. There are 13 RGB colour
images with a radiometric resolution of 8 bit and a GSD of 15 cm.
The images were acquired using a Microsoft Vexcel UltraCam-D
with a focal length of 101.4 mm, arranged in a block of three strips
with 60% forward lap and 30% side lap. Only stereo overlap is avail-
able in most areas. Orientation data with pixel-level accuracy are
also distributed with the images. Optech’s ALTM-ORION M was used
to acquire the ALS data at a flying height of 650 m in 6 strips with a
point density of about 6 points/m2. A DSM with a grid width of
25 cm was interpolated from the ALS points corresponding to the
last echo of each pulse. One disadvantage of this dataset is that
ALS and images were not only captured in different vegetation peri-
ods (ALS: leave-on, images: leave-off), but also with a time gap of
two years. Two test sites were selected in this data set:

� Area 4 (58 buildings; 530 m � 600 m) contains a mixture of low
and high-storey buildings, showing various degrees of shape
complexity in rooftop structure. The scene also contains trees
and other urban objects.
� Area 5 (38 buildings; 530 m � 600 m) represents a cluster of

high-rise buildings typical for the Central Business District
(CBD) of North American cities. It contains shadows cast by high
buildings and various types of urban objects.

The reference for building detection and for 3D building recon-
struction (LoD2) was generated by stereo plotting. The accuracy of
well-defined points is 20 cm in planimetry and 15 cm in height. For
more details refer to (Rottensteiner et al., 2012) and to the web site
of the test (ISPRS, 2013).
3. Test setup

3.1. Task 1: urban object detection

The goal of the first task is the detection of objects in the test
areas. The participants can deliver outline polygons of the objects
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or binary object masks. For the evaluation of the thematic accuracy,
the method described in (Rutzinger et al., 2009) was used. After a
topological clarification required to be able to deal with the fact that
in densely built-up areas building detection algorithms tend to deli-
ver whole blocks as individual buildings, we determine the follow-
ing indices to measure the quality of the results:

� Compar, Corrar, Qar: completeness, correctness and quality deter-
mined on a per-area level. These indices are related to the area
that was correctly classified.
� Compobj, Corrobj, Qobj: completeness, correctness and quality deter-

mined on a per-object level. These indices count the number of
objects that are correctly detected. A minimum overlap of 50%
for an extracted object with the reference is required for the
object to be counted as a true positive. Having to choose such
a threshold adds a certain degree of subjectivity to the evalua-
tion; however, we think that an evaluation on a per-object level
is important because it is more directly related to the amount of
work required for post-editing the results. For a detailed discus-
sion of this topic and also for a comparison of different thresh-
olds, see (Rutzinger et al., 2009).
� Comp50, Corr50 and Q50: completeness, correctness and quality

determined on a per-object level, but only considering
objects larger than 50 m2. These indices are useful to
analyse the dependency of per-object quality metrics on the
object size. The threshold was chosen to select the most
representative buildings per plot and the largest trees in the
scene (Rottensteiner et al., 2012).
� RMS: The RMS error is used to characterise the geometrical

quality of the detected objects. For buildings, RMS is the RMS
error of the planimetric distances of the reference boundary
points to their nearest neighbours on the corresponding
extracted boundaries; for trees, it is the RMS error of the plani-
metric distances between the centres of gravity of correspond-
ing objects in the detection results and in the reference. In both
cases, only distances shorter than 3 m are considered.

3.2. Task 2: 3D building reconstruction

The goal of the second task is the generation of detailed (LoD2)
3D models of the building roofs in the test areas. The results should
be submitted as closed 3D roof polygons. The evaluation focuses on
an analysis of the segmentation quality and on the geometrical er-
rors of the submitted models. In the literature, there is much less
work on a quality analysis of 3D building models. Meidow and
Schuster (2005) present an evaluation scheme that is an expansion
of the pixel-based analysis in 2D to 3D voxel space, and has similar
restrictions; in particular, it does not reflect the extent to which the
topology of the building models corresponds to the topology of the
reference. We based the analysis of the quality of the segmentation
on a comparison of roof plane label images, carried out in a way
similar to the overlap analysis for the evaluation of object detec-
tion, but without topological clarification. We determine several
quality metrics to evaluate the quality of the submitted results:

� Compobj, Corrobj, Qobj: completeness, correctness and quality deter-
mined on a per-roof-plane level. These indices count the num-
ber of roof planes that have an overlap of at least 50% with
roof planes in the reference. However, no 1:1 relations between
roof planes in the reference and roof planes in the reconstruc-
tion results are required to count a plane as a true positive. A
low completeness indicates that a large proportion of reference
planes is not covered by any plane in the extraction results, thus
it shows that certain roof parts are not reconstructed at all. A
low correctness indicates that many reconstructed roof planes
have no correspondence in the reference at all, i.e., they corre-
spond to other objects than roofs. This metric requires an area
threshold, and consequently the results will depend on this
threshold. See also the discussion in the context of object detec-
tion (Rutzinger et al., 2009).
� Comp10, Corr10 and Q10: completeness, correctness and quality

determined on a per-roof-plane level, but only considering roof
planes larger than 10 m2, again to analyse the dependency of
these indicators on the object size.
� N1:M/NN:1/NN:M: These numbers are related to differences in the

topologies of the extracted roof planes and the reference. N1:M is
the number of instances where 1:M relations between roof
planes in the reference and planes in the reconstruction results
occur, thus indicating over-segmentation. Similarly, NN:1 counts
the number of N:1 relations and is an indicator for under-seg-
mentation. Finally, NN:M is the number of N:M relations between
roof planes in the reference and planes in the reconstruction
results. It indicates clusters of planes that are both over- and
under-segmented. These numbers thus also reflect the quality
of the roof plane segmentation.
� RMSXY: The geometrical error in planimetry was evaluated in a

similar way as for object detection. We determined the RMS
errors of the planimetric distances of the reference roof plane
boundary points to their nearest neighbours on the correspond-
ing extracted roof plane boundaries.
� RMSZ: The RMS errors of the height differences are derived by

comparing two synthetic DSMs generated from the 3D building
models. RMSZ is based on the height differences between the
reference planes and all corresponding extracted planes. Thus,
it also includes a component due to segmentation errors. In a
2.5D setting, disregarding the uncertainties of the ground
heights and assuming grid-based processing, negative height
errors would correspond to false negative and positive height
errors to false positive volumes in the evaluation scheme by
Meidow and Schuster (2005). By using the geometrical measure
we do not differentiate between these error types, but give an
overall measure for the deviations between the two models.

4. Methods

4.1. Task 1: urban object detection

Results of 27 different methods were submitted for this task; an
overview can be seen in Table 1. To our knowledge, all methods
worked fully automatically in the sense that there was no user
interaction in the course of the classification/segmentation/detec-
tion steps apart from selecting model parameters or determining
training data off-line, and that the output of the method was not
subject to any manual intervention such as post-editing. We cate-
gorise the methods according to three criteria (note that we write
the number of participants that fit into a specific category in brack-
ets behind each definition):

(1) Data used by the participants (column T in Table 1): Here we
distinguish five groups of methods:

� P: methods solely using the original ALS point cloud as

input, sometimes using a Triangulated Irregular Network
(TIN) to represent the DSM (8 methods).

� D: methods using an ALS-based DSM grid (3 methods).
� DO: methods combining a grid-based DSM from ALS with

an orthophoto (10 methods).
� I: methods solely based on images (4 methods). Note that

all of them also use a DSM generated from these images.
The criterion is that no ALS data were used.

� PI: methods exploiting the original ALS points and the
original images (i.e., no orthophotos as in DO) (2
methods).



Table 1
Overview of the detection methods. T: Data type used; ID: Identifier of the method used in this paper. Researcher/Affiliation: name and affiliation of the person submitting the
results. Strat: Detection strategy. Pr: Primitives classified in detection. Res: type of results submitted by the respective method; B: buildings; T: trees. Reference: a reference where
the method is described. Please refer to the main text for an explanation of the abbreviations in columns T, Strat, Pr and Res.

