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Abstract

We learn to compute optical flow by combining a classi-
cal coarse-to-fine flow approach with deep learning. Specif-
ically we adopt a spatial-pyramid formulation to deal with
large motions. According to standard practice, we warp
one image of a pair at each pyramid level by the current
flow estimate and compute an update to the flow field. In-
stead of the standard minimization of an objective function
at each pyramid level, we train a deep neural network at
each level to compute the flow update. Unlike the recent
FlowNet approach, the networks do not need to deal with
large motions; these are dealt with by the pyramid. This
has several advantages. First the network is much simpler
and much smaller; our Spatial Pyramid Network (SPyNet)
is 96% smaller than FlowNet in terms of model parameters.
Because it is so small, the method could be made to run on
a cell phone or other embedded system. Second, since the
flow is assumed to be small at each level (< 1 pixel), a con-
volutional approach applied to pairs of warped images is
appropriate. Third, unlike FlowNet, the filters that we learn
appear similar to classical spatio-temporal filters, possibly
giving insight into how to improve the method further. Our
results are more accurate than FlowNet in most cases and
suggest a new direction of combining classical flow methods
with deep learning.

1. Introduction

Recent years have seen significant progress on the prob-
lem of accurately estimating optical flow, as evidenced by
improving performance on increasingly challenging bench-
marks. Despite this, most flow methods are derived from
a “classical formulation” that makes a variety of assump-
tions about the image, from brightness constancy to spatial
smoothness. These assumptions are only coarse approxi-
mations to reality and this likely limits performance. The
recent history of the field has focused on improving these
assumptions or making them more robust to violations. This
has led to steady but incremental progress.

An alternative approach would be to abandon the classi-

cal formulation altogether and start over using recent neural
network architectures. Such an approach takes a pair (or se-
quence) of images and learns to directly compute flow from
them. Ideally such a network would learn to solve the cor-
respondence problem (short and long range), learn filters
relevant to the problem, learn what is constant in the se-
quence, and learn about the spatial structure of the flow and
how it relates to the image structure. The first attempts are
promising but do not yet beat the classical methods in terms
of flow accuracy on standard benchmarks.

Goal. We argue that there is an alternative approach that
combines the best of both approaches. Decades of research
on flow has produced well engineered systems and several
principles that are well understood and effective. But there
are places where these methods make assumptions that limit
their performance. Consequently, here we apply machine
learning to address the weak points, while keeping the en-
gineered architecture, with the goal of 1) improving perfor-
mance over existing neural networks and the classical meth-
ods upon which our work is based; 2) achieving real-time
flow estimates with accuracy better than the much slower
classical methods; and 3) reducing memory requirements to
make flow more practical for embedded, robotic, and mo-
bile applications.

Problem. The key problem with recent methods for
learning flow [135] is that they typically take two frames,
stack them together, and apply a convolutional network ar-
chitecture. When the motions between frames are larger
than one (or a few) pixels, spatio-temporal convolutional
filters will not obtain meaningful responses. Said another
way, if a convolutional window in one image does not over-
lap with related image pixels at the next time instant, no
meaningful temporal filter can be learned.

There are two problems that need to be solved. One is
to solve for long-range correlations while the other is to
solve for detailed, sub-pixel, optical flow and precise mo-
tion boundaries. FlowNet [15] attempts to learn both of
these at once. In contrast, we tackle the latter using deep
learning and rely on existing methods to solve the former.

Approach. To deal with large motions we adopt a tra-



ditional coarse-to-fine approach using a spatial pyramicﬂ
At that top level of the pyramid, the hope is that the mo-
tions between frames are smaller than a few pixels and that,
consequently, the convolutional filters can learn meaningful
temporal structure. At each level of the pyramid we solve
for the flow using a convolutional network and up-sample
the flow to the next pyramid level. As is standard, with
classical formulations [38]], we warp one image towards the
other using the current flow, and repeat this process at each
pyramid level. Instead of minimizing a classical objective
function at each level, we learn a convolutional network to
predict the flow increment at that level. We train the net-
work from coarse to fine to learn the flow correction at each
level and add this to the flow output of the network above.
The idea is that the displacements are then always less than
a few pixels at each pyramid level.

