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Figure. 1. The SYNTHIA Dataset. A sample frame (Left) with its semantic labels (center) and a general view of the city (right).

Abstract

Vision-based semantic segmentation in urban scenarios is

a key functionality for autonomous driving. Recent revolu-

tionary results of deep convolutional neural networks (DC-

NNs) foreshadow the advent of reliable classifiers to per-

form such visual tasks. However, DCNNs require learning

of many parameters from raw images; thus, having a suf-

ficient amount of diverse images with class annotations is

needed. These annotations are obtained via cumbersome,

human labour which is particularly challenging for seman-

tic segmentation since pixel-level annotations are required.

In this paper, we propose to use a virtual world to automat-

ically generate realistic synthetic images with pixel-level

annotations. Then, we address the question of how useful

such data can be for semantic segmentation – in particu-

lar, when using a DCNN paradigm. In order to answer this

question we have generated a synthetic collection of diverse

urban images, named SYNTHIA, with automatically gener-

ated class annotations. We use SYNTHIA in combination

with publicly available real-world urban images with man-

ually provided annotations. Then, we conduct experiments

with DCNNs that show how the inclusion of SYNTHIA in the

training stage significantly improves performance on the se-

mantic segmentation task.
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1. Introduction

Autonomous driving (AD) will be one of the most rev-

olutionary technologies in the near future in terms of the

impact on the lives of citizens of the industrialized coun-

tries [43]. Nowadays, advanced driver assistance systems

(ADAS) are already improving traffic safety. The computer

vision community, among others, is contributing to the de-

velopment of ADAS and AD due to the rapidly increasing

performance of vision-based tools such as object detection,

recognition of traffic signs, road segmentation, etc. At the

core of such functionality are various types of classifiers.

Roughly until the end of the first decade of this century,

the design of classifiers for recognizing visual phenomena

was viewed as a two-fold problem. First, enormous effort

was invested in research of discriminative visual descrip-

tors to be fed as features to classifiers; as a result, descrip-

tors such as Haar wavelets, SIFT, LBP, or HOG, were born

and there use became widespread. Second, many differ-

ent machine learning methods were developed, with dis-
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criminative algorithms such as SVM, AdaBoost, or Ran-

dom Forests usually reporting the best classification accu-

racy due to their inherent focus on searching for reliable

class boundaries in feature space. Complementarily, in or-

der to make easier the search for accurate class boundaries,

methods for transforming feature space were also developed

(e.g. PCA, BoW encoding, Kernel mappings) as well as

more elaborate class models (e.g. DPM, superpixels).

In practice, even the best visual descriptors, class mod-

els, feature encoding methods and discriminative machine

learning techniques are not sufficient to produce reliable

classifiers if properly annotated datasets with sufficient di-

versity are not available. Indeed, this is not a minor issue

since data annotation remains a cumbersome, human-based

labor prone to error; even exploiting crowdsourcing for an-

notation is a non-trivial task [39]. For instance, for some

ADAS and for AD, semantic segmentation is a key issue

[33, 18, 29] and it requires pixel-level annotations (i.e. ob-

tained by delineating the silhouette of the different classes

in urban scenarios, namely pedestrian, vehicle, road, side-

walk, vegetation, building, etc).

In order to ameliorate this problem there are paradigms

such as unsupervised learning (no annotations assumed),

semi-supervised learning (only a few annotated data), and

active learning (to focus on annotating informative data),

under the assumption that having annotated data (e.g. im-

ages) is problematic but data collection is cheap. However,

for ADAS and AD such data collection is also an expensive

activity since many kilometers must be traveled to obtain

sufficient diversity. Moreover, it is well-known that, in gen-

eral terms, supervised learning (annotations assumed) tends

to provide the most accurate classifiers.

Recently, the need for large amounts of accurately an-

notated data has become even more crucial with the mas-

sive adoption of deep convolutional neural networks (DC-

NNs) by the computer vision community. DCNNs have

yielded a significant performance boost for many visual

tasks [17, 10, 40, 35]. Overall, DCNNs are based on highly

non-linear, end-to-end training (i.e. from the raw annotated

data to the class labels) which implies the learning of mil-

lions of parameters and, accordingly, they require a rela-

tively larger amount of annotated data than methods based

on hand-crafted visual descriptors.