T ID Researcher Affiliation Strat Pr Res Reference

P UMTA L. Feng Univ. Mining Tech., China MOD P B (ISPRS, 2013)
UMTP L. Feng Univ. Mining Tech., China MOD P B (ISPRS, 2013)
MON M. Awrangjeb Monash Univ., Australia MOD PS B (ISPRS, 2013)
VSK P. Dorninger TU Vienna, Austria MOD S B (Dorninger and Pfeifer, 2008)
WHUY1 B. Yang Wuhan Univ., China SAM P B (Yang et al., 2013)
WHUY2 B. Yang Wuhan Univ., China SAM P B (ISPRS, 2013)
HANC1 J. Niemeyer Univ. of Hannover, Germany SUP P B + T (Niemeyer et al., 2011)
HANC2 J. Niemeyer Univ. of Hannover, Germany SUP P B + T (Niemeyer et al., 2013)

D MAR1 D. Mongus Univ. of Maribor, Slovenia MOD S B (Mongus et al., 2013)
MAR2 D. Mongus Univ. of Maribor, Slovenia MOD S B (Mongus et al., 2014)
TON C. Liu Tonji Univ., China MOD S B (Liu et al., 2012)

I DLR T. Bucher German Aerospace, Germany MOD S B + T (ISPRS, 2013)
FIE D. Bulatov Fraunhofer Inst., Germany MOD P B (Bulatov et al., 2014)
HAND F. Rottensteiner Univ. of Hannover, Germany MOD P B (Rottensteiner et al., 2007)
RMA C. Beumier Royal Military Ac., Belgium MOD P B (ISPRS, 2013)

DO MEL M. Awrangjeb Univ. of Melbourne, Australia MOD PS B (Awrangjeb et al., 2012)
CAL1 A. Moussa Univ. of Calgary, Canada MOD S B + T (Moussa and El-Sheimy, 2012)
CAL2 A. Moussa Univ. of Calgary, Canada MOD S B + T (ISPRS, 2013)
LJU1 D. Grigillo Univ. of Ljubljana, Slovenia MOD S B + T (Grigillo and Kanjir, 2012)
LJU2 D. Grigillo Univ. of Ljubljana, Slovenia MOD S B + T (ISPRS, 2013)
TEH F. Mahmoudi Univ. of Tehran, Iran MOD S B + T (ISPRS, 2013)
KNTU A. Zarea K.N. Toosi Univ., Iran SUP P B + T (ISPRS, 2013)
TUM W. Yao TU Munich, Germany SUP P B + T (Wei et al., 2012)
WHUZ Q. Zhan Wuhan Univ., China SUP P B + T (Zhan et al., 2012)
ZJU D. Chai Zejiang Univ., China SUP P B (ISPRS, 2013)

PI ITCM M. Gerke ITC, The Netherlands MOD S B + T (Gerke and Xiao, 2014)
ITCR M. Gerke ITC, The Netherlands SUP S B + T (Gerke and Xiao, 2014)
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(2) Main processing strategy (column Strat in Table 1): Here we
distinguish three groups of methods:

� MOD: approaches are predominately model-based, by

which we mean that in some way they are based on
an explicit model of the appearance of the objects
in the data and that they do not use training (18
methods).

� SUP: approaches applying a supervised classification
methodology based on training data and some (probabi-
listic or non-probabilistic) classifier trained on them (7
methods).

� SAM: methods based on statistical sampling, using heu-
ristic models for the energy functions (2 methods).
(3) Primitives that are primarily classified (column Pr in
Table 1):

� P: methods classifying image or DSM pixels or ALS points

(13 methods).
� S: methods classifying image or point cloud segments (12

methods).
� PS: methods in which pixel- and point-based processing

is equally important (2 methods).
As far as the results (column Res in Table 1) are concerned, four-
teen methods only delivered buildings and thirteen delivered both
buildings and trees. Most participants only delivered results for
Vaihingen (and some only for one or two of the test areas). For Tor-
onto we only received seven submissions, all of them only deliver-
ing building outlines. For lack of space, no descriptions of the
methods can be provided here. The reader is referred to the refer-
ences given in Table 1. Note that reference (ISPRS, 2013), the web
site of the test, might only contain the short descriptions supplied
by the test participants.
4.2. Task 2: 3D building reconstruction

For this task, results obtained by 14 different methods were
submitted (cf. Table 2). We categorised the approaches accord-
ing to the input data in the same way as the detection methods
(cf. Section 4.1). In this case, the vast majority (10) relies on
the original ALS points, usually in a TIN (P). One method is
based on a raster DSM from ALS (D) and another one combines
the images with the original ALS points (PI). Two methods so-
lely rely on images (I) in the sense described in Section 4.1.
In addition, we categorised the methods according to two
criteria:

(1) Degree of automation (column Au in Table 2):

� F: methods working fully automatically according to the

criteria defined in Section 4.1 (12 methods).
� S: semi-automatic methods, i.e. methods relying on some

human intervention beyond the selection of processing
parameters or the generation of training data (2
methods).
(2) Building model applied in reconstruction (column M in
Table 2):

� P: building reconstruction based on primitives (1

method).
� G: generic (usually polyhedral) building models (8

methods).
� A: The submissions from ITC pursue an adaptive strategy,

using pre-defined models but allowing variable influence
of these models in the reconstruction process (5 methods).
Again, the reader is referred to the publications cited in the ta-
ble for more information about the individual methods.



Table 2
Overview of the reconstruction methods. T: Data type used; ID: Identifier of the method used in this paper. Researcher/Affiliation: name and affiliation of the person submitting the
results. Au: level of automation in reconstruction (Fully/Semi-automatic). M: Type of model used for reconstruction: Generic, Primitive, Adaptive. Reference: a reference where the
method is described. Please refer to the main text for an explanation of the abbreviations in column T.

T ID Researcher Affiliation Au M Reference

P MON M. Awrangjeb Monash Univ., Australia F G (ISPRS, 2013)
VSK P. Dorninger TU Vienna, Austria F G (Dorninger and Pfeifer, 2008)
ITCE1 S. Oude Elberink ITC, The Netherlands F A (Oude Elberink and Vosselman, 2009, 2011)
ITCE2 S. Oude Elberink ITC, The Netherlands F A (Oude Elberink and Vosselman, 2009, 2011)
ITCX1 B. Xiong ITC, The Netherlands S A (Xiong et al., 2014)
ITCX2 B. Xiong ITC, The Netherlands F A (Xiong et al., 2014)
ITCX3 B. Xiong ITC, The Netherlands F A (Xiong et al., 2014)
CAS Y. Xiao Chinese Acad. Sc. F G (ISPRS, 2013)
TUD S. Perera TU Dresden, Germany F G (Perera et al., 2014)
YOR G. Sohn York University, Canada F G (Sohn et al., 2008, 2012)

D KNTU A. Zarea K.N. Toosi Univ., Iran F G (ISPRS, 2013)

I FIE D. Bulatov Fraunhofer Inst., Germany F G (Bulatov et al., 2014)
CKU J.-Y. Rau N. Cheng-Kung U., Taiwan S G (Rau and Lin, 2011)

PI BNU W. Zhang Beijing N. Univ., China F P (Zhang et al., 2011)
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5. Results and discussion

Here we provide a detailed analysis of the results submitted to
the benchmark. Note that tables with quality indices for the indi-
vidual test areas 1–5 are omitted here for lack of space; they can
be found on the web site of the test (ISPRS, 2013). Instead we refer
to average values for the Vaihingen and the Toronto data.
5.1. Task 1: urban object detection

5.1.1. Building detection
5.1.1.1. Vaihingen: results. Table 3 shows the average quality met-
rics achieved for the Vaihingen test site. These numbers measure
the average building detection performance for three different
types of urban development. Note that TEH only delivered results
for area 1 and FIE only for area 3. For LJU2 we did not receive re-
sults for area 2. All the other methods submitted results for all
three areas.

Looking at Table 3, one can see that 13 methods achieve an
area-based completeness Compar larger than 90%, whereas the cor-
rectness Corrar is larger than 90% for 20 techniques. There are only
five methods either having an area-based completeness or an area-
based correctness below 85%. The best trade-off between false pos-
itives and false negatives is achieved by DLR, ZJU, LJU1 and LJU2,
who have similar average quality values Qar > 89%. For the amount
of work that can be saved by automatic building detection, the ob-
ject-based quality indices may be more relevant. The best method
in terms of average object-based completeness is LJU2, but it still
misses on average about 12% of the buildings in the three areas.
HANC2 is the only other method achieving Compobj > 85%. Most
of the methods deliver very few false positive buildings: six meth-
ods do not deliver a single false positive building in any of the three
scenes, and Corrobj is larger than 90% for 19 methods. There are
only four methods achieving an average quality Qobj larger than
80%, LJU2 being the only one achieving Qobj > 85%. However, there
are also methods with Qobj < 50%. In general, the object-based com-
pleteness is smaller than the area-based one, which is caused by
small buildings missed by all methods. If only buildings larger than
50 m2 are considered (i.e., 76% of the buildings in Vaihingen), we
see that eight methods deliver all such buildings without a single
false positive (Comp50 = Corr50 = 100%). Only three methods miss
on average more than 5% of the buildings larger than 50 m2

(Comp50 < 95%), and only two produce more than 5% false positives
(Corr50 < 95%). The average RMS errors are all larger than 0.60 m,
which corresponds to about 1.5 times the average point spacing
of the ALS data or to 8 times the GSD of the images. Whereas this
would be what one might expect for ALS-based methods, the geo-
metrical potential of the images is certainly not yet fully exploited
by any of the image-based methods.

