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Abstract

This paper considers the task of articulated human pose
estimation of multiple people in real world images. We pro-
pose an approach that jointly solves the tasks of detection
and pose estimation: it infers the number of persons in a
scene, identifies occluded body parts, and disambiguates
body parts between people in close proximity of each other.
This joint formulation is in contrast to previous strategies,
that address the problem by first detecting people and subse-
quently estimating their body pose. We propose a partition-
ing and labeling formulation of a set of body-part hypotheses
generated with CNN-based part detectors. Our formulation,
an instance of an integer linear program, implicitly performs
non-maximum suppression on the set of part candidates and
groups them to form configurations of body parts respect-
ing geometric and appearance constraints. Experiments on
four different datasets demonstrate state-of-the-art results
for both single person and multi person pose estimation1.

1. Introduction
Human body pose estimation methods have become in-

creasingly reliable. Powerful body part detectors [36] in
combination with tree-structured body models [37, 7] show
impressive results on diverse datasets [21, 3, 33]. These
benchmarks promote pose estimation of single pre-localized
persons but exclude scenes with multiple people. This prob-
lem definition has been a driver for progress, but also falls
short on representing a realistic sample of real-world images.
Many photographs contain multiple people of interest (see
Fig 1) and it is unclear whether single pose approaches gen-
eralize directly. We argue that the multi person case deserves
more attention since it is an important real-world task.

Key challenges inherent to multi person pose estimation

1Models and code available at http://pose.mpi-inf.mpg.de

12
3

4
5

6

12

3

4

5

6

1
2

4

6

1 3

5

6

1

2
3

4
5

6

1 3

5

6

1

6

(a) (b) (c)
Figure 1. Method overview: (a) initial detections (= part candidates)
and pairwise terms (graph) between all detections that (b) are jointly
clustered belonging to one person (one colored subgraph = one
person) and each part is labeled corresponding to its part class
(different colors and symbols correspond to different body parts);
(c) shows the predicted pose sticks.

are the partial visibility of some people, significant overlap
of bounding box regions of people, and the a-priori unknown
number of people in an image. The problem thus is to in-
fer the number of persons, assign part detections to person
instances while respecting geometric and appearance con-
straints. Most strategies use a two-stage inference process
[29, 18, 35] to first detect and then independently estimate
poses. This is unsuited for cases when people are in close
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proximity since they permit simultaneous assignment of the
same body-part candidates to multiple people hypotheses.

As a principled solution for multi person pose estimation
a model is proposed that jointly estimates poses of all people
present in an image by minimizing a joint objective. The
formulation is based on partitioning and labeling an initial
pool of body part candidates into subsets that correspond to
sets of mutually consistent body-part candidates and abide to
mutual consistency and exclusion constraints. The proposed
method has a number of appealing properties. (1) The for-
mulation is able to deal with an unknown number of people,
and also infers this number by linking part hypotheses. (2)
The formulation allows to either deactivate or merge part hy-
potheses in the initial set of part candidates hence effectively
performing non-maximum suppression (NMS). In contrast
to NMS performed on individual part candidates, the model
incorporates evidence from all other parts making the pro-
cess more reliable. (3) The problem is cast in the form of
an Integer Linear Program (ILP). Although the problem is
NP-hard, the ILP formulation facilitates the computation of
bounds and feasible solutions with a certified optimality gap.

This paper makes the following contributions. The main
contribution is the derivation of a joint detection and pose
estimation formulation cast as an integer linear program. Fur-
ther, two CNN variants are proposed to generate representa-
tive sets of body part candidates. These, combined with the
model, obtain state-of-the-art results for both single-person
and multi-person pose estimation on different datasets.
Related work. Most work on pose estimation targets the
single person case. Methods progressed from simple part
detectors and elaborate body models [32, 31, 19] to tree-
structured pictorial structures (PS) models with strong part
detectors [28, 42, 7, 33]. Impressive results are obtained pre-
dicting locations of parts with convolutional neural networks
(CNN) [38, 36]. While body models are not a necessary
component for effective part localization, constraints among
parts allow to assemble independent detections into body
configurations as demonstrated in [7] by combining CNN-
based body part detectors with a body model [42].