As we will review in section 2, the use of visually re-

alistic synthetic images is gaining attention in recent years

(e.g., training in virtual words [21, 34, 1, 26, 12], synthesiz-

ing images with real-world backgrounds and inserted virtual

objects [28, 27]) due to the possibility of having diversified

samples with automatically generated annotations. In this

spirit, in this paper we address the question of how useful

can the use of realistic synthetic images of virtual-world ur-

ban scenarios be for the task of semantic segmentation – in

particular, when using a DCNN paradigm. To the best of

our knowledge, this analysis has not been done so far. Note

that, in this setting the synthetic training data can not only

come with automatically generated class annotations from

multiple points of views and simulated lighting conditions

(providing diversity), but also with ground truth for depth

(simulating stereo rigs and LIDAR is possible), optical flow,

object tracks, etc.

Moreover, in the context of ADAS/AD the interest in us-

ing virtual scenarios is already increasing for the task of

validating functionalities in the Lab, i.e. to perform valida-

tion in the real world (which is very expensive) only once

after extensive and well-designed simulations are passed.

Therefore, these virtual worlds can be used for generating

synthetic images to training the classifiers involved in en-

vironmental perception. In addition, the realism of these

virtual worlds is constantly increasing thanks to the contin-

uously growing videogames industry.

To address the above mentioned question, we have gen-

erated SYNTHIA: a SYNTHetic collection of Imagery and

Annotations of urban scenarios.1 SYNTHIA is detailed in

section 3 where we highlight its diversity and how we can

automatically obtain a large number of images with annota-

tions. On the other hand, it is known that classifiers trained

only with virtual images may require domain adaptation to

work on real images [42, 44, 37, 25, 45]; however, it has

been shown that this is just because virtual and real world

cameras are different sensors, i.e. domain adaptation is also

often required when training images and testing images

come from different real-world camera sensors [42, 41].

As we will see in section 4, where we explain the DCNN

used to perform semantic segmentation, in this work we

use a simple domain adaptation strategy which consists of

training with the synthetic data and a smaller number of

real-world data simultaneously, i.e. in the same spirit than

[42] for a HOG-LBP/SVM setting. In our case, the data

combination is done in the generation of batches during

DCNN training. The experiments conducted in section 5

show how SYNTHIA successfully complements different

datasets (Camvid, KITTI, U-LabelMe, CBCL) for the task

of semantic segmentation based on DCNNs, i.e. the use of

the combined data significantly boosts the performance ob-

tained when using the real-world data alone. The future

work that we foresee given these results is pointed out in

section 6, together with the conclusions of the paper.

2. Related Work

The generation of semantic segmentation datasets with

pixel-level annotations is costly in terms of effort and

money, factors that are currently slowing down the develop-

ment of new large-scale collections like ImageNet [15]. De-

spite these factors, the community has invested great effort

1SYNTHIA is available at adas.cvc.uab.es/synthia
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Figure 2. Dynamic objects catalogue of SYNTHIA. (Top) vehicles examples; (middle) cyclists; (bottom) pedestrians.

to create datasets such as the NYU-Depth V2 [23] (more

than 1,449 images densely labelled), the PASCAL-Context

Dataset [22] (10,103 images densely labelled over 540 cat-

egories), and MS COCO [19] (more than 300,000 images

with annotations for 80 object categories). These datasets

have definitely contributed to boost research on semantic

segmentation of indoor scenes and also on common ob-

jects, but they are not suitable for more specific tasks such

as those involved in autonomous navigation scenarios.

When semantic segmentation is seen in the context of au-

tonomous vehicles, we find that the amount and variety of

annotated images of urban scenarios is much lower in terms

of total number of labeled pixels, number of classes and in-

stances. A good example is the CamVid [4] dataset, which

consists of a set of monocular images taken in Cambridge,

UK. However, only 701 images contain pixel-level annota-

tions over a total of 32 categories (combining objects and

architectural scenes), although usually only the 11 largest

categories are used. Similarly, Daimler Urban Segmenta-

tion dataset [33] contains 500 fully labelled monochrome

frames for 5 categories. The more recent KITTI bench-

mark suite [9] has provided a large amount of images of

urban scenes from Karlsruhe, Germany, with ground truth

data for several tasks. However, it only contains a total of

430 labelled images for semantic segmentation.