This approach means that, at any pyramid level, the net-
work has a simpler task than predicting a wide range of mo-
tions for the full-scale images. As a result, at each level
we can use a much smaller network than used in FlowNet
[15]]. Here we use a network with only 5 layers, which we
found to be sufficient. The total size of all networks is 96%
smaller than FlowNet, meaning that it runs faster, and uses
much less memory.

We call the method SPyNet, for Spatial Pyramid Net-
work, and train it using the same data as FlowNet [15].
Specifically we use the Flying Chairs dataset in [15]. We
report similar performance as FlowNet on Flying Chairs,
Sintel [10]] and KITTI [17], outperforming them by a small
margin in most cases. We are significantly more accurate
than FlowNet on the Middlebury [4]] dataset.

An advantage of SPyNet over traditional approaches is
its computational efficiency. The expensive iterative prop-
agation of spatial coherence constraints is replaced by the
non-iterative computation of the neural network.

We are not claiming to solve the full optical flow problem
with SPyNet — we address the same problem as traditional
approaches and inherit some of their limitations. For exam-
ple, it is well known that large motions of small or thin ob-
jects are difficult to capture with a pyramid representation.
We see the large motion problem as separate, requiring dif-
ferent solutions. Rather, what we show is that the traditional
problem can be reformulated, portions of it can be learned,
and performance improves in many scenarios.

Additionally, because our approach connects past meth-
ods with new tools, it provides insights into how to
move forward. In particular, we find that SPyNet learns
spatio-temporal convolutional filters that resemble tradi-
tional spatio-temporal derivative or Gabor filters [2l 22].
The learned filters resemble biological models of motion
processing filters in MT and V1 [37]]. This is in contrast to
the highly random-looking filters learned by FlowNet. This

I'This, of course, has well-known limitations, which we discuss later.

suggests that it is timely to reexamine older spatio-temporal
filtering approaches with new tools.

In summary our contributions are: 1) the combination of
traditional coarse-to-fine pyramid methods with deep learn-
ing for optical flow estimation; 2) a new SPyNet model that
is 96% smaller and significantly faster than FlowNet; 3)
SPyNet achieves comparable or lower error than FlowNet
on standard benchmarks — Sintel and Middlebury; 4) we
evaluate the choice of network architecture; 5) learned
spatio-temporal filters that provide insight about what filters
are needed for flow estimation; 6) the trained network and
related code will be made publicly available for research
purposes.

2. Related Work

Our formulation effectively combines ideas from “clas-
sical” optical flow and recent deep learning methods. Our
review focuses on the work most relevant to this.

Spatial pyramids and the ‘‘classical” approach. The
“classical” formulation of the optical flow problem dates to
Horn and Schunck [23] and involves optimizing the sum
of a data term based on brightness constancy and a spa-
tial smoothness term. The classical methods typically suffer
from the fact that they make very approximate assumptions
about the image brightness change and the spatial structure
of the flow. Many methods have attempted to make these
methods more robust by changing the assumptions. A full
review would effectively cover the history of the field and
consequently we refer the reader to Sun et al. [38] for an
overview of classical methods. The key advantage of learn-
ing to compute flow, as we do here, is that we do not hand
craft changes in these assumptions. Rather, the variation in
image brightness and spatial smoothness are embodied in
the learned network.

The idea of using a spatial pyramid has a similarly long
history dating to [9] with its first use in the classical flow
formulation appearing in [[18]]. Typically Gaussian or Lapla-
cian pyramids are used for flow estimation with the primary
motivation to deal with large motions. Typical gradient-
based optical flow estimation relies on the computation of
spatial and temporal derivatives of the image sequence, im-
plemented as filters [24]. This formulation assumes that the
image motion is small. Through spatial smoothing and sub-
sampling, this small motion assumption holds at high levels
of the pyramid. A coarse-to-fine approach then estimates
the flow such that, at each pyramid level, the motion is up-
dated with an estimate that is assumed to be small.

These methods are well known to have problems when
small objects move quickly. To deal with this Brox et al. [7]
incorporate long range matching into the traditional optical
flow objective function. This approach of combining im-
age matching to capture large motions, with a variational



method for fine motions, can produce accurate results [32].
Alternatively, Sevilla et al. [36], replace the classical pyra-
mid with a channel representation in which the spatial pyra-
mid is effectively applied to segmented images, preserving
small structures at high levels of the pyramid.

Of course spatial pyramids are widely used in other ar-
eas of computer vision and have recently been used in deep
neural networks [[14] to learn generative image models.