Area 1 provides the most difficult setting for most methods; the
area-based quality measures and the geometrical accuracy in gen-
eral are a bit lower than for areas 2 and 3 (ISPRS, 2013). In area 1
we can identify two common reasons for detection errors (cf. Fig. 1
for some examples). Firstly, none of the methods can detect small
buildings. Secondly, all methods seem to have problems with com-
plex roof structures comprising roof parts at different height levels
(Fig. 1d). This is particularly the case if some of these roof parts
(usually lower appendices to large buildings) are relatively small
and/or affected by shadow (Fig. 1b) or in the presence of roof decks.
The situation is aggravated by objects on the roof decks (Fig. 1c) or
if there are different terrain heights at opposite sides of the roof
(Fig. 1a). Some of the methods over-estimate the building size in
such scenarios, but most of them will miss some of the building
parts. In any case, large height differences both within buildings
and at building boundaries seem to make a correct separation of
buildings from the terrain difficult. A specific problem of HANC1
and HANC2, solely based on ALS points, is the generation of a rel-
atively high false positive rate due to a confusion of trees having
smooth canopies with buildings (Fig. 1e). MAR1 and MAR2, both
based on morphological profiles, seem to have problems with inner
courtyards (Fig. 1f).

The most favourable conditions are encountered in area 2,
although the object-based quality measures are affected by the
low number of buildings in that area. This is the area where the
highest percentage of methods can detect all buildings larger than
50 m2 without producing a false positive of that size (Comp50 =
Corr50 = 100%) (ISPRS, 2013). It would seem that in area 2, the
clearer structure of the building outlines compared to area 1 has
a positive impact on the geometrical quality of the results, indi-
cated by RMS values that are better than the average. We can iden-
tify three major error sources in area 2, two of them affecting all
methods. As in area 1, small buildings cannot be detected reliably
by any method. Secondly, there is one flat roof part covered by veg-
etation that is not detected by any of the methods (cf. Fig. 2a). It is
also very low, being the roof of a basement whose floor is below
the terrain level. Thirdly, some of the methods produce a rather
large rate of false positive buildings that actually correspond to
high trees. The reasons for this may be different depending on
the specific situation or on the method: sometimes the error seems
to be related to shadows and matching errors next to buildings
(e.g. HAND; cf. Fig. 2b), in other cases it is caused by the smooth



Table 3
Evaluation of the building detection results in Vaihingen: average of areas 1–3. The quality metrics are explained in Section 3.1. Data types (T) and identifiers (ID) are identical to
those in Table 1. The best values per column are printed in bold font.

T ID Area-based (%) Object-based (%) Object-based (50 m2) (%) RMS (m)

Compar Corrar Qar Compobj Corrobj Qobj Comp50 Corr50 Q50

P UMTA 92.3 87.5 81.5 80.0 98.6 79.1 99.1 100.0 99.1 0.87
UMTP 92.4 86.0 80.3 80.9 95.8 78.1 98.8 97.2 96.0 0.97
MON 92.7 88.7 82.8 82.7 93.1 77.7 99.1 100.0 99.1 0.93
VSK 85.8 98.4 84.6 79.7 100.0 79.7 97.9 100.0 97.9 0.87
WHUY1 87.3 91.6 80.8 77.6 98.1 76.5 97.4 97.9 95.4 0.83
WHUY2 89.7 90.9 82.3 83.0 97.5 81.3 99.1 98.0 97.2 0.90
HANC1 91.5 92.5 85.2 81.5 72.7 62.4 100.0 95.8 95.8 0.67
HANC2 90.2 93.2 84.6 85.1 69.6 61.9 100.0 100.0 100.0 0.83

D MAR1 87.0 97.1 84.8 78.2 96.2 75.7 99.1 100.0 99.1 0.83
MAR2 89.7 95.2 85.8 80.6 93.7 76.5 99.1 98.9 98.0 0.83
TON 77.7 97.7 76.3 67.5 98.9 66.9 92.7 98.8 91.6 0.90

I DLR 93.3 96.0 89.8 80.3 99.0 79.6 100.0 100.0 100.0 0.73
FIE 89.0 86.9 78.5 78.6 100.0 78.6 100.0 100.0 100.0 1.20
HAND 93.6 90.3 85.0 80.3 88.8 73.0 97.4 97.2 94.6 0.83
RMA 92.8 90.2 84.2 82.7 81.0 68.1 100.0 100.0 100.0 0.90

DO MEL 88.0 79.2 71.4 75.9 76.1 59.7 97.4 81.3 78.8 1.10
CAL1 89.8 95.1 85.8 76.2 100.0 76.2 96.5 100.0 96.5 0.73
CAL2 89.2 97.2 87.0 78.2 100.0 78.2 100.0 100.0 100.0 0.77
LJU1 94.2 94.6 89.4 83.0 100.0 83.0 100.0 100.0 100.0 0.73
LJU2 94.6 94.4 89.5 87.9 100.0 87.9 100.0 100.0 100.0 0.75
TEH 76.7 93.8 73.0 75.7 90.3 70.0 85.7 100.0 85.7 1.00
KNTU 87.7 93.5 82.6 80.9 93.4 76.5 100.0 100.0 100.0 0.93
TUM 89.7 92.9 83.9 80.9 99.0 80.2 99.1 100.0 99.1 1.03
WHUZ 80.3 89.5 73.2 66.6 55.0 42.0 83.6 95.7 80.7 1.10
ZJU 92.8 96.4 89.7 76.4 97.0 74.8 99.1 100.0 99.1 0.63

PI ITCM 92.7 80.9 75.9 84.8 51.2 47.1 99.1 88.9 88.0 1.13
ITCR 91.4 90.6 83.5 80.0 70.6 60.0 98.2 100.0 98.2 0.93

Average areas 1–3 (107 buildings)
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appearance of tree canopies in the ALS point clouds (e.g. HANC1,
HANC2, similar as in area 1).

In area 3, the area-based quality indices and the RMS errors are
similar to area 2, but it has the lowest percentage of methods
achieving Comp50 = Corr50 = 100% (ISPRS, 2013). This seems to be
related to the fact that in this suburban setting, the separation be-
tween vegetation (which is more abundant than in area 1) and
buildings (which are not as clearly structured as in area 2) becomes
difficult. As in areas 1 and 2, small buildings are missed by all
methods, but here the situation is aggravated by vegetation next
to these buildings (Fig. 3a). Large trees next to buildings create
problems for some methods based on the segmentation of the
DSM (Fig. 3b). The fact that the data were collected under leave-
on conditions also leads to an increased false positive rate for some
of the ALS-based techniques. Techniques based solely on images do
also use DSMs, in this case derived by image matching, and the
quality of the matching results directly affects building detection.
Fig. 3c shows a typical example where a DSM error leads to a
missed building. Though this specific error only occurs with HAND
(which uses its own technique for generating a DSM), the other
purely image-based methods have similar problems in areas where
their matcher delivers wrong results. Fig. 3d shows a building with
a very low ALS point density that is missed by most of the ALS-
based methods and also by some methods that combine ALS and
image data. The situation can be overcome by methods based on
a contextual classification such as HANC2.

The individual methods have problems with different situa-
tions, all of them having their own strengths and weaknesses.
Nearly all situations that are critical for some techniques are cor-
rectly resolved by at least one other method, with two exceptions:
Firstly, all methods fail to deliver very small buildings, so this
seems to be a common weakness of current building detection
techniques. Secondly, all methods fail with the situation in
Fig. 2a, that is with the roof of a basement that is also covered
by vegetation. This is a rather tricky situation, because the reflect-
ing material actually is ‘‘low vegetation’’, but in the context of
building detection one would expect this region to be classified
as a building part. Current methods do not seem to be able to cope
with such ambiguous situations. Nevertheless one can say that
most state-of-the-art methods are suitable for detecting the largest
buildings on a block of land very reliably. However, the geometrical
quality of the outlines is somewhat questionable. The RMS errors
are relatively large in general, and there are also outliers and very
irregular shapes of some building outlines that would require man-
ual post-editing even for topographic databases corresponding to
medium mapping scales. Applications such as updating of the
cadastre, requiring a very high accuracy and a very high level of de-
tail and, thus, also the detection of small buildings, do not seem to
be feasible in a fully automatic way yet.

5.1.1.2. Vaihingen: comparison of the potential of different input data
sets and processing strategies. An interesting question arising from
this test is whether there are differences in the potential of differ-
ent input data sets and processing strategies for urban object
detection. Table 4 shows the average quality metrics achieved for
all methods using the same input data sets, along with their stan-
dard deviations. An important point is that the quality of the re-
sults shows more variation within each data set group than
between the groups. For instance, the average area-based quality
varies between 79.7% for methods using the ALS points and the ori-
ginal images (PI) and 84.4% for methods combining a DSM grid
from ALS and an orthophoto (DO). The difference between these
values is 4.7%, but the variation of the quality of the results within
the respective data set groups, expressed by the standard devia-
tions in Table 4, is 5.3% and 4.6%, respectively. Therefore, the differ-
ence between groups relying of different input data sets is hardly



(a) HANC1 (b) HANC1
 

(c) HANC1

(d) RMA (e) HANC1 (f) MAR1

Fig. 1. Typical situations causing errors in area 1. (a) Horizontal roof-deck with different terrain height levels to the east and to the west. (b) Small roof appendix in the
shadow of trees. (c) Roof deck with objects on top of it. (d) Complex shape, including many small roof planes and a roof deck. These errors also occur with other methods than
those shown in the figure. Specific problems of some methods: (e) Dense tree canopies (HANC1, HANC2). (f): Inner courtyards (MAR1, MAR2).