A common limitation of the aforementioned datasets is

the bias introduced by the acquisition of images in a specific

city. The LabelMe project [32], later refined by [30], cor-

rects this by offering around 1,000 fully annotated images of

urban environments around the world and more than 3,000

images with partial (noisy) annotations.

A larger dataset is the CBCL StreetScenes [3], which

contains 3,547 images of the streets of Chicago over 9

classes with noisy annotations. This dataset has recently

been enhanced in [30], improving the quality of the annota-

tions and adding extra classes. To date, the largest dataset

for semantic segmentation is the CityScapes dataset [8],

which consists of a collection of images acquired in 50

cities around Germany, Switzerland and France in different

seasons, and having 5,000 images with fine annotations and

20,000 with coarse annotations over a total of 30 classes.

However, the cost of scaling this sort of project would re-

quire a prohibitive economic investment in order to capture

images from a larger variety of countries, in different sea-

sons and different traffic conditions. For these reasons, a

promising alternative proposed in this work is to use syn-

thetic imagery that simulate real urban scenes in a vast vari-

ety of conditions and produce the appropriate annotations.

The use of synthetic data has increased considerably in

recent years within the computer vision community for sev-

eral problems. For instance, in [14], the authors used a vir-

tual world to evaluate the performance of image features

under certain types of changes. In the area of object de-

tection, similar approaches have been proposed by different

groups [27, 37, 21, 12], making use of CAD models, virtual

worlds and studying topics such as the impact of a realistic

world on the final accuracy of detectors and the importance

of domain adaptation. Synthetic data has also been used for

pose estimation [1, 6] to compensate for the lack of precise

pose annotations of objects. The problem of semantic seg-

mentation has also begun to benefit from this trend, with the

creation of virtual scenes to perform segmentation of indoor

environments [11, 26].

The present work proposes a novel synthetic dataset of

urban scenes, which we call SYNTHIA. This dataset is

a large collection of images with high variability due to

changes in illumination, textures, pose of dynamic objects

and camera view-points. We also explore the benefits of us-

ing SYNTHIA in the context of semantic segmentation of

urban environments with DCNNs.

3. The SYNTHIA Dataset

Here we describe our synthetic dataset of urban scenes,

which we call the SYNTHetic collection of Imagery and

Annotations (SYNTHIA). This dataset has been generated

with the purpose of aiding semantic segmentation in the
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context of AD problems, but it contains enough informa-

tion to be useful in additional ADAS and AD-related tasks,

such as object recognition, place identification and change

detection, among others.

SYNTHIA consists of photo-realistic frames rendered

from a virtual city and comes with precise pixel-level se-

mantic annotations for 13 classes, i.e., sky, building, road,

sidewalk, fence, vegetation, lane-marking, pole, car, traffic

signs, pedestrians, cyclists and miscellaneous (see Fig. 1).

Frames are acquired from multiple view-points (up to eight

views per location), and each of the frames also contains

an associated depth map (though they are not used in this

work).

3.1. Virtual World Generator

SYNTHIA has been generated by rendering a virtual city

created with the Unity development platform [38]. This

city includes the most important elements present on driv-

ing environments, such as: street blocks, highways, rural

areas, shops, parks and gardens, general vegetation, vari-

ety of pavements, lane markings, traffic signs, lamp poles,

and people, among others. The virtual environment allows

us to freely place any of these elements in the scene and to

generate its semantic annotations without additional effort.

This enables the creation of new and diverse cities as a sim-

ple combination of basic blocks. The basic properties of

these blocks, such as textures, colors and shapes can be eas-

ily changed to produce new looks and to enhance the visual

variety of the data.

The city is populated with realistic models of cars, vans,

pedestrians and cyclists (see Fig. 2). In order to extend vi-

sual variability, some of these models are modified to gen-

erate new and distinctive versions.

