UnrealCV: Connecting Computer Vision to
Unreal Engine

Weichao Qiu, Alan Yuille

Johns Hopkins University, Baltimore, MD, USA
{qiuwch, alan.l.yuille}@gmail.com

Abstract. Computer graphics can not only generate synthetic images
and ground truth but it also offers the possibility of constructing virtual
worlds in which: (i) an agent can perceive, navigate, and take actions
guided by AI algorithms, (ii) properties of the worlds can be modified
(e.g., material and reflectance), (iii) physical simulations can be per-
formed, and (iv) algorithms can be learnt and evaluated. But creating
realistic virtual worlds is not easy. The game industry, however, has spent
a lot of effort creating 3D worlds, which a player can interact with. So re-
searchers can build on these resources to create virtual worlds, provided
we can access and modify the internal data structures of the games. To
enable this we created an open-source plugin UnrealC I/E| for a popular
game engine Unreal Engine 4 (UE4). We show two applications: (i) a
proof of concept image dataset, and (ii) linking Caffe with the virtual
world to test deep network algorithms.

1609.01326v1 [cs.CV] 5 Sep 2016

5 1 Introduction

><Computer vision has benefitted enormously from large datasets[7l]]. They en-
aable the training and testing of complex models such as deep networks[I3]. But
performing annotation is costly and time consuming so it is attractive to make
synthetic datasets which contain large amounts of images and detailed annota-
tion. These datasets are created by modifying open-source movies[2] or by con-
structing a 3D world[I7/9]. Researchers have shown that training on synthetic
images is helpful for real world tasks[I8IT6ITTIT4I2T]. Robotics researchers have
gone further by constructing 3D worlds for robotics simulation, but they em-
phasize physical accuracy rather than visual realism. This motivates the design
of realistic virtual worlds for computer vision where an agent can take actions
guided by AT algorithms, properties of the worlds can be modified, physical sim-
ulations can be performed, and algorithms can be trained and tested. Virtual
worlds have been used for autonomous driving[5], naive physics simulations]I]
and evaluating surveillance system[I9]. But creating realistic virtual worlds is
time consuming.
The video game industry has developed many tools for constructing 3D
worlds, such as libraries of 3D object models. These 3D worlds are already real-
istic and the popularity of games and Virtual Reality (VR) drives towards even

! Project website: http://unrealcv.github.io



2 Weichao Qiu, Alan Yuille

greater realism. So modifying games and movies is an attractive way to make
virtual worlds[5]. But modifying individual games is time-consuming and almost
impossible for proprietary games. Hence our strategy is to modify a game en-
gine, so that all the games built on top of it can be used. We develop a tool,
UnrealCV, which can be used in combination with a leading game engine, Un-
real Engine 4 (UE4), to use the rich resources in the game industry. UnrealCV
can also be applied to 3D worlds created for virtual reality, architecture visual-
ization, and computer graphics movies, provided they have been created using
UE4. More precisely, UnrealCV provides an UE4 plugin. If a game, or any 3D
world, is compiled with this plugin then we can create a virtual world where we
can access and modify the internal data structures. This allows us to connect Al
programs, like Caffe, to it and use a set of commands provided by UnrealCV to
obtain groundtruth, control an agent, and so on. Fig. [[|shows a synthetic image
and its ground truth generated using UnrealCV.

We stress that we provide an open-source tool to help create new virtual
worlds, which differs from work which produces a single virtual world[5] or cre-
ates synthetic datasets[I7J9]. We hope that our work can help build a bridge
between Unreal Engine and computer vision researchers.

Fig. 1. A synthetic image and its ground truth generated using UnrealCV. The virtual
room is from technical demo RealisticRendering, built by Epic Games. From left to
right are the synthetic image, object instance mask, depth, surface normal

2 Related Work

Virtual worlds have been widely used in robotics research and many robotics sim-
ulators have been built[12]20]. But these focus more on physical accuracy than
visual realism, which makes them less suitable for computer vision researchers.
Unreal Engine 2 (UE2) was used for robotics simulation in USARSim[3], but
UE2 is no longer available and USARSim is no longer actively maintained.