Spatio temporal filters. Burt and Adelson [2] lay out the
theory of spatio-temporal models for motion estimation and
Heeger [22] provides a computational embodiment. While
inspired by human perception, such methods did not per-
form well at the time [6]].

Various methods have shown that spatio-temporal filters
emerge from learning, for example using independent com-
ponent analysis [44], sparseness [31]], and multi-layer mod-
els [[11]. Memisevic and Hinton learn simple spatial trans-
formations with a restricted Boltzmann machine [30], find-
ing a variety of filters. Taylor et al. [42] use synthetic data
to learn “flow like” features using a restricted Boltzmann
machine but do not evaluate flow accuracy. Han et al. [19]
propose a rich set of filters for representing a “video primal
sketch” but do not learn the filters or use them for estimating
optical flow.

Dosovitskiy et al. [15] learn spatio-temporal filters for
flow estimation using a deep neural network, yet these filters
do not resemble classical filters inspired by neuroscience.
By using a pyramid approach, here we learn filters that are
visually similar to classical spatio-temporal filters, yet be-
cause they are learned from data, produce good flow esti-
mates.

Learning to model and compute flow. Possibly the first
attempt to learn a model of optical flow is the work of Free-
man et al. [16]. They consider a simple synthetic world
of uniform moving blobs with ground truth flow. They vec-
tor quantize training patches and compute neighborhood co-
occurrence statistics. In an MRF, they perform belief prop-
agation to estimate flow using the learned model. The train-
ing data was not realistic and they did not apply the method
to real image sequences.

Roth and Black [33] learn a field-of-experts (FoE) model
to capture the spatial statistics of optical flow. The FoE can
be viewed as a (shallow) convolutional neural network. The
model is trained this using flow fields generated from laser
scans of real scenes and natural camera motions. They have
no images of the scenes (only their flow) and consequently
the method only learns the spatial component of the prob-
lem.

Sun et al. [13] describe the first fully learned model that
can be considered a shallow convolutional neural network.
They formulate a classical flow problem with a data term

and a spatial term. The spatial term uses the FoE model
from [33]], while the data term replaces traditional deriva-
tive filters with a set of convolutional image filters that are
learned from data. While the method improved over the
baseline, with limited training data and a small set of fil-
ters, it did not fully show the promise of learning for flow
estimation.

Waulff and Black [47] take a different approach to learn-
ing the spatial statistics of optical flow. They take real
(noisy) optical flow computed from natural movies and use
robust PCA [20]] to learn a global flow basis. While overly
smooth, they show that such a global model can be used to
compute reasonable flow relatively quickly.

Deep Learning. The above learning methods suffer from
limited training data and the use of shallow models. In con-
trast, deep convolutional neural networks have emerged as
a powerful class of models for solving recognition [21} 41]]
and dense estimation [[12} 27] problems in computer vision.
However, the such methods have been less successful for
estimating optical flow.

FlowNet [[15] represents the first deep convolutional ar-
chitecture for flow estimation that is trained end-to-end.
The network shows promising results, despite being trained
on an artificial dataset of chairs flying over randomly se-
lected images. Despite promising results, the method lags
behind the state of the art in terms of accuracy [15]. It
remains an open question as to which deep architectures
are most appropriate for the problem and how best to train
these.

Recent works attempt to learn to compute flow in an un-
supervised or semi-supervised fashion. Such methods have
not yet achieved good flow accuracy. For example, Math-
ieu et al. [29] train a convolutional network to predict fu-
ture video frames from past ones. The theory is that, if the
network is good at this task, it must have learned how to
compute optical flow. The model is tested, however, only
on frame prediction and not on optical flow estimation.

Tran et al. [43], use the output of a traditional flow
method to provide “semi-truth” training data for their 3D
convolutional network. The performance is below the state
of the art and the method is not tested on the standard bench-
mark test sets. There have also been several attempts at es-
timating optical flow using unsupervised learning [3| 48].
However these methods have lower accuracy on standard
benchmarks.