We have defined suitable material coefficients for each

of the surfaces of the city in order to produce photo realistic

outcomes that look as similar as possible to real data. Our

virtual world also includes four different seasons with dras-

tic change of appearance, with snow during winter, bloom-

ing flowers during spring, etc., (see Fig. 3). Moreover, a

dynamic illumination engine serves to produce different il-

lumination conditions, to simulate different moments of the

day, including sunny and cloudy days and dusk. Shadows

caused by clouds and other objects are dynamically cast on

the scene, adding additional realism.

We would like to highlight the potential of this virtual

world in terms of extension capabilities. New parts of the

cities can be easily generated by adding existing blocks in

different setups and additional ground truth can be produced

almost effortlessly. Extending the number of classes of the

city is also a simple task which consists of assigning a new

id to objects. In this way we can generate a broad variety

of urban scenarios and situations, which we believe is very

useful to help modern classifiers based on deep learning.

3.2. SYNTHIA­Rand and SYNTHIA­Seqs

From our virtual city we have generated two comple-

mentary sets of images, referred to as SYNTHIA-Rand and

SYNTHIA-Seqs. Both sequences share standard properties

as frame resolution of 960× 720 pixels and horizontal field

of view of 100 degrees.

SYNTHIA-Rand consists of 13,400 frames of the city

taken from a virtual array of cameras moving randomly

through the city, with its height limited to the range [1.5m,

2m] from the ground. In each of the camera poses, several

frames are acquired changing the type of dynamic objects

present in that part of the scene along with the illumina-

tion of the scene and the textures of road and sidewalks.

We enforce that the separation between camera positions is

at least of 10 meters in order to improve visual variability.

This collection is oriented to serve as training data for se-

mantic segmentation methods based on DCNNs.

SYNTHIA-Seqs simulates four video sequences of ap-

proximately 50,000 frames each one up to a total of 200,000

frames, acquired from a virtual car across different seasons

(one sequence per season). The virtual acquisition plat-

form consists of two multi-cameras separated by a base-

line B = 0.8m in the x-axis. Each of these multi-cameras

consists of four monocular cameras with a common cen-

ter and orientations varying every 90 degrees, as depicted

in Fig. 4. Since all cameras have a field of view of 100

degrees the visual overlapping serves to create an omni-

directional view on demand, as shown in Fig. 5. Each of

these cameras also has a virtual depth sensor associated,

which works in a range from 1.5 to 50 meters and is per-

fectly aligned with the camera center, resolution and field

of view (Fig. 5, bottom). The virtual vehicle moves through

the city interacting with dynamic objects such as pedestri-

ans and cyclists that present dynamic behaviour. This in-

teraction produces changes in the trajectory and speed of

the vehicle and leads to variations of each of the individual

video sequences. This collection is oriented to provide data

to exploit spatio-temporal constraints of the objects.

4. Semantic Segmentation & Synthetic Images

We first define a simple but competitive deep Convolu-

tional Neural Network (CNN) for the task of semantic seg-

mentation of urban scenes, following the description of [30]

(section 4.1). This architecture, referred as Target-Net (T-

Net) is more suitable for its application to urban scenes due

to its reduced number of parameters. As a reference, we

also consider the FCN [20], a state-of-the-art architecture

for general semantic segmentation. In 4.2 we describe the

strategy used to deal with the synthetic domain (virtual data)

and the real domain during the training stage.
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Figure 3. The same area captured in different seasons and light

conditions. Top-left, fall; top-right, winter; bottom-left, spring;

bottom-right, summer.

Figure 4. Virtual car setup used for acquisition. Two multi-

cameras with four monocular cameras are used. The baseline be-

tween the cameras is 0.8m and the FOV of the cameras is 100 deg.

4.1. Architectures Specification

T-Net [30] architecture along with its associated train-

ing procedure is drawn from [30], due to its good per-

formance and ease of training. Similar architectures have

proven to be very effective in terms of accuracy and effi-

ciency for segmentation of general objects [24] and urban

scenes [2]. Fig. 6 shows a graphical schema of T-Net. The

architecture is based on a combination of contraction, ex-

pansion blocks and a soft-max classifier. Contraction blocks

consist of convolutions, batch normalization, ReLU and

max-pooling with indices storage. Expansion blocks con-

sist of an unpooling of the blob using the pre-stored indices,

convolution, batch normalization and ReLU.