(a) LJU1 (b) HAND 

Fig. 2. Typical situations causing errors in area 2. (a): Roof of a basement covered by vegetation (not detected by any method). (b) A tree in the shadow causing problems for
the image-based method HAND.
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significant. The same applies to the other quality measures, includ-
ing the geometrical errors. Most of the six methods achieving the
highest average area-based quality Qar use a DSM grid from ALS
and an orthophoto (DO), but this list also includes methods based
on images (I) and a DSM grid from ALS (D). The six techniques
achieving the lowest average area-based quality Qar also include
methods based on combinations of ALS and image data (DO and
PI), on a DSM from ALS (D) and on images (I). It would seem that
this comparison remains inconclusive: methods that do include
images may have a slight advantage over methods not using them
in terms of the area that is classified correctly, but the quality of
the results seems to be much more influenced by the specific tech-
nique that is used by the participants. More specifically, the prob-
lems still encountered in building detection today are such that the
advantage of images in terms of GSD and radiometric content does
not seem to give a method a crucial advantage that could not be
achieved without that data source. In general, the geometrical
accuracy is on the level that can be expected for methods based
on ALS data for the best methods. It does come as a bit of a surprise
that using images of 8 cm GSD does not lead to an improvement of
the geometry of the resulting models. This may be due to the fact
that in all cases except ITCM and ITCR an orthophoto was the basis
of the image information. We do not know how the orthophoto
was generated in most cases; if generated on the basis of a DTM,
it would contain systematic displacements of the roof outlines,
whereas if based on a DSM, it would be blurred due to geometrical
errors of the DSM at building outlines. Using the original images
might be a strategy to improve the geometrical quality of building
outlines, but it would require more sophisticated processing tech-
niques as they are applied in 3D reconstruction. Generally, the re-
sults of our test suggest that none of the methods fully exploits the
information contained within the optical images of 8 cm GSD.

We also compared the average quality metrics achieved for
Vaihingen for different processing strategies (Table 5). We distin-
guish methods that are primarily supervised, model-based, or
based on statistical sampling (cf. Section 4.1). Again, the variations
within each group are much larger than the variations between the
groups. The best five methods in terms of area-based quality (Qar)
comprise four model-based and one supervised technique,
whereas among the methods achieving the five lowest Qar values
there are two supervised and three model-based ones. This com-
parison is also inconclusive based on the information that is acces-
sible to us. The three general strategies seem to have a similar
quality potential in building detection. We do not know the
amount of time required for parameter tuning in model-based
methods, or the amount of work required for generating the train-
ing data in supervised methods, considerations that may still lead
to preferring one strategy over the other. The second aspect of the
processing strategy is whether the method is based on a classifica-
tion of individual pixels/points or on an initial segmentation (e.g.,
of the DSM). Table 6 gives average quality metrics for Vaihingen
for methods primarily classifying pixels or points (P), segments



(a) TUM (b) CAL1 

(c) HAND (d) VSK 

Fig. 3. Typical situations causing errors in area 3. These errors also occur with other methods than those shown in the figure. (a): Small building, interacting with vegetation.
(b) High vegetation next to a building (missed by segment-based methods CAL1, TON). (c) A matching error leading to a missed building in HAND. (d) A roof with very few
returns that is missed by several ALS-based techniques.
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(S), or combining both aspects (P + S). Again, the differences be-
tween the groups are smaller than the variations within each
group. Looking at the five methods having the highest Qar values,
segment-based methods seem to dominate, but there is also one
pixel-based technique. The methods achieving the five lowest Qar

values include techniques from each of the three groups.
5.1.1.3. Toronto: results. The average quality measures for the Tor-
onto data set (areas 4 and 5) are shown in Table 7. Results for
the individual areas can be found in (ISPRS, 2013). Note that FIE
only delivered results for area 4. All the other methods listed in Ta-
ble 7 submitted results for both areas in Toronto.

In Toronto, the area-based metrics are in a similar range as in
Vaihingen. Four methods achieve both a completeness and a cor-
rectness larger than 90% and, consequently, also Qar values larger
than 85%. In general, there are fewer small buildings in both areas:
in area 4, only 2% and in area 5 only 8% of the buildings are smaller
than 50 m2. Consequently, the difference between object-based
and area-based completeness is not as high as in Vaihingen and
the object-based quality measures are in general somewhat larger.
Despite being in the CBD of Toronto, the number of buildings
smaller than 50 m2 is larger in area 5 than in area 4. As many of
these small buildings are missed by all methods, slightly smaller
Table 4
Average quality metrics and their standard deviations as a function of the original
input data for building detection (areas 1–3). P: ALS points or TIN; D: DSM grid from
ALS; I: images only; DO: DSM grid from ALS and orthophoto; PI: original ALS points
and images. The numbers in parenthesis are the number of submissions per group.

P (8) D (3) I (4) DO (10) PI (2)

Compar (%) 90.3 ± 2.6 84.8 ± 6.3 92.2 ± 2.1 88.3 ± 5.8 92.1 ± 0.9
Corrar (%) 91.1 ± 3.9 96.7 ± 1.3 90.9 ± 3.8 92.7 ± 5.2 85.7 ± 6.9
Qar (%) 82.8 ± 1.9 82.3 ± 5.2 84.4 ± 4.6 82.6 ± 7.3 79.7 ± 5.3
Compobj (%) 81.3 ± 2.3 75.5 ± 7.0 80.5 ± 1.7 78.2 ± 5.6 82.4 ± 3.4
Corrobj (%) 90.7 ± 12.2 96.3 ± 2.6 92.2 ± 9.0 91.1 ± 14.7 60.9 ± 13.8
Qobj (%) 74.6 ± 7.8 73.0 ± 5.3 74.8 ± 5.3 72.8 ± 13.2 53.5 ± 9.1
Comp50 (%) 98.9 ± 0.9 97.0 ± 3.7 99.3 ± 1.3 96.1 ± 6.2 98.7 ± 0.6
Corr50 (%) 98.6 ± 1.6 99.2 ± 0.7 99.3 ± 1.4 97.7 ± 5.9 94.5 ± 7.8
Q50 (%) 97.6 ± 1.7 96.2 ± 4.1 98.7 ± 2.7 94.0 ± 8.7 93.1 ± 7.2
RMS (m) 0.86 ± 0.09 0.86 ± 0.04 0.92 ± 0.20 0.88 ± 0.17 1.03 ± 0.14
object-based completeness values are achieved in area 5 compared
to area 4 (ISPRS, 2013). Three methods for which results were sub-
mitted for both Toronto areas achieved an average object-based
quality larger than 80% (FIE achieved 96.6%, but only submitted re-
sults for the simpler scenario in area 4). ITCR and ITCM deliver
many false positives, but most of them are smaller than 50 m2.
As a consequence, these two methods are the only ones who
achieve much better correctness for objects larger than that
threshold (Corr50). For all other methods, the differences between
quality measures for all objects and those achieved considering
only buildings larger than 50 m2 are relatively small, the largest
proportion of the effect occurring with area 5 for the reason ex-
plained above. The RMS errors are slightly larger than in Vaihingen
(0.8–2.1 m). The mismatch between ALS and images, caused by the
fact that the datasets were acquired in different vegetation periods,
explains the large errors from ITCR and ITCM because those meth-
ods rely on good colour information for the separation of sealed
and vegetated areas. The RMS errors are in a similar range in both
areas, except for MAR2, which delivers results that are better by a
factor 2 in area 5 than in area 4 (ISPRS, 2013).

Despite the fact that the percentage of small objects is lower in
Toronto than in Vaihingen, the problems in detecting small objects
exist as well. Unlike in Vaihingen, no method is capable of detect-
ing all buildings larger than 50 m2 or delivering no false positives
larger than 50 m2. Partly this may be attributed to the fact that
the data set in Toronto is larger, but there are also some specific
problems. The first major problem is occlusion (in case images
are used; cf. Fig. 4a), which is more prominent here due to the lack
of a multi-image configuration and a much higher parallax range.
There are also problems with buildings having very different
height levels, but in addition there is a much larger variation in
the average building height, which may be the reason why the rel-
atively low buildings in Fig. 4b and c are missed by some super-
vised methods. In Fig. 4c, the situation is aggravated by the
shadow, which gives this low building a rather different radiomet-
ric appearance than the other ones. It is worth noting that despite
the challenges for image matching in this scenario, one method
(FIE) is based entirely on images and produces rather good results
in area 4. Again, the geometrical potential of image data is not
exploited by any of the methods, the average RMS errors being



Table 5
Average quality metrics and their standard deviations as a function of the processing
strategies for building detection (areas 1–3). The numbers in parenthesis are the
number of submissions per group.