A popular approach to multi-person pose estimation is to
detect people first and then estimate body pose independently
[35, 29, 42, 18]. [42] proposes a flexible mixture-of-parts
model for detection and pose estimation. [42] obtains mul-
tiple pose hypotheses corresponding to different root part
positions and then performing non-maximum suppression.
[18] detects people using a flexible configuration of poselets
and the body pose is predicted as a weighted average of acti-
vated poselets. [29] detects people and then predicts poses
of each person using a PS model. [5] estimates poses of mul-
tiple people in 3D by constructing a shared space of 3D body
part hypotheses, but uses 2D person detections to establish
the number of people in the scene. These approaches are
limited to cases with people sufficiently far from each other

that do not have overlapping body parts.
Our work is closely related to [13, 25] who also propose

a joint objective to estimate poses of multiple people. [13]
proposes a multi-person PS model that explicitly models
depth ordering and person-person occlusions. Our formula-
tion is not limited by a number of occlusion states among
people. [25] proposes a joint model for pose estimation and
body segmentation coupling pose estimates of individuals
by image segmentation. [13, 25] uses a person detector to
generate initial hypotheses for the joint model. [25] resorts
to a greedy approach of adding one person hypothesis at a
time until the joint objective can be reduced, whereas our
formulation can be solved with a certified optimality gap.
In addition [25] relies on expensive labeling of body part
segmentation, which the proposed approach does not require.

Similarly to [8] we aim to distinguish between visible
and occluded body parts. [8] primarily focuse on the single-
person case and handles multi-person scenes akin to [42].
We consider the more difficult problem of full-body pose
estimation, whereas [13, 8] focus on upper-body poses and
consider a simplified case of people seen from the front.

Our work is related to early work on pose estimation
that also relies on integer linear programming to assemble
candidate body part hypotheses into valid configurations [19].
Their single person method employs a tree graph augmented
with weaker non-tree repulsive edges and expects the same
number of parts. In contrast, our novel formulation relies
on fully connected model to deal with unknown number of
people per image and body parts per person.

The Minimum Cost Multicut Problem [9, 11], known in
machine learning as correlation clustering [4], has been used
in computer vision for image segmentation [1, 2, 23, 43] but
has not been used before in the context of pose estimation.
It is known to be NP-hard [10].

2. Problem Formulation
In this section, the problem of estimating articulated poses

of an unknown number of people in an image is cast as an
optimization problem. The goal of this formulation is to state
three problems jointly: 1. The selection of a subset of body
parts from a set D of body part candidates, estimated from
an image as described in Section 4 and depicted as nodes of a
graph in Fig. 1(a). 2. The labeling of each selected body part
with one of C body part classes, e.g., “arm”, “leg”, “torso”,
as depicted in Fig. 1(c). 3. The partitioning of body parts
that belong to the same person, as depicted in Fig. 1(b).

2.1. Feasible Solutions

We encode labelings of the three problems jointly through
triples (x, y, z) of binary random variables with domains

x ∈ {0, 1}D×C , y ∈ {0, 1}
(
D
2

)
and z ∈ {0, 1}

(
D
2

)
×C2

.
Here, xdc = 1 indicates that body part candidate d is of



class c, ydd′ = 1 indicates that the body part candidates d
and d′ belong to the same person, and zdd′cc′ are auxiliary
variables to relate x and y through zdd′cc′ = xdcxd′c′ydd′ .
Thus, zdd′cc′ = 1 indicates that body part candidate d is
of class c (xdc = 1), body part candidate d′ is of class c′

(xd′c′ = 1), and body part candidates d and d′ belong to the
same person (ydd′ = 1).