FCN [20] architecture is an extension of VGG-16 [36]

with deconvolution modules. Different from T-Net, FCN

does not use batch normalization and its upsampling

scheme is based on deconvolutions and mixing information

across layers.

We use weighted cross-entropy as a loss function for

both architectures, where the weights are computed as the

inverse frequencies of each of the classes for the training

data [2]. This helps prevent problems due to class imbal-

ance. During training the contraction blocks are initialized

using VGG-F [7] for T-Net and VGG-16 [36] for FCN, pre-

trained on ILSVRC [31]. Kernels are accordingly re-scaled

when the original sizes do not match. Expansion blocks are

randomly initialized following the method of He et al. [13].

Input data is pre-processed using local contrast normaliza-

tion of each channel independently to avoid problems with

drastic illumination changes.

Networks are trained end-to-end using Adam [16] since

the learning rates are automatically adjusted. Using Adam

leads the network to converge in a couple of hundred itera-

tions, speeding up the training procedure considerably.

4.2. Training on Real and Synthetic Data

The aim of this work is to show that the use of synthetic

data helps to improve semantic segmentation results on real

imagery. There exist several ways to exploit synthetic data

for this purpose. A trivial option would be to use the syn-

thetic data alone for training a model and then apply it on

real images. However, due to domain shift [37, 42] this ap-

proach does not usually perform well. An alternative is to

train a model on the vast amount of synthetic images and af-

terwards fine-tuning it on a reduced set of real images. This

leads to better results, since the statistics of the real domain

are considered during the second stage of training [27].

However, here we employ the Balanced Gradient Contri-

bution (BGC) that was first introduced in [30]. It consists of

building batches with images from both domains (synthetic

and real), given a fixed ratio. Real images dominate the dis-

tribution, while synthetic images are used as a sophisticated

regularization term. Thus, statistics of both domains are

considered during the whole procedure, creating a model

which is accurate for both. In section 5 we show that ex-

tending real data with synthetic images using this technique

leads to a systematic boost in segmentation accuracy.

5. Experimental Evaluation

We present the evaluation of the DCNNs for semantic

segmentation described in section 4, training and evaluat-

ing on several state-of-the-art datasets of driving scenes. We

test how the new SYNTHIA dataset can be useful both on

its own and along with real images to produce accurate seg-

mentation results. For the following experiments we have

made use of the 13,400 images of the SYNTHIA-Rand col-

lection to favour visual variability while using a moderate

number of images.

5.1. Validation Datasets

We selected publicly available urban datasets to study the

benefits of SYNTHIA. Table 1 shows the different datasets

used in our experiments, along with a definition of the num-

ber of images used in our experiments for training (T) and

validation (V).
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Figure 6. Graphical schema of the semantic segmentation net-

work consisting of a set of contraction (yellow) -expansion (green)

blocks. In the legend, for convolutions a and b stand for the input

and output number of channels respectively; k is the kernel size

and p the padding size. For pooling st. stands for stride.

Table 1. Driving scenes sets for semantic segmentation. We define

the number of training images (T), validation (V) and in total (A).
Dataset # Frames (A) # Training (T) # Validation (V)

CamVid [4, 5] 701 300 401

KITTI [9, 18, 29, 30] 547 200 347

Urban LabelMe [32, 30] 942 200 742

CBCL StreetScenes [3, 30] 3547 200 3347

SYNTHIA-Rand 13,400 13,400 0

It is worth highlighting the differences between these

datasets. Each of them has been acquired in a different city

or cities. CamVid and KITTI datasets have high quality la-

bels and low complexity in terms of variations and atypi-

cal scenes. Urban LabelMe (U-LabelMe) is very challeng-

ing, since it contains images from different cities and sev-

eral view-points. It has been annotated by several users and

contains some images with partial and noisy annotations.

CBCL images are also challenging, and contain many noisy,

semi-supervised annotations [30]. Each of the individual

splits is designed to include a large number of validation im-

ages, keeping enough images for training on each datasets.