Supervised
(SUP) (7)

Model-based
(MOD) (18)

Sampling
(SAM) (2)

Compar (%) 89.3 ± 4.4 89.5 ± 5.1 88.5 ± 1.7
Corrar (%) 91.3 ± 5.0 92.2 ± 5.1 91.2 ± 0.5
Qar (%) 82.2 ± 5.7 83.0 ± 5.3 81.6 ± 1.0
Compobj (%) 79.5 ± 6.4 79.4 ± 4.2 80.3 ± 3.8
Corrobj (%) 76.9 ± 19.9 93.5 ± 9.0 97.8 ± 0.4
Qobj (%) 63.5 ± 14.8 74.9 ± 7.4 78.9 ± 3.4
Comp50 (%) 97.3 ± 6.0 97.8 ± 3.5 98.3 ± 1.2
Corr50 (%) 97.2 ± 4.2 98.5 ± 4.4 98.0 ± 0.1
Q50 (%) 94.7 ± 7.5 96.4 ± 5.7 96.3 ± 1.3
RMS (m) 0.90 ± 0.20 0.88 ± 0.13 0.87 ± 0.05
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5–14 times larger than the GSD of 15 cm; the best ALS-based tech-
niques are in the order of three times the average point spacing,
thus coming closer to the inherent potential of these data.
5.1.1.4. Building detection: discussion. In their paper on the EuroSDR
test for road extraction, Mayer et al. (2006) claimed that a com-
pleteness of 70% and a correctness of 85% are required for object
detection techniques to become of practical importance. Our eval-
uation shows that these quality measures can be achieved by most
of the building detection techniques. It would seem that auto-
mated building detection for topographic mapping is relatively
mature and can deliver very reliable results for the main buildings
on a plot of land, at least if only the existence of a building is to be
shown. The situation is much less favourable if small buildings are
of interest or if a very precise delineation of the buildings is re-
quired, as it would be the case for large scale maps such as the
cadastre. A comparison of the use of different input data or pro-
cessing techniques remained inconclusive. However, many of the
compared methods did require an NDVI, so they could not be ap-
plied to the Toronto data. We have to note that some methods
delivered rather good results for Toronto given the reduced resolu-
tion and the fact that the images did not contain an infrared band,
perhaps because height is rather discriminative there.

The question remains where to spend additional research to
further advance the state-of-the-art of building detection beyond
what can already be achieved by the best methods compared in
this paper. As all methods had problems with small buildings inde-
pendently from the data set, this would be one obvious direction.
Here, methods based on ALS in the resolution given in this bench-
mark may reach their limits, but image-based methods should be
capable to deliver this information given a GSD of 8 or 15 cm. It
Table 6
Average quality metrics and their standard deviations as a function of the primitives
that are classified in building detection (areas 1–3). P: ALS points or (DSM or image)
pixels; S: Segments; P + S: Pixels and segments. The numbers in parenthesis are the
number of submissions per group.

P (13) S (12) P + S (2)

Compar (%) 90.0 ± 3.5 91.4 ± 3.0 90.4 ± 3.3
Corrar (%) 90.9 ± 2.9 91.9 ± 6.2 84.0 ± 6.7
Qar (%) 82.5 ± 4.0 84.5 ± 5.7 77.1 ± 8.1
Compobj (%) 79.6 ± 4.5 81.1 ± 3.9 79.3 ± 4.8
Corrobj (%) 88.2 ± 14.3 88.2 ± 19.5 84.6 ± 12.0
Qobj (%) 71.7 ± 11.0 72.5 ± 14.1 68.7 ± 12.7
Comp50 (%) 98.0 ± 4.4 99.2 ± 0.9 98.3 ± 1.2
Corr50 (%) 98.6 ± 1.7 98.4 ± 4.2 90.7 ± 13.2
Q50 (%) 96.7 ± 5.2 97.6 ± 4.3 89.0 ± 14.4
RMS (m) 0.90 ± 0.16 0.89 ± 0.21 1.02 ± 0.12
would seem that one of the bottlenecks is the matching required
for obtaining a DSM: in the presence of wide baselines and object
planes that are not nearly parallel to the image planes, but also in
shadow areas, state-of-the-art dense matching still encounters
problems. Thus, work to improve dense matchers for such scenar-
ios might also improve the prospects of building detection. An
analysis involving multiple images might help as well, in particular
if they include views from oblique angles: if information about the
walls were included in the process (which is not done by any of the
compared methods), there might be more direct cues for detecting
small building structures. This would involve a high-level process-
ing stage in which the results from multiple views are merged.
Such a strategy might also help to solve ambiguous situations with
vegetation on roofs. In order to improve the geometrical quality of
the outlines, it would seem to be necessary to include the original
aerial images into the process. The required processes could, for in-
stance, try to detect 3D lines by matching image lines from multi-
ple images, comparing these lines with the coarse outlines
delivered by current methods. Finally, different strategies for pri-
mary data acquisition may also help to advance the state-of-the-
art. Multiple-overlap imagery is required in densely built-up areas,
anyway, in order to avoid occlusions. In addition, the potential of
oblique airborne imagery for automated object detection still re-
mains to be investigated.

5.1.2. Tree detection
This section is entirely based on the Vaihingen data because no

results for tree detection were submitted for Toronto so far.

5.1.2.1. Results. The average evaluation results for areas 1–3 are
shown in Table 8. For TEH we only received results for area 1,
whereas all other participants submitted results for all three areas.
This analysis will concentrate on the object-based metrics, because
they are less affected by generalisation errors in the reference than
the area-based ones. The RMS errors of all methods are in the order
of 1.3–1.6 m.

Looking at Table 8, one can see that tree detection has a much
lower success rate than building detection. Only five methods
achieve both object-based completeness and correctness values
larger than 50%. The best trade-off and, thus, the best object-based
quality Qobj is achieved by KNTU, but it is still below 50%. CAL2 and
TUM achieve similar values in the order of 48–50%. The situation is
better for trees larger than 50 m2, though the improvement is
smaller than in case of buildings. In this case, TUM clearly outper-
forms the other methods, detecting 93.2% of the trees larger than
50 m2 while delivering very few (1.7%) false positives. These num-
bers clearly show the limitations of current methods for tree detec-
tion. If we adopt the criteria for practical relevance by Mayer et al.
(2006), we see that eight methods can be relevant for detecting
trees larger than 50 m2. However, trees smaller than that cannot
be detected reliably by any of the methods compared. This is even
more critical because only about 13% of the trees in the Vaihingen
data set have a crown larger than 50 m2, so that the problems of
current methods affect the majority of the trees in such scenes.

In all areas, crown size is an important factor leading to detec-
tion errors. As the proportion of small trees is larger than the pro-
portion of small buildings in a scene, this heavily affects the
performance of all compared methods. In area 1 an additional rea-
son for failure is the vicinity of complex terrain, causing the failure
of several methods to detect the trees indicated by the arrow in
Fig. 5a. HANC1 and HANC2 additionally suffer from a confusion
of trees and buildings discussed in Section 5.1.1. The results for
area 2 are somewhat better than those for areas 1 and 3 because
it contains larger trees (ISPRS, 2013). In addition to the error
sources described for area 1, rows of bushes separating neighbour-
ing plots of land frequently lead to false positives (Fig. 5b). Area 3 is



Table 7
Evaluation of the building detection results in Toronto: average of areas 4–5. The quality metrics are explained in Section 3.1. Data types (T) and identifiers (ID) are identical to
those in Table 1. The best values per column are printed in bold font.

T ID Area-based (%) Object-based (%) Object-based (50 m2) (%) RMS (m)

Compar Corrar Qar Compobj Corrobj Qobj Comp50 Corr50 Q50

P WHUY2 94.3 91.3 86.5 90.4 95.8 86.8 94.8 95.8 90.9 1.10

D MAR1 96.1 92.1 88.7 98.7 86.8 86.0 98.6 87.6 86.7 0.80
MAR2 94.0 94.3 88.9 91.3 91.9 84.8 95.7 96.8 92.7 2.10

I FIE 96.6 90.6 87.8 98.3 98.2 96.6 100.0 98.2 98.2 1.20
DO TUM 85.1 80.6 70.6 83.9 90.3 77.0 88.2 92.5 82.3 1.60

PI ITCR 75.0 94.5 71.7 79.6 43.5 38.5 83.8 91.8 77.8 1.05
ITCM 76.9 87.5 68.9 86.5 21.7 21.0 89.7 70.5 64.8 1.45

Average areas 4–5 (96 buildings)
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a very complex scenario for tree detection, with a large variety of
trees of different heights and sizes, and including many small trees.
Problems in distinguishing high and low vegetation (e.g. Fig. 5c)
are more dominant here than in the other two areas, whereas there
are no problems due to complex terrain structures.
5.1.2.2. Comparison of the potential of different input data sets and
processing strategies. We compared the average quality numbers
for methods based on the same input data (Table 9), and again,
the results are inconclusive, the variations between the individual
methods of the four groups being in the same order of magnitude
as the differences between the average metrics of the groups. We
do not exactly know why the problems described above actually
do cause the failure of the methods. We suspect that when using
images, matching becomes very difficult with trees, in particular
if the canopy has a complex structure or if the tree is small. For
methods combining ALS and image data, data alignment may be-
come problematic, and for methods solely based on ALS data the
point density might just not be high enough to reliably detect
small trees. In the latter case, confusion between trees and build-
ings due to smooth tree canopies sometimes even prevents the
detection of larger trees.