Fast flow. Several recent methods attempt to balance
speed and accuracy, with the goal of real-time processing
and reasonable (though not top) accuracy. GPU-flow [46]
began this trend but several methods now outperform it.
PCA-Flow [47] runs on a CPU, is slower than frame rate,
and produces overly smooth flow fields. EPPM [3]] achieves



Figure 1. Inference in a 3-Level Pyramid Network [[14]: The network Go computes the residual flow v at the highest level of the pyramid
(smallest image) using the low resolution images {I, I3}. At each pyramid level, the network G} computes a residual flow v;, which
propagates to each of the next lower levels of the pyramid in turn, to finally obtain the flow V5 at the highest resolution.

similar, middle-of-the-pack, performance on Sintel (test),
with similar speed on a GPU. Most recently DIS-Fast [26]
is a GPU method that is significantly faster than previous
methods but is also significantly less accurate.

In contrast, our method is significantly more accurate
than all the previous “fast” methods. CNN methods have an
advantage over traditional variational methods in that they
do not perform iterative optimization to propagate informa-
tion spatially. Our method is also significantly faster than
the best previous CNN flow method (FlowNet), which re-
ports a runtime of 80ms/frame for FlowNetS. The key to
our speed is to create a small neural network that fits en-
tirely on the GPU. Additionally all our pyramid operations
are implemented on the GPU.

Size is an important issue that has not attracted as much
attention as speed. For optical flow to exist on embed-
ded processors, aerial vehicles, phones, etc., the algorithm
needs a small memory footprint. Our network is 96%
smaller than FlowNetS and takes up only 9.7 MB for stor-
ing model parameters, making it easily small enough to fit
on a mobile phone GPU.

3. Spatial Pyramid Network

Our approach uses the coarse-to-fine spatial pyramid
structure of [14]] to learn residual flow at each pyramid level.
In the rest of the section, we describe our network and train-
ing procedure while summarizing the spatial pyramid struc-
ture of [14]).

3.1. Spatial Sampling

Let d(.) be the downsampling function that decimates
an m x n image I to the corresponding image d(I) of size
m/2xmn/2. Let u(.) be the reverse operation that upsamples
images. These operators are also used for downsampling

and upsampling the horizontal and vertical components of
the optical flow field, V. We also define a warping operator
w(I, V') that warps the image, I according to the flow field,
V', using bi-linear interpolation.

3.2. Inference

Let {Go, ..., Gk} denote a set of trained convolutional
neural network (convnet) models, each of which computes
residual flow, vy,

vp = Gr(Lp, w(IE, u(Ve—1)), u(Vi—1)) (1)

at the k-th pyramid level. The convnet G computes the
residual flow vy using the upsampled flow from the previ-
ous pyramid level, Vj_1, and the frames {/ ,i, I ,f} at level
k. The second frame I? is warped using the flow as
w(I2,u(Vi—1)) before feeding it to the convnet G. The
flow, V}, at the k-th pyramid level is then

Vi = u(Vi—1) + . (2

As shown in Fig. [I] we start with downsampled images
{1}, 13} and an initial flow estimate that is zero everywhere
to compute the residual flow vg = V), at the top of the pyra-
mid. We upsample the resulting flow, u(Vy), and pass it to
the network G'; along with {I}, w(I?,u(Vy))} to compute
the residual flow v;. At each pyramid level, we compute
the flow V}, using Equation (Z). The flow V}, is similarly
propagated to higher resolution layers of the pyramid until
we obtain the flow Vi at full resolution. Figure [I| shows
the working of our approach using a 3-level pyramid. In
practice, we use a 5-level pyramid (K = 4).

3.3. Training

We train each of the convnets {Gy, ..., Gk} indepen-
dently and sequentially to compute the residual flow vy
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Figure 2. Training Architecture: Training of network G, requires
trained models {Go...Gx—1} to obtain the initial flow u(V;_1).
We obtain ground truth residual flows ¢ by subtracting down-
sampled ground truth flow V3 and w(V%—1) to train the network
G/ using the EPE loss.

given the inputs {1}, w(IZ, u(Vk—_1)),u(Vi—1)}. We com-
pute target residual flows 0y, as a difference of target flow Vj,
at the k-th pyramid level and the upsampled flow, u(Vj_1)
obtained from the trained convnet of the previous level

ﬁk ==V% —-U(kal). (3)

As shown in Fig. |ZL we train each of the networks, Gy, to
minimize the average End Point Error (EPE) loss on the
residual flow vy,.