5.2. Analysis of Results

The following experiments have been carried out by

training DCNNs using low-resolution images. All images

are resized to a common resolution of 180 × 120. This

is done to speed-up the training process and save memory.

However, it has the disadvantage of decreasing the recogni-

tion of certain textures present in roads and sidewalks and

makes it harder to recognize small categories such as traffic

signs and poles. This fact needs to be considered to cor-

rectly understand the results of our experiments.

In our first experiment we evaluate the capability of

SYNTHIA-Rand in terms of the generalization of the trained

models on state-of-the-art datasets. To this end we report in

Table 2 the accuracy (%) of T-Net and FCN for each of the

11 classes along with their average per-class and global ac-

curacies for each of the validation sets (V).
The networks trained on just synthetic data produce good

results recognizing roads, buildings, cars and pedestrians in

the presented datasets. Moreover, sidewalks are fairly well

recornized in CamVid, probably due to their homogeneity.

The high accuracy at segmenting roads, cars and pedestrians

in U-LabelMe–one of the most challenging datasets due to

the large variety of view-points–is a proof of the high qual-

ity of SYNTHIA. Notice also that FCN performs better than

T-Net for many of the classes due to the higher capacity of

the model, although in practice FCN has the disadvantage of

being too large for embedded context such as autonomous

driving. It is worth highlighting that the average per-class

accuracy of the models trained with SYNTHIA is close or

some times even higher (e.g. T-Net: CamVid, U-LabelMe,

CBCL; FCN: CamVid, CBCL) than those models trained

on real data (see Table 3).

Our second experiment evaluates the true potential of

SYNTHIA to boost DCNN models trained on real data.

To this end we perform several tests combining data from

SYNTHIA-Rand along with individual real datasets, follow-

ing the strategy defined in section 4.2. Here, each batch

contains 6 images from the real domain and 4 from the syn-

thetic domain. These results are compared against using just

real data coming from each respective training split (T). The

outcome of this experiment is shown in Table 3. Observe

that, for all the datasets and architectures, the inclusion of

synthetic data systematically helps to boost the average per-

class accuracy. Improvements with respect to the baselines

(training only with real data) are highlighted in blue. No-

tice that for both, T-Net and FCN there are improvements

RGB

Left

Depth 

Left

Figure 5. One shot example: the four views from the left multi-camera with its associated depth maps.
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Table 2. Results of training a T-Net and a FCN on SYNTHIA-Rand and evaluating it on state-of-the-art datasets of driving scenes.

Method Training Validation sky building road sidewalk fence vegetat. pole car sign pedest. cyclist per-class global

T-Net [30]

SYNTHIA-Rand (A) CamVid (V) 66 85 86 67 0 27 55 79 3 75 46 48.9 79.7

SYNTHIA-Rand (A) KITTI (V) 73 78 92 27 0 10 0 64 0 72 14 39.0 61.9

SYNTHIA-Rand (A) U-LabelMe (V) 20 59 92 13 0 22 38 89 1 64 23 38.3 53.4

SYNTHIA-Rand (A) CBCL (V) 74 71 87 25 0 35 21 68 2 42 36 41.8 66.0

FCN [20]

SYNTHIA-Rand (A) CamVid (V) 78 66 86 72 12 79 17 91 43 78 68 62.5 74.9

SYNTHIA-Rand (A) KITTI (V) 56 65 59 26 17 65 32 52 42 73 40 47.1 62.7

SYNTHIA-Rand (A) U-LabelMe (V) 31 63 68 40 23 65 39 85 18 71 46 50.0 59.1

SYNTHIA-Rand (A) CBCL (V) 71 59 73 32 26 81 40 78 31 63 72 56.9 68.2

Table 3. Comparison of training a T-Net and FCN on real images only and the effect of extending training sets with SYNTHIA-Rand.