Computer vision researchers have created large 3D repositories and virtual
scenes[4I0IT56]. Note that these 3D resources can be used in the combined
Unreal Engine and UnrealCV system.

Games and movies have already been used in computer vision research. An
optical flow dataset was generated from the open source movie Sintel[2]. TORCS,
an open source racing game, was converted into a virtual world and used to train
an autonomous driving system[5]. City scenes were built[I7[9] using the Unity
game engine to produce synthetic images. By contrast, UnrealCV extends the
functions of Unreal Engine and provides a tool for creating virtual worlds instead
of generating a synthetic image/video dataset or producing a single virtual world.



UnrealCV: Connecting Computer Vision to Unreal Engine 3

3 Unreal Engine

A game engine contains the components shared by many video games, such
as rendering code and design tools. Games built using a game engine combine
components from the engine with the game logic and 3D models. So modifying
a game engine can affect all games built on top of it.

Fig. 2. Images produced by UE4, (a)(b) An architectural visualization and an urban
city scene from Unreal Engine marketplace. (¢) An open-source outdoor scene KiteRun-
ner. (d) A digital human from the game Hellblade, shown in the conference GDC2016

We chose UE4 as our platform for these reasons: (I) It is fully open-source
and can be easily modified for research. (II) It has the ability to produce realistic
images, see Fig. [2l (III) It provides nice tools and documentation for creating
a virtual world. These tools integrate well with other commercial software and
well maintained. (IV) It has a broad impact beyond the game industry and
is a popular choice for VR and architectural visualization, so high-quality 3D
contents are easily accessible.

4 UnrealCV

UE4 was designed to create video games. To use it to create virtual worlds, a few
modifications are required: (I) The camera should be programmably controlled,
instead of by the keyboard and mouse, so that an agent can explore the world.
(IT) The internal data structure of the game needs to be accessed in order to
generate ground truth. (III) We should be able to modify the world properties,
such as lighting and material.

UnrealCV extends the function of UE4 to help create virtual worlds. More
specifically, UnrealCV achieves this goal by a plugin for UE4. Compiling a game
with the plugin installed embeds computer vision related functions to produce
a virtual world. Any external program can communicate with this virtual world
and use a set of commands provided by UnrealCV to perform various tasks. For
example, the command vget /camera/0O/rotation can retrieve the rotation of
the first camera in the scene.

Architecture

UnrealCV consists of two parts. The first is the UnrealCV server, which is
embedded into a virtual world to access its internal data structure. The second
is the UnrealCV client whose function is provided by a library which can be
integrated into any external program, like Caffe, enabling the program to send



4 Weichao Qiu, Alan Yuille

commands defined by UnrealCV to the server to perform various tasks. The
architecture is shown in Fig. [3]

Games Computer Vision Algorithm
UnrealCV Command UnrealCV
Server Code Response Client Code

Fig. 3. The UnrealCV server is an UE4 plugin embedded into a game during compila-
tion. An external program uses the UnrealCV client to communicate with the game.

The UnrealCV server is an UE4 plugin. After installing the plugin to UE4,
the UnrealCV server code will be embedded into a game during compilation.
The server will start when the game launches and wait for commands. The
UnrealCV client uses a socket to communicate with the server. We implemented
the client code for Python and MATLAB. Socket is a method of communicating
between programs and is universal across programming languages and operating
systems. So it is easy to implement a client for any language and platform that
can support socket.

The server and client communicate using a plain text protocol. The client
sends an UnrealCV command to the server and waits for a response. The com-
mand can be used to do various tasks. It can apply force to an object; can modify
the world by changing the lighting or object position; can get images and an-
notation from the world. For example, the commands vget /camera/0/image
and vget /camera/0/depth can get the image and depth ground truth. The
command will save image as PNG file and return its filename. Depth will be
saved as high dynamical range (HDR) image file, since the pixel value of PNG is
limited within [0...255]. The command vset /camera/0/position 0 0 O sets
the camera position to [0, 0, 0]. An UnrealCV command contains two parts.
The first part is an action which can be either vget or vset. The vget means
getting information from the scene without changing anything and vset means
changing some property of the world. The second part is an URI (Uniform Re-
source Identifier) representing something that UnrealCV can control. The URI
is designed in a hierarchical modular structure which can be easily extended.
Features The design of UnrealCV gives it three features:

Extensiblity: The commands are defined in a hierarchical modular way. Set-
ting the light intensity can be achieved by vset /light/[name]/intensity
to change the light color, a new command vset /light/[name]/color can be
added without affecting the existing commands. UnrealCV is open-source and
can be extended by us or other researchers.