Similar comparisons were carried out for the average quality
numbers for groups using a similar processing strategy (Table 10)
and to compare pixel-based and segment-based approaches
(Table 11). However, again the comparison remains inconclusive.
Given the evaluation results for Vaihingen, it is impossible to
single out a processing strategy to be more promising than the
others; the quality of the results seems to depend on the
particular method involved. In case of tree detection, the method
by TUM, based on boosting, seems to be the one delivering the
best results.
5.1.2.3. Tree detection: discussion. Our test indicates that the
automatic detection of small trees is a problem that is largely
unsolved and still needs to be tackled by future work. On the one
hand, improved classifiers taking into account more features than
those used in the test could help. The contextual classifiers used
in this text only used context on a very local level. Sampling
techniques may be a way to improve the situation, because they
can propose hypotheses based on a model for the distribution of
objects in a scene; such models could include information about
the typical alignment of trees in built-up regions, e.g. along prop-
erty lines (which might again be aligned with roads or buildings).
With ALS data, the inclusion of full waveform analysis might also
improve the prospects of this task.
5.2. Task 2: 3D building reconstruction

5.2.1. Vaihingen: results
The evaluation of the building reconstruction results for Vaihin-

gen is summarised in Table 12. It gives the average quality indices
for the areas 1–3. Again, the individual tables for the three test
areas are available on the website of the benchmark (ISPRS, 2013).

Overall, 14 participants submitted 3D building reconstruction
results for Vaihingen. Most of them processed all areas. CAS only
provided results for areas 2 and 3 and FIE, BNU and KNTU concen-
trated on area 3.

Whereas the roof-plane based completeness shown in Table 12
shows larger variations between 68.5% (CAS) and 82.8% (ITCX3),
the correctness is above 90% for all methods except for FIE and
MON. If only large roof planes (>10 m2) are considered, the com-
pleteness rises significantly for most methods, only for ITCX1 it re-
mains below 75%. This is a first indication that small roof planes
remain undetected whereas bigger ones are nicely extracted. How-
ever, the correctness increases only marginally for most ap-
proaches, which means that if wrong planes are detected, they
are very likely to be larger than 10 m2. Concerning the quality of
the derived topology we can clearly observe that under-segmenta-
tion (NN:1) is the dominant error type, that is, planes are merged.
However, as we will see below, the topologic quality varies sub-
stantially between the areas indicating that the type of roof archi-
tecture has a significant impact on the results.

The geometric accuracy in the XY plane is worse than the RMSE
value in Z direction for all methods, but overall in the same range:
about 70 cm in planimetry and 30 cm in height. Interestingly, this
observation is also valid across methods using different input data.
More precisely, methods using solely ALS data achieve a RMSE in
XY on the same accuracy level as those based on images although
the latter samples the ground much more densely. Generally,
70 cm amounts to a bit less than twice the ALS point spacing, indi-
cating a high level of maturity of the respective methods. In com-
parison, the aerial images have a GSD of about 8 cm and it thus
seems that not all information contained in this very densely sam-
pled data is exploited by the corresponding methods yet. In the fol-
lowing, we discuss each test area separately because they comprise
different roof types, leading to specific challenges for the recon-
struction methods.

Test area 1 is quite challenging for roof reconstruction ap-
proaches because various roof structures occur, because buildings
are somewhat irregularly distributed, and because there are quite
a few very small roof parts. Nonetheless, all ten submissions
achieve correctness values of roof planes better than 83% and the
majority even shows a correctness higher than 96% (ISPRS, 2013).
Note that the roof-based completeness shows much larger varia-
tions than correctness, which is a hint that most participants have



(a) TUM (b) TUM 

(c) ITCR 

Fig. 4. Typical situations causing errors in areas 4 and 5. These errors also occur with other methods than those shown in the figure: (a) Area 4: occlusion by a skyscraper. (b)
Area 4: a building with a non-representative height and two different height levels. (c) Area 5: another rather low building, additionally affected by the shadow of a nearby
skyscraper.
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tuned their approaches towards achieving a high correctness. The
most complete extraction is given by ITCX3 and YOR (89%)
whereas ITCE1 misses almost 40% of the roof planes. Under-seg-
mentation is the dominant type of topologic error, occurring in
26–42 cases (NN:1) which does not come as a surprise considering
the rather complex roof structures in this area. The situation hardly
changes regarding the quality metrics that take into account only
roof planes larger than 10 m2. This allows inferring that small roof
structures are not a hurdle per se but complex roof architectures
are. The best RMS in XY-plane (0.8 m) is achieved by TUD and
YOR, and has to be seen in relation to the ALS point spacing. Not
surprisingly, the height errors (RMSZ) are smaller than the plani-
metric ones for methods based on ALS, and for this area also the
image-based method CKU shows better height accuracy.

Compared to area 1, roof reconstruction in area 2 seems less chal-
lenging due to several large flat-roofed buildings and less complex
roof structures in general. There is a clear difference between the
quality metrics for all planes and for roof planes larger than 10 m2

for all eleven submissions. It would seem that except for ITCE1, most
large roof planes can be detected and nearly all of them are correct.
Fewer instances of under-segmentation (NN:1 values between 3 and
7) occur, possibly because the roofs have less small structures com-
pared to area 1 as already expected. However, for both variants of
ITCE, all high-rise buildings, which do have several superstructures,
are reconstructed by single planes, demonstrating that this approach
has major problems with complex flat roof buildings. The other
methods produce quite good reconstructions of the main roof struc-
tures; ITCX1 produces a few larger false positive planes at one of the
few smaller residential buildings in this area. Over-segmentation is
quite dominant at large flat-roof building structures for ITCX2, i.e.
without automatic dictionary-based error correction. But once this
technique is applied (ITCX3), those errors are mostly corrected. In
general, both the planimetric and the height accuracy are slightly
worse than in area 1. The main reason for this is that roof boundaries
are not computed as plane intersection as in slanted roofs, but esti-
mated from the single planes.

Similar to area 1, area 3 presents some challenges to reconstruc-
tion because various buildings with gabled roofs and small super-
structures are present in the scene. Consequently, completeness
and correctness values are distributed in a similar way as in area
1 across all 14 submissions. Under-segmentation occurs more fre-
quently than in area 1, which may be explained by a large number
of small attachments to the houses that are erroneously merged
with neighbouring roof planes. On the other hand, and possibly be-
cause of the same reason, over-segmentation is hardly evident.
YOR achieves the overall best results. Two groups using images
only submitted results for this area. Of these groups, CKU shows
quite low completeness values, missing some attachments.

The only method which uses primitive-based reconstruction,
BNU, performs quite well, but has many under-segmentation er-
rors, mostly because small superstructures on roofs are not mod-
elled adequately. FIE does a good job in detecting planes, but
shows the worst planar RMSE values. Generally, the geometrical
errors (RMS, RMSZ) are in the same range as in area 1.

5.2.1.1. Detailed analysis. The different architectural properties of
the three areas allow us to draw several conclusions from the indi-
vidual results. Areas 1 and 3 are similar in the sense that inclined
roofs with small structures such as chimneys are dominant. In both
areas, the completeness and correctness values taking into account
all planes are quite similar to those considering only the planes lar-
ger than 10 m2. This observation, in conjunction with the relatively
large number of under-segmentation errors, indicates that the
presence of small building structures may prevent the correct
detection of the dominant planes. For example, Fig. 6a shows some
missing smaller planes, e.g. the sides of the dormer with the char-
acteristic triangular roof plane, but also missing parts of the two
main planes representing the generalised shape of the building,
which could be considered to be a saddleback roof. This is a typical
example indicating that the problems of current methods with
complex roof structures do not just result in more generalised
models without details, but may lead to models of more irregular
shapes than the reference.

Fig. 6b shows the under-segmentation problem of ITCE1 in area
2. Of course, if the entire roof structure is reconstructed by a single
horizontal plane, the height errors will increase. Fig. 6c shows an
example for over-segmentation of an ALS point cloud: obviously
the points near the ridge of the buildings (where the surface nor-



Table 8
Evaluation of the tree detection results in Vaihingen: average of areas 1–3. The column headings are explained in Section 3.1. Data types (T) and identifiers (ID) are identical to
those in Table 1. The best values per column are printed in bold font.