3.4. Network Architecture

Each level in the pyramid has a simplified task relative to
the full optical flow estimation problem; it only has to esti-
mate a small-motion update to an existing flow field. Conse-
quently each network can be relatively simple. Here, each
G has 5 convolutional layers. Each convolutional layer
is followed by a Rectified Linear Unit (ReLU), except the
last one. We use a 7x7 convolutional kernel for each of
the layers. The number of feature maps in each convnet,
Gy are {32, 64, 32, 16, 2}. The image I} and the warped
image w(I7,u(Vj—1)) have 3 channels each (RGB). The
upsampled flow u(V},_1) is 2 channel (horizontal and verti-
cal). We stack image frames together with upsampled flow
to form an 8 channel input to the network. The output is
2 channel flow corresponding to velocity in « and y direc-
tions.

We found five layers to be optimal during our experi-
ments, producing the best combination of accuracy, size,
and speed. Using fewer layers reduced accuracy, while us-
ing more did not produce improvements significant enough
to justify the increased memory and run time.

3.5. Implementation Details

We train five networks {Go, ..., G4} such that each net-
work G, uses the previous network G_1 as initialization.
The networks are trained using Adam [25] optimization
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Figure 3. Visualization of optical flow estimates using our model
(SPyNet) and the corresponding ground truth flow fields on the
Flying Chairs dataset.

with 81 = 0.9 and 85 = 0.999. We use a batch size of 32
across all networks with 4000 iterations per epoch. We use
a learning rate of le-4 for the first 60 epochs and decrease it
to 1e-5 until the networks converge. We use Torch7E| as our
deep learning framework. We use the Flying Chairs [15]]
dataset and the MPI Sintel [10] for training our network.
All our networks are trained on a single Nvidia K80 GPU.

4. Experiments

We evaluate our performance on standard optical flow
benchmarks and compare with the previous end-to-end deep
learning model for flow estimation, FlowNet [15]. We
show better performance than FlowNet on most standard
benchmarks with a 96% reduction in model parameters.
We also compare with Classic+NLP, which is a traditional
pyramid-based method and show significantly improved
performance in most cases, while being three orders of mag-
nitude faster.

We compare performance using average end point errors
in Table[Tl We evaluate on all the standard benchmarks and
find that SPyNet is the most accurate in 5 of the categories
tested, FlowNetS is most accurate in 3, and FlowNetC is
most accurate in 1. Additionally SPyNet is faster than all
other methods.

Note that the FlowNet results reported on the MPI-Sintel
site are for a version that applies variational refinement
(“4v”) to the convnet results. Here we are not interested
in the variational component, which could be additionally
applied ot the output of any convnet with similar results.

Zhttp://torch.ch/
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Figure 4. Visual comparison of optical flow estimates using our SPyNet model with FlowNet on the MPI Sintel dataset. The top six rows
are from the Sintel Final set and the bottom six row are from the Sintel Clean set. SPyNet performs particularly well when the motions are
relatively small.

Consequently, here we compare only on results of the con- 4.1. Flying Chairs
vnet output.
We train five convnets {Gy, ..., G4} at different reso-
lutions of the Flying Chairs dataset. The network Gy is



Method Sintel Clean | Sintel Final KITTI Middlebury | Flying Chairs | Time (s)
train  test | train  test | train test | train  test test
Classic+NLP | 4.13 6.73 | 590 8.29 - - 0.22 0.32 3.93 102
FlowNetS 450 7.42 | 545 843 | 8.26 - 1.09 - 2.71 0.080
FlowNetC 431 7.28 | 587 8.81 | 9.35 - 1.15 - 2.19 0.150
SPyNet 412 6.69 | 557 843 | 9.12 - 0.33 0.58 2.63 0.069
FlowNetS+ft | 3.66 696 | 444 17.76 | 7.52 9.1 | 0.98 - 3.04 0.080
FlowNetC+ft | 3.78 6.85 | 528 8.51 | 8.79 - 0.93 2.27 0.150
SPyNet+ft 3.17 6.64 | 432 836 | 825 10.1 | 0.33 0.58 3.07 0.069

Table 1. Comparison of average end point errors (EPE) with other methods. Results are divided into methods trained with (+ft) and without
fine tuning. Bold font indicates the most accurate results among the neural network methods. All times are measured on the Flying Chairs

dataset excluding image loading time.