Ease of Use: Since we provide compiled binaries of some virtual worlds, such
as a realistic indoor room, using UnrealCV is as simple as downloading a game
and running it. Hence researchers can use UnrealCV without knowledge of UEA4.
The design supports cross-platform and multi-languages (Python, MATLAB).
It is straightforward to integrate UnrealCV with external programs and we show
an example with Caffe in Sec.



UnrealCV: Connecting Computer Vision to Unreal Engine 5

Rich Resources: UnrealCV only uses the standard Application Programming
Interface (API) of UE4, making it compatible with games built with UE4. We
will provide virtual worlds with UnrealCV integrated and also host a model zoo
to share virtual worlds created by the community.

5 Applications

In this section we created a virtual world based on the UE4 technical demo
RealisticRenderingEl which contains an indoor room with sofa, TV, table, book-
shelves, floor lamp, etc. The virtual world can be downloaded from our project
website. We demonstrate two applications of this virtual world in this section.
Generating a synthetic image dataset

We use a script to generate a synthetic image dataset from the virtual world.
Images are taken using random camera positions. The camera is set to two dif-
ferent heights, human eye level and a Roomba robot level. The lighting, material
property and object location can also be changed to increase the variety of the
data, or to diagnose the strengths and weaknesses of an algorithm. Images with
different camera height and sofa color can be seen in Fig. [d] Ground truth, such
as depth, surface normals and object instance masks, is generated together with
the images, shown in Fig. [I| The ability to generate rich ground truth is partic-
ularly useful for training and testing algorithms which perform multiple tasks
and for detailed understanding of a scene. The UnrealCV commands used to
generate this synthetic image dataset are shown in Alg. [I] The synthetic images
are on our website and a tutorial shows how to generate them step-by-step.

e
¢

Fig. 4. Images with different camera height and different sofa color.

Algorithm 1: Generate a synthetic image dataset from a virtual world

vget /objects ; // Get objects information
for all camera position do
/* Set the virtual camera position */

vset /camera/0/location [x] [y] [z];
vset /camera/0/rotation [yaw] [pitch] [roll];
/* Get image and ground truth */
vget /camera/0/image;
vget /camera/0/depth, vget /camera/0/object_mask;
end

2 https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/


https://docs.unrealengine.com/latest/INT/Resources/Showcases/RealisticRendering/

6 Weichao Qiu, Alan Yuille

Diagnosing a deep network algorithm

We take a Faster-RCNN modelP] trained on PASCAL and test it in the virtual
world by varying rendering configurations. The testing code uses the UnrealCV
client to control the camera in the virtual world and the Faster-RCNN code tries
to detect the sofa from different views. We moved the position of the camera but
constrained it to always point towards the sofa shown in Fig.[d] We got the object
instance mask of the sofa and converted it into ground truth bounding box for
evaluation. Human subject can easily detect the sofa from all the viewpoints. The
Average Precision (AP) result shows surprisingly large variation as a function of
viewpoint, see Tab. |1} For each az/el combination, the distance from the camera
to the sofa was varied from 200cm to 290cm. The symbol “-” means the sofa is
not visible from this viewpoint. More generally, we can vary parameters such as
lighting, occlusion level, and camera viewpoint to thoroughly test an algorithm.

) Azmuth |0 a0 qgh 995 970
Elevation

0 0713 0.769 0.930 0.319

30 0.900 1.000 0.588 1.000 0.710

60 0.255 0.100 0.148 0.296 0.649

Table 1. The Average Precision (AP) when viewing the sofa from different viewpoints.
Observe the AP varies from 0.1 to 1.0 showing the sensitivity to viewpoint. This is per-
haps because the biases in the training cause Faster-RCNN to favor specific viewpoints.