T ID Area-based (%) Object-based (%) Object-based (50 m2) (%) RMS (m)

Compar Corrar Qar Compobj Corrobj Qobj Comp50 Corr50 Q50

P HANC1 57.1 73.1 47.0 38.2 67.2 33.2 71.5 86.0 66.2 1.40
HANC2 67.4 64.8 49.1 60.7 54.8 40.9 71.6 75.8 59.2 1.47

I DLR 58.8 76.6 49.8 47.2 75.1 41.0 70.0 87.1 63.2 1.30

DO CAL1 70.8 66.5 48.0 67.7 42.6 31.5 83.3 86.7 70.1 1.43
CAL2 67.2 70.4 52.8 57.2 75.0 48.4 82.6 82.9 73.3 1.33
LJU1 75.0 59.9 49.4 71.0 47.2 39.6 90.6 76.2 70.6 1.47
LJU2 63.8 67.2 48.3 43.7 66.4 36.2 81.3 86.9 72.8 1.43
TEH 56.9 51.3 36.9 50.5 20.4 17.0 80.8 52.0 46.3 1.60
KNTU 74.3 63.5 52.1 66.5 68.0 49.9 92.9 74.5 70.5 1.50
TUM 70.3 76.6 57.8 59.2 72.4 48.0 93.2 98.3 91.6 1.37
WHUZ 52.8 67.4 42.2 41.8 57.5 31.9 63.5 84.5 56.9 1.53

PI ITCM 49.2 69.4 40.4 37.4 65.3 31.2 72.5 87.9 65.8 1.50
ITCR 64.0 66.9 47.9 51.2 65.4 41.0 85.8 87.5 75.4 1.53

Average areas 1–3 (422 trees)

(b) LJU1 (a) LJU1 

(c) HANC1 

Fig. 5. Typical errors in tree detection causing problems for many tree detection methods (also other ones than shown in the figure): (a) Area 1: a row of trees situated on a
step edge of the terrain next to a building. (b) Area 2: hedges erroneously classified as trees. (c) Area 3: missed small trees.

Table 9
Average quality metrics and their standard deviations as a function of the original
input data used for tree detection (areas 1–3). P: ALS points; I: images only; DO: DSM
grid from ALS and orthophoto; PI: original ALS points and images.

P (2) I (1) DO (8) PI (2)

Compar (%) 62.2 ± 7.3 58.8 ± 0.0 66.4 ± 8.0 56.6 ± 10.5
Corrar (%) 69.0 ± 5.9 76.6 ± 0.0 65.3 ± 7.5 68.2 ± 1.8
Qar (%) 48.1 ± 1.5 49.8 ± 0.0 48.5 ± 6.6 44.1 ± 5.3
Compobj (%) 49.4 ± 15.9 47.2 ± 0.0 57.2 ± 11.0 44.3 ± 9.8
Corrobj (%) 61.0 ± 8.8 75.1 ± 0.0 56.2 ± 18.5 65.3 ± 0.1
Qobj (%) 37.1 ± 5.4 41.0 ± 0.0 37.8 ± 11.2 36.1 ± 6.9
Comp50 (%) 71.6 ± 0.1 70.0 ± 0.0 83.5 ± 9.6 79.1 ± 9.4
Corr50 (%) 80.9 ± 7.2 87.1 ± 0.0 80.3 ± 13.5 87.7 ± 0.3
Q50 (%) 62.7 ± 4.9 63.2 ± 0.0 69.0 ± 13.2 70.6 ± 6.8
RMS (m) 1.43 ± 0.05 1.30 ± 0.0 1.46 ± 0.09 1.52 ± 0.02
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mal is not well defined) could not be assigned to any of the dom-
inant roof planes. The rather irregular shapes of the boundary poly-
gons show that in this case model generation is actually
incomplete, because the intersections between neighbouring roof
planes are probably not dealt with yet. Smooth tree canopies in
the ALS data can also cause segmentation errors like an isolated
false positive roof plane and the wrong extension of one of the
dominant roof plane in Fig. 6d.

Matching errors in the DSM are typical cases leading to errone-
ous 3D reconstructions for purely image-based methods. This can
be seen in Fig. 6e: rather than correctly separating the two domi-
nant roof planes (corresponding to a saddleback roof), the right
half of the building is reconstructed as one single plane in combi-
nation with a large dormer. Note that this is a result of the only
fully-automatic method solely relying on images (FIE).
Interestingly the geometric errors, especially the planimetric
ones, are in similar ranges in areas 1 and 3, despite the more com-



Table 10
Average quality metrics and their standard deviations as a function of the processing
strategies used for tree detection (areas 1–3). The numbers in parenthesis are the
number of submissions per group.

Supervised (SUP) (6) Model-based (MOD) (7)

Compar (%) 61.8 ± 10.2 65.2 ± 6.4
Corrar (%) 69.1 ± 5.0 65.5 ± 8.0
Qar (%) 48.1 ± 6.4 47.6 ± 5.0
Compobj (%) 50.6 ± 12.9 55.5 ± 10.4
Corrobj (%) 64.2 ± 6.7 56.0 ± 20.2
Qobj (%) 39.2 ± 8.3 36.4 ± 10.0
Comp50 (%) 77.5 ± 12.4 82.1 ± 6.3
Corr50 (%) 84.5 ± 8.7 79.9 ± 13.0
Q50 (%) 68.3 ± 12.4 67.4 ± 10.1
RMS (m) 1.46 ± 0.06 1.44 ± 0.10

Table 11
Average quality metrics and their standard deviations as a function of the primitives
that are classified in tree detection (areas 1–3). P: ALS points or (DSM or image)
pixels; S: Segments. The numbers in parenthesis are the number of submissions per
group.

P (5) S (8)

Compar (%) 64.4 ± 9.1 63.2 ± 8.2
Corrar (%) 69.1 ± 5.6 66.0 ± 7.5
Qar (%) 49.6 ± 5.8 46.7 ± 5.3
Compobj (%) 53.3 ± 12.5 53.3 ± 11.5
Corrobj (%) 64.0 ± 7.5 57.2 ± 19.0
Qobj (%) 40.8 ± 8.2 35.7 ± 9.4
Comp50 (%) 78.5 ± 13.6 80.9 ± 6.7
Corr50 (%) 83.8 ± 9.5 80.9 ± 12.3
Q50 (%) 68.9 ± 13.8 67.2 ± 9.4
RMS (m) 1.45 ± 0.07 1.45 ± 0.10
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plex shapes in area 1. However, due to the relatively large point
spacing of ALS data (approximately 40 cm), uncertainties of the
methods delivering the outlines may not become visible in these
statistics.

Table 13 compares the average evaluation results achieved for
Vaihingen for the ten ALS-only methods and the two purely im-
age-based methods. Because of the imbalance in numbers between
the ALS-based and the image-based contributions one should be
careful with a comparison. It cannot be clearly decided whether
Table 12
Evaluation of the building reconstruction results: average of areas 1–3. The identifiers (ID
Section 3.2. The identifiers printed in bold font indicate methods for which we did not rece
which results were received. The best values per column are printed in bold font. To have an
considered for the ranking.

Name Per-roof plane (%) Per-roof plane (10 m2

Compobj Corrobj Qobj Comp10 Corr10

P MON 77.5 89.7 71.2 90.3 91.4
VSK 74.2 98.6 73.5 86.1 98.6
ITCE1 69.4 90.1 63.1 78.4 90.3
ITCE2 69.8 98.3 68.7 76.8 100.0
ITCX1 69.5 98.1 68.7 74.4 98.0
ITCX2 82.0 92.9 76.8 91.0 98.1
ITCX3 82.8 94.9 78.7 93.2 97.8
CAS (2,3) 68.5 100.0 68.5 81.2 100.0
TUD 70.0 95.8 67.8 78.8 98.6
YOR 79.9 99.5 79.5 91.8 99.7

D KNTU (3) 80.4 96.7 78.3 91.9 97.7

I FIE (3) 82.6 83.1 70.7 88.7 93.4
CKU 82.1 96.8 80.1 91.4 99.4

PI BNU (3) 87.2 100.0 87.2 96.0 100.0

Average areas 1–3 (592 roof planes)
performance gaps are caused by different properties of particular
methods or by properties of different data sources, but neverthe-
less some trends can be observed. The two purely image-based
methods CKU and FIE do not outperform methods using ALS in
terms of planimetric accuracy although the GSD of the images is
much smaller. As already mentioned for building detection, this
may be a hint that image-based methods presented here do not
fully exploit all information contained in these very high-resolu-
tion images yet. However, the completeness of reconstructed roof
planes is better for the image-based method, which could be ex-
plained by the relatively small ALS point density. Although quite
different modelling strategies are applied, the topologic errors do
not differ much, at least for methods using ALS data. This shows
that in general segmentation of planes in ALS data works reliably
today within the limitations discussed above.