Method Sintel Final Sintel Clean
do1o  dioeo  deo140  So10  S1040 S0+ | doio dioeo  deo-140  So-10  S10-40  Sd0+
FlowNetS+ft | 7.25 4.61 2.99 1.87 5.83 43.24 | 5.99 3.56 2.19 1.42 3.81 40.10
FlowNetC+ft | 7.19 4.62 3.30 2.30 6.17 40.78 | 5.57 3.18 1.99 1.62 397 33.37
SpyNet+ft 6.69 4.37 3.29 1.39 553 49.71 | 5.50 3.12 1.71 0.83 3.343 43.44

Table 2. Comparison of FlowNet and SpyNet on Sintel benchmarks for different velocities, s and displacement, d of regions from object

boundary.

trained with 24x32 images. We double the resolution at
each of the upper levels and finally train the convnet, G4
with a resolution of 384x512.

Data Augmentation We include data augmentation of
various sorts while training. We randomly scale images by
a factor of [1,2]. We sample rotations uniformly at ran-
dom within [—17°,17°]. We then apply a random crop
to match the resolution of the convnet, G being trained.
We include additive white Gaussian noise sampled uni-
formly from A(0,0.1). We apply color jitter with additive
brightness, contrast and saturation sampled from a Gaus-
sian, A/(0,0.4). We finally normalize the images using a
mean and standard deviation computed from a large sample
of Imagenet [34] data in [21].

Fine Tuning To compare with fine-tuned FlowNet, we
also evaluate our model with fine tuning. The fine-tuned
models are listed as “+ft” in Table[I] Once the convnets G,
are trained, we fine tune the network using the same Fly-
ing Chairs dataset but without any data augmentation at a
learning rate of le-6. We see an improvement of EPE by
0.14 on the test set. Our model achieves better performance
than FlowNetS [15] on the Flying Chairs dataset, however
FlowNetC[[15] performs better than ours. We show the qual-
itative results on Flying Chairs dataset in Fig.

4.2. MPI-Sintel

We evaluate the performance of our model on MPI-Sintel
[1Q] in two different ways. First, we directly use the model

trained on Flying Chairs dataset and evaluate our perfor-
mance on both the training and the test sets. The resolu-
tion of Sintel images is 436x1024. We scale the images
to 448x1024, and use 6 pyramid levels to compute the op-
tical flow. The networks used on each pyramid level are
{Go,G1,G2,G3,G4,Gy}. We repeat the network G4 at
the sixth level of pyramid for experiments on Sintel. Be-
cause Sintel has extremely large motions, we found that this
gives better performance than using just five levels.

Then, we extract a validation set from the Sintel training
set, using the same partition as [[15]. We fine tune our model
independently on the Sintel Clean and Sintel Final split, and
evaluate the EPE. We show the qualitative results on MPI-
Sintel in Fig. 4]

Table 2] compares our fine-tuned model with FlowNet
[15] for different velocities and distances from motion
boundaries. We observe that we are better than FlowNet for
all velocity ranges except the largest displacements. Our
model suffers in large displacement regions over 40 pixels.
SPyNet is also more accurate at all distances from motion
boundaries except when greater than 60 pixels away.

4.3. KITTI and Middlebury

The KITTI [17] and Middlebury [4] datasets are too
small for training or fine tuning. For these datasets, we eval-
uate the results with our model, SPyNet, trained with Flying
Chairs. We also evaluate the performance with SPyNet+ft
which is fine-tuned on the Sintel-Final dataset.

SPyNet is less accurate than FlowNet (with and without
fine tuning) on KITTI. We suspect that more training data
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Figure 5. Model size of various methods. Our model is smaller
by 96% compared to previous state of the art in end-to-end deep
learning.

resembling KITTI would help significantly. We note that
SPyNet is significantly more accurate, however, on Middle-
bury, where FlowNet has trouble with the small motions.
Note that both learned methods are still less accurate than
Classic+NL on Middlebury but both are also significantly
faster.

5. Analysis

We evaluate the performance of our model in terms of its
speed and accuracy in comparison to previous optical flow
methods. We compare our model size with previous deep
networks and interpret the our learned filters.

5.1. Model Size

Combining the spatial pyramid approach to flow estima-
tion with a convnet approach results in a huge reduction in
model complexity. At each pyramid level, a network, Gy,
has 240,050 parameters that are learned while training. The
total number of parameters learned by the entire network
is 1,200,250, with 5 spatial pyramid levels. In compari-
son, FlowNetS and FlowNetC [13] have 32,070,472 and
32,561,032 parameters respectively. Our model is smaller
by about 96 % in comparison; this is illustrated in Fig.