6 Conclusion

This paper has presented a tool called Unreal CV which can be plugged into the
game engine UE4 to help construct realistic virtual worlds from the resources of
the game, virtual reality, and architecture visualization industries. These virtual
worlds allow us to access and modify the internal data structures enabling us
to extract groundtruth, control an agent, and train and test algorithms. Using
virtual worlds for computer vision still has challenges, e.g., the variability of
3D content is limited, internal structure of 3D mesh is missing, realistic physics
simulation is hard, and transfer from synthetic images remains an issue. But more
realistic 3D contents will be available soon due to the advance of technology and
the rising field of VR. As an industry leader, UE4 will benefit from this trend.
UnrealCV is an open-source tool and we hope other researchers will use it and
contribute to it.

Acknowledgment We would like to thank Yi Zhang, Austin Reiter, Vittal
Premachandran, Lingxi Xie and Siyuan Qiao for discussion and feedback. This
project is supported by the Intelligence Advanced Research Projects Activity
(IARPA) with contract D16PC00007.

3 We use the implementation: https://github.com/rbgirshick/py-faster-rcnn


https://github.com/rbgirshick/py-faster-rcnn

UnrealCV: Connecting Computer Vision to Unreal Engine 7

References

10.

11.

12.

13.

14.

15.

16.

17.

. Battaglia, P.W., Hamrick, J.B., Tenenbaum, J.B.: Simulation as an engine of physi-

cal scene understanding. Proceedings of the National Academy of Sciences 110(45),
18327-18332 (2013)

Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie
for optical flow evaluation. In: European Conference on Computer Vision. pp. 611—
625. Springer (2012)

Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: Usarsim: a robot
simulator for research and education. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation. pp. 1400-1405. IEEE (2007)

Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: Learning affordance for
direct perception in autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 2722-2730 (2015)

Choi, S., Zhou, Q.Y., Miller, S., Koltun, V.: A large dataset of object scans. arXiv
preprint arXiv:1602.02481 (2016)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on. pp. 248-255. IEEE (2009)

Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal
visual object classes (voc) challenge. International journal of computer vision 88(2),
303-338 (2010)

Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object
tracking analysis. arXiv preprint arXiv:1605.06457 (2016)

Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: Scenenet:
Understanding real world indoor scenes with synthetic data. arXiv preprint
arXiv:1511.07041 (2015)

Hattori, H., Naresh Boddeti, V., Kitani, K.M., Kanade, T.: Learning scene-specific
pedestrian detectors without real data. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 3819-3827 (2015)

Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: Intelligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on. vol. 3, pp. 2149-2154. IEEE
(2004)

Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097-1105 (2012)

Marin, J., Vazquez, D., Gerénimo, D., Lépez, A.M.: Learning appearance in virtual
scenarios for pedestrian detection. In: Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on. pp. 137-144. IEEE (2010)

Mottaghi, R., Rastegari, M., Gupta, A., Farhadi, A.: 7 what happens if...” learning
to predict the effect of forces in images. arXiv preprint arXiv:1603.05600 (2016)
Peng, X., Sun, B., Ali, K., Saenko, K.: Learning deep object detectors from 3d
models. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 1278-1286 (2015)

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia
dataset: A large collection of synthetic images for semantic segmentation of urban



18.

19.

20.

21.

Weichao Qiu, Alan Yuille

scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3234-3243 (2016)

Su, H., Qi, C.R., Li, Y., Guibas, L.J.: Render for cnn: Viewpoint estimation in
images using cnns trained with rendered 3d model views. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 2686-2694 (2015)
Taylor, G.R., Chosak, A.J., Brewer, P.C.: Ovvv: Using virtual worlds to design
and evaluate surveillance systems. In: 2007 IEEE Conference on Computer Vision
and Pattern Recognition. pp. 1-8. IEEE (2007)

Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 5026-5033. IEEE (2012)

Vazquez, D., Lopez, A.M., Marin, J., Ponsa, D., Geronimo, D.: Virtual and real
world adaptation for pedestrian detection. IEEE transactions on pattern analysis
and machine intelligence 36(4), 797-809 (2014)



	UnrealCV: Connecting Computer Vision to Unreal Engine