From a practical application viewpoint a larger correctness is
considered more important than a larger completeness (Mayer
et al., 2006), and we can generally observe this trend here. All
methods are tuned to achieve a high correctness rather than a high
completeness. Another interesting finding concerning practical
applications is that semi-automated methods do not really outper-
form fully automatic ones, see Table 14 for a comparison.
5.2.1.2. Toronto: results. For areas 4 and 5 we only received three
submissions (YOR, CKU, and FIE). The average evaluation results
are shown in Table 15. Like area 2 in Vaihingen, both Toronto areas
mostly contain flat roofs, but with a larger height variation and
shape complexity. For all methods, completeness and correctness
are worse than in Vaihingen. Under-segmentation but also clusters
where both, under- and over-segmentation occur (N:M) are the
dominant errors evoked by the strongly varying and rarely sym-
metric roof shapes. Naturally, this results in higher RMS values,
too. The relatively high RMSZ value of YOR (7.95 m) reflects par-
tially erroneous segmentation of roofs that predominantly occurs
at high-rise buildings.

In Toronto the methods face the problem of large flat roofs with
many superstructures and plane variations. While the methods
CKU, FIE and YOR produce hardly any topologic N:M errors (i.e.,
clusters of planes of combined over- and under-segmentation) in
Vaihingen, this kind of error is quite significant in Toronto, where
simple 1:M and N:1 errors also occur more frequently than in Vaih-
) are identical to those in Table 2. The remaining column headings are explained in
ive results for all areas; in this case, the numbers in parenthesis indicate the areas for
unbiased ranking, the methods only contributing to one area (FIE, BNU, KNTU) are not

) (%) Topology RMSXY (m) RMSZ (m)

Q10 N1:M NN:1 NN:M

83.5 6 30 3 0.90 0.37
85.2 4 32 2 0.83 0.27
69.5 5 27 6 1.00 0.17
76.8 0 30 1 1.03 0.17
73.2 2 31 1 0.70 0.20
89.3 11 31 3 0.70 0.27
91.2 4 31 3 0.70 0.20
81.2 2 26 0 0.75 0.25
78.0 2 26 1 0.70 0.20
91.6 4 30 5 0.63 0.27

90.0 0 52 0 0.90 0.40

83.5 7 44 5 1.10 0.40
90.9 7 29 2 0.73 0.63

97.1 2 52 0 0.60 0.10



(a) YOR 

(c) MON (d) TUD (e) FIE 

(b) ITCE1 

Fig. 6. Examples for common problems in 3D building reconstruction. (a) Missing small roof planes (e.g. sides of the dormer having a triangular roof plane) and missing small
appendices to bigger roof planes (e.g. below the dormer having a triangular roof plane and to the left of the larger rectangular dormer). (b) Under-segmentation of complex
flat roof building. (c) Over-segmentation and incomplete model generation. (d) and (e) Wrong segmentations, in case (e) probably due to matching errors.

Table 13
Average quality metrics and their standard deviations as a function of the original
input data used for building reconstruction (areas 1–3). P: ALS points; I: aerial images.
The numbers in parenthesis are the number of submissions per group. Input data
used only by one method (D, PI; cf. Table 1 and related text) are omitted.

P (10) I (2)

Compobj (%) 74.4 ± 5.7 82.4 ± 0.3
Corrobj (%) 95.8 ± 3.8 90.0 ± 9.7
Qobj (%) 71.6 ± 5.3 75.4 ± 6.6
Comp10 (%) 84.2 ± 7.1 90.0 ± 1.9
Corr10 (%) 97.3 ± 3.5 96.4 ± 4.3
Q10 (%) 82.0 ± 7.6 87.2 ± 5.3
N1:M 4 ± 3 7 ± 0
NN:1 29 ± 2 36 ± 10
NN:M 3 ± 2 3 ± 2
RMSXY (m) 0.8 ± 0.1 0.9 ± 0.3
RMSZ (m) 0.2 ± 0.1 0.5 ± 0.2

Table 14
Average quality metrics and their standard deviations as a function of the degree of
automation of the methods used for building reconstruction (areas 1–3). S: semi-
automatic methods; F: fully-automatic methods. The numbers in parenthesis are the
number of submissions per group.

S (2) F (12)

Compobj (%) 75.8 ± 8.9 77.0 ± 6.4
Corrobj (%) 96.3 ± 2.5 95.0 ± 5.2
Qobj (%) 73.8 ± 1.7 73.7 ± 6.6
Comp10 (%) 78.1 ± 5.9 87.0 ± 6.6
Corr10 (%) 96.5 ± 3.7 97.1 ± 3.5
Q10 (%) 75.8 ± 2.9 84.7 ± 7.7
N1:M 5 ± 3 4 ± 3
NN:1 30 ± 3 34 ± 10
NN:M 1 ± 1 2 ± 2
RMSXY (m) 0.7 ± 0.0 0.8 ± 0.2
RMSZ (m) 0.4 ± 0.3 0.3 ± 0.1
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ingen. This observation, in conjunction with the occurrence of large
height errors, confirms that complex flat roof structures as occur-
ring in typical CBD-like areas are still a challenge for automatic
reconstruction.

5.2.1.3. Discussion. Comparing the five test areas, it seems that area
2 in Vaihingen offers the most favourable conditions for automatic
roof reconstruction because medium-size flat roof buildings dom-
inant here. In all other areas, complex roof structures cause a con-
siderable amount of segmentation errors. In general, the main roof
structures are represented well (and certainly good enough for
visualisation) if the basic roof shape is relatively simple and if there
are no dormers or only dormers that are small compared to the
dominant roof planes. Otherwise, the algorithms compared in this
test frequently produce incorrect and inaccurate results. This fact
and an analysis of the geometrical errors show that methods for
roof plane reconstruction still have room for improvement, inde-
pendently from the data source. On average, all approaches satisfy
the standards required for practical relevance according to Mayer
et al. (2006), at least if focus is on large roof planes.

For future research the focus can be on smaller roof structures
and a better treatment of step edges in complex flat roof buildings.
The first issue is also linked to the density of point clouds in case
ALS data are used; see the discussion on small objects in Sec-
tion 5.1. Although image based point clouds in general can offer
a better point density, this potential has not been fully exploited,
yet, by the corresponding methods. There still remains room for
improvements. Concerning the modelling of complex flat roof
structures, like in CBD areas, the point cloud density also plays a
major role. With the advent of denser point clouds, also from
ALS, such problems might be mitigated.

6. Conclusion

In this paper, several methods from current research in urban
object extraction were compared based on a benchmark data set.



Table 15
Evaluation of the building reconstruction results: average of areas 4 and 5. The identifiers (ID) are identical to those in Table 2. The remaining column headings are explained in
Section 3.2. The best values per column are printed in bold font. FIE is not considered in the ranking because it only contributes to area 4.

Name Per-roof plane (%) Per-roof plane (10 m2) (%) Topology RMSXY (m) RMSZ (m)

Compobj Corrobj Qobj Comp10 Corr10 Q10 N1:M NN:1 NN:M

P YOR 70,0 91,7 66,2 86,4 92,1 80,4 16 84 22 0,90 7,95

I CKU 69,5 81,8 60,1 79,1 81,4 67,1 27 60 64 1,75 4,80
FIE 52,3 91,5 49,9 60,4 91,9 57,3 56 62 36 1,40 2,70

Average areas 4–5 (1607 roof planes)
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The results achieved by the methods for building detection show
that this task can be satisfactorily solved for buildings larger than
50 m2 by methods relying on different processing strategies and
different sensor data, but there is still room for improvement in
detecting small building structures and in precise delineation of
the building boundaries. Most of the methods for tree detection
were successful in detecting large trees under favourable condi-
tions, but failed to do so in very complex inner city environments.
Small trees could not be detected reliably by any of the methods,
either; this seems to indicate a field requiring further research.
The results achieved for 3D building reconstruction show the po-
tential, but also the limitations of state-of-the-art methods. While
the problem may be considered to be solved for visualisation pur-
poses, the production of geometrically and topologically correct
LoD2 building models still poses challenges in difficult urban envi-
ronments. In particular, no method seems to be able to fully exploit
the accuracy potential inherent in the sensor data. It would be
desirable to receive more results solely based on images to obtain
a more realistic assessment of the potential inherent in that data
source.

The test data sets are still available, and results are continuously
received and evaluated. Currently, we have only a rather small num-
ber of submissions solely relying on images, and we would like to at-
tract more participants using these data to obtain a more general
view on the potential of this data source for urban object extraction.
For methods that are not specifically tailored to using a specific data
source, but can cope with a generic set of features, it would be inter-
esting to receive results achieved for different input data sets, in or-
der to make a comparison of the potential of different data sets more
conclusive. In the future, we also want to expand the benchmark. A
reference for image labelling that will also include training data for
supervised methods is under preparation. Furthermore, we have re-
ceived a third test data set, for which the reference is under prepara-
tion. It is the goal of these efforts to provide a benchmark data set as a
basis for making current and future developments in urban object
extraction more comparable.
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