In order to constrain the 01-labelings (x, y, z) to well-
defined articulated poses of one or more people, we impose
the linear inequalities (1)–(3) stated below. Here, the in-
equalities (1) guarantee that every body part is labeled with
at most one body part class. (If it is labeled with no body part
class, it is suppressed). The inequalities (2) guarantee that
distinct body parts d and d′ belong to the same person only if
neither d nor d′ is suppressed. The inequalities (3) guarantee,
for any three pairwise distinct body parts, d, d′ and d′′, if d
and d′ are the same person (as indicated by ydd′ = 1) and
d′ and d′′ are the same person (as indicated by yd′d′′ = 1),
then also d and d′′ are the same person (ydd′′ = 1), that is,
transitivity, cf. [9]. Finally, the inequalities (4) guarantee, for
any dd′ ∈

(
D
2

)
and any cc′ ∈ C2 that zdd′cc′ = xdcxd′c′ydd′ .

These constraints allow us to write an objective function as
a linear form in z that would otherwise be written as a cubic
form in x and y. We denote by XDC the set of all (x, y, z)
that satisfy all inequalities, i.e., the set of feasible solutions.

∀d ∈ D∀cc′ ∈
(
C
2

)
: xdc + xdc′ ≤ 1 (1)

∀dd′ ∈
(
D
2

)
: ydd′ ≤

∑
c∈C

xdc

ydd′ ≤
∑
c∈C

xd′c (2)

∀dd′d′′ ∈
(
D
3

)
: ydd′ + yd′d′′ − 1 ≤ ydd′′ (3)

∀dd′ ∈
(
D
2

)
∀cc′ ∈ C2 : xdc + xd′c′ + ydd′ − 2 ≤ zdd′cc′

zdd′cc′ ≤ xdc
zdd′cc′ ≤ xd′c′
zdd′cc′ ≤ ydd′ (4)

When at most one person is in an image, we further
constrain the feasible solutions to a well-defined pose of a
single person. This is achieved by an additional class of
inequalities which guarantee, for any two distinct body parts
that are not suppressed, that they must be clustered together:

∀dd′ ∈
(
D
2

)
∀cc′ ∈ C2 : xdc + xd′c′ − 1 ≤ ydd′ (5)

2.2. Objective Function

For every pair (d, c) ∈ D × C, we will estimate a proba-
bility pdc ∈ [0, 1] of the body part d being of class c. In the
context of CRFs, these probabilities are called part unaries
and we will detail their estimation in Section 4.

For every dd′ ∈
(
D
2

)
and every cc′ ∈ C2, we consider a

probability pdd′cc′ ∈ (0, 1) of the conditional probability of

d and d′ belonging to the same person, given that d and d′ are
body parts of classes c and c′, respectively. For c 6= c′, these
probabilities pdd′cc′ are the pairwise terms in a graphical
model of the human body. In contrast to the classic pictorial
structures model, our model allows for a fully connected
graph where each body part is connected to all other parts in
the entire set D by a pairwise term. For c = c′, pdd′cc′ is the
probability of the part candidates d and d′ representing the
same part of the same person. This facilitates clustering of
multiple part candidates of the same part of the same person
and a repulsive property that prevents nearby part candidates
of the same type to be associated to different people.

The optimization problem that we call the subset partition
and labeling problem is the ILP that minimizes over the set
of feasible solutions XDC :

min
(x,y,z)∈XDC

〈α, x〉+ 〈β, z〉, (6)

where we used the short-hand notation

αdc := log
1− pdc
pdc

(7)

βdd′cc′ := log
1− pdd′cc′
pdd′cc′

(8)

〈α, x〉 :=
∑
d∈D

∑
c∈C

αdc xdc (9)

〈β, z〉 :=
∑

dd′∈
(
D
2

) ∑
c,c′∈C

βdd′cc′ zdd′cc′ . (10