The spatial pyramid approach to learning optical flow
leads to a significant reduction of model parameters with-
out sacrificing accuracy. There are two reasons that con-
tribute to this reduction - the warping function and learning
of residual flow. The warping function is a non-linear func-
tion that stretches and squeezes the image according to the
flow field. It has been used widely in the optical flow liter-
ature to achieve state of the art performance. It might
be possible to learn this function with several layers of a
convolution network and enough data. By using the warp-
ing function directly, we reduce the parameters require to
model it in a convnet. More importantly, the residual learn-
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Figure 6. Visualization of filter weights in the first layer of G2
showing their spatiotemporal nature on RGB image pair.

ing restricts the range of flow fields that need to be learned
in the output space. As such, each of our networks only has
to model a smaller range of velocities at each level of the
spatial pyramid.

Our network as a small memory footprint. The disc
space required to store all the model parameters is 9.7 MB.
As such, it can be easily deployed to mobile devices and
tablets with GPU support. As a feedforward deep network,
our models could run in real-time on phones and small de-
vices.

5.2. Visualization of Learned Filters

To gain insight into the method and to relate it to prior
work on optical flow, we explore the filters learned by the
network. Figure [6] shows examples of filters learned by
the first layer of the network, G5. In each row, the first
two columns show the spatial filters that operate on the
RGB channels of the two input images respectively. The
third column is the difference between the two spatial fil-
ters hence representing the temporal features learned by our



model. We observe that most of the spatio-temporal fil-
ters in Fig. |6|are equally sensitive to all color channels, and
hence appear mostly grayscale. Note that the actual filters
are 7 x 7 pixels and here they are upsampled for visualiza-
tion.

We observe that many of the spatial filters appear to
be similar to traditional Gaussian derivative filters used by
classical methods. These classical filters are hand crafted
and typically are applied in the horizontal and vertical di-
rection. Here we observe a greater variety of derivative-like
filters of varied scales and orientations. We also observe fil-
ters that spatially resemble second derivative or Gabor fil-
ters [2]. The temporal filters show a clear derivative-like
structure in time.

Note that these filters are very different from those re-
ported in [I5] (Sup. Mat.), which have a high-frequency
structure, unlike classical filters.

Figure[7]illustrates how filters learned by the network at
each level of the pyramid differ from each other. Recall that,
during training, each network is initialized with the network
before it in the pyramid. The filters, however, do not stay
exactly the same with training. Most of the filters in our
network look like rows 1 and 2, where the filters become
sharper as we progress towards the finer-resolution levels of
the pyramid. However, there are some filters that are similar
to rows 3 and 4, where these filters become more defined at
higher resolution levels of the pyramid. There are very few
filters that appear to change completely across the pyramid
levels as seen in rows 5 and 6.

5.3. Speed

Optical flow estimation is traditionally viewed as an op-
timization problem involving some form of variational in-
ference. As a result, most of the optical flow algorithms
are often computationally expensive, taking several seconds
or minutes per frame. Arguably this has limited the appli-
cation of optical flow in robotics, embedded systems, and
video analysis.

Using a GPU can improve speed of traditional meth-
ods [46] 40] but with reduced accuracy. Feed forward deep
networks [[15] leverage fast GPU convolutions to speed up
computations and look like the most promising methods to
balance speed and accuracy. Of course for embedded appli-
cations, network size becomes critical (see Fig. EI)

To our knowledge, SPyNet is the fastest optical flow
method with an accuracy in the range of popular methods.
Figure [§] shows the speed-accuracy comparisons of several
well known methods. All times shown are measured with
the images already loaded in the memory. The errors are
computed as the average EPE of both the clean and final
MPI-Sintel sequences.

'-
- * -
dw—

Level O Level 1 Level 2 Level 3 Level 4

Figure 7. Evolution of filters across the pyramid levels (from low
resolution (0) to high resolution (4))

6. Discussion

A traditional approach for minimizing brightness con-
stancy error linearizes the brightness constancy equation us-
ing a first-order Taylor series. Such methods rely on a small
set of linear filters: two spatial derivative filters in x and
y and a temporal derivative. Sometimes, they add a more
generic filter constancy assumption [[I} [§]. These methods
all rely on iterative optimization to minimize an error func-
tion.