Method Training Validation sky building road sidewalk fence vegetation pole car sign pedestrian cyclist per-class global

T-Net [30]

Camvid (T) CamVid (V) 99 65 95 52 7 79 5 80 3 26 6 46.3 81.9

Camvid (T) + SYNTHIA-Rand (A) CamVid (V) 98 90 91 63 5 83 9 94 0 58 31 56.5 ( 10.2) 90.7 ( 8.8)

KITTI (T) KITTI (V) 79 83 87 73 0 85 0 69 0 10 0 44.2 80.5

KITTI (T) + SYNTHIA-Rand (A) KITTI (V) 89 86 90 58 0 72 0 76 0 66 29 51.6 ( 7.4) 80.8 ( 0.3)

U-LabelMe (T) U-LabelMe (V) 72 80 75 45 0 62 2 53 0 14 2 36.4 62.4

U-LabelMe (T) + SYNTHIA-Rand (A) U-LabelMe (V) 69 77 93 33 0 62 11 77 1 67 24 46.7 ( 10.3) 72.1 ( 9.7)

CBCL (T) CBCL (V) 62 77 86 41 0 74 5 63 0 7 0 37.9 73.9

CBCL (T) + SYNTHIA-Rand (A) CBCL (V) 72 82 90 39 0 58 26 70 5 52 39 48.4 ( 10.5) 75.2 ( 1.3)

FCN [20]

Camvid (T) CamVid (V) 99 65 98 45 27 54 16 77 11 34 25 52.8 78.4

Camvid (T) + SYNTHIA-Rand (A) CamVid (V) 97 70 98 66 39 88 41 88 53 75 79 72.1 ( 18.3) 83.6 ( 5.2)

KITTI (T) KITTI (V) 75 77 77 64 47 84 18 78 5 1 1 51.5 82.3

KITTI (T) + SYNTHIA-Rand (A) KITTI (V) 84 81 82 71 60 86 43 83 24 7 32 59.4 ( 7.9) 80.8 ( -1.5 )

U-LabelMe (T) U-LabelMe (V) 93 81 83 57 2 79 41 72 20 71 63 60.1 79.4

U-LabelMe (T) + SYNTHIA-Rand (A) U-LabelMe (V) 93 72 81 63 10 76 46 79 49 76 64 64.4 ( 4.3) 76.2 ( -3.2 )

CBCL (T) CBCL (V) 90 77 90 41 2 80 37 84 10 47 31 53.4 79.7

CBCL (T) + SYNTHIA-Rand (A) CBCL (V) 82 78 74 56 1 80 20 78 8 77 35 53.5 ( 0.2) 75.2 ( -4.5 )

of more than 10 points (up to 18.3 points) in per-class accu-

racy. We believe that the decrement of global accuracy for

FCN may be related to the combination of early and late lay-

ers during the upsampling process and the use of BGC, but

further investigation is still required. The classes that most

benefit from the addition of synthetic data are pedestrian,

car and cyclist (dynamic objects), which is due to the lack

of enough instances of these classes in the original datasets.

On the other hand, signs and poles are very hard to segment

as a consequence of the low-resolution images.

Fig. 7 shows qualitative results of the previous experi-

ments. Observe how the training on synthetic data is good

enough to recognize pedestrians, roads, cars and some cy-

clists. Then the combination of real and synthetic data (right

column) produces smooth and very accurate results for both

objects and architectural elements, even predicting thin ob-

jects like poles. We consider the results of these experi-

ments an important milestone for the use of synthetic data

as the main information source for semantic segmentation.

6. Conclusions

We presented SYNTHIA, a new dataset for semantic

segmentation of driving scenes with more than 213,400 syn-

thetic images including both, random snapshots and video

sequences in a virtual city. Images are generated simulating

different seasons, weather and illumination conditions from

multiple view-points. Frames include pixel-level semantic

annotations and depth. SYNTHIA was used to train DC-

NNs for the semantic segmentation of 11 common classes

in driving scenes. Our experiments showed that SYNTHIA

is good enough to produce good segmentations by itself on

real datasets, dramatically boosting accuracy in combina-

tion with real data. We believe that SYNTHIA will help to

boost semantic segmentation research.
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Figure 7. Qualitative results for different testing datasets and architectures (T-Net and FCN). First column shows the RGB testing frame;

second column is the ground truth; Training R is the result of training with the real dataset; Training V is the result of training with SYN-

THIA; Training R+V is the result of training with the real and SYNTHIA-Rand collection. Including SYNTHIA for training considerably

improves the results.
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