Here, the filters are somewhat different. Instead of a
small number, we learn a large filter bank and use them dif-
ferently. There is no explicit iterative optimization. Rather,
here the set of filters are used in the direct computation of
the flow by the feed-forward network.

We also note that there is a long literature on learning or
modeling filters for optical flow [33]. We note that our first
level 7x7 filters typically have a larger spatial extent than
most filters currently used on optical flow methods.

The network we learn is small compared with other re-
cent optical flow networks. Examination of the filters, how-
ever, suggests that it might be possible to make it signifi-
cantly smaller still. Many of the filters resemble derivative
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Figure 8. Average EPE vs. runtime on MPI-Sintel. EPE computed
as the average of the clean and final passes. Zoomed in version on
the bottom shows just the fastest methods. Adapted from [47]].

of Gaussian filters or Gabor filters at various scales, orien-
tations, spatial frequencies, and spatial shifts. Given this, it
may be possible to significantly compress the filter bank by
using dimensionality reduction or by using a set of analytic
spatio-temporal features.

Early methods for optical flow used analytic spatio-
temporal features but, at the time, did not produce good
results and the general line of spatio-temporal filtering de-
cayed. The difference from early work is that our approach
suggests the need for a large filter bank of varied filters.
Note also that these approaches considered only the first
convolutional layer of filters and did not seek a “deep” solu-
tion. This all suggests the possibility that a deep network of
analytic filters could perform well. This could vastly reduce
the size of the network and the number of parameters that
need to be learned. In the spatial domain, for example, there
is work relating the filters of convnets to wavelets [28]].

Note that pyramids have well-known limitations for
dealing with large motions [7, 36]. In particular, small
or thin objects that move quickly effectively disappear at
coarse pyramid levels, making it impossible for the pyra-
mid to capture their motion. Recent approaches for dealing
with such large motions use sparse matching to augment
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standard pyramids [45] [7]. This suggests training a sep-
arate network for the task of large motion estimation and
combining this with our SPyNet. Alternatively Sevilla et
al. [36] define a different kind of image representation that,
when used in a pyramid, preserves fine structures; perhaps
this could be learned.

7. Future

Future work should extend the method to use more
frames (e.g. 3 or 4). This should enable the model to learn
richer temporal filters and, for small motions, this might
lead to more accurate results. Multiple frames could also
enable the network to reason more explicitly about occlu-
sion.

A spatial pyramid can be thought of as the simple ap-
plication of a set of linear filters. Here we take a standard
spatial pyramid but one could learn the filters for the pyra-
mid itself. SPyNet also uses a standard warping function
to align images using the flow computed from the previous
pyramid level. This too could be learned.

Here we trained the network in a sequential fashion. Bet-
ter results are likely if the full network can be trained end-
to-end. The pyramid down- and up-sampling operations
linear functions so they are easy to learn. Image warping,
however, is non-linear in the optical flow, complicating the
propagation of derivatives through the full pyramid and all
the networks.

One appealing feature of SPyNet is that it is small
enough to fit on a mobile device. Future work will explore
a mobile implementation and its applications.

Finally, Flying Chairs may not be the best dataset for
learning our network since it contains many huge displace-
ments that are too large for classical pyramid approaches to
capture. Such motions occur in animated films like Sintel
but less often in real scenes. We are exploring new train-
ing datasets to improve performance on more standard se-
quences where the motion is less dramatic.

8. Conclusions

In summary, we have described a new optical flow
method that combines features of classical optical flow al-
gorithms with deep learning. In a sense, there are two no-
tions of “deepness” here. First we use a “deep” spatial
pyramid to deal with large motions. Second we use deep
neural networks at each level of the spatial pyramid and
train them to estimate a flow update at each level. This ap-
proach means that each network has less work to do than
a fully generic flow method that has to estimate arbitrar-
ily large motions. At each pyramid level we assume that
the motion is small (on the order of a pixel). This is borne
out by the fact that the network learns spatial and temporal
filters that resemble classical derivatives of Gaussians and



Gabors. Because each sub-task is so much simpler, our net-
work needs many fewer parameters than previous methods
like FlowNet. This results in a method that is small enough
to fit on the phone and that is faster than existing methods.
At the same time, SPyNet achieves an accuracy that is com-
parable to FlowNet or surpasses it in several benchmarks.
This opens up the promise of optical flow that is both accu-
rate, practical, and widely deployable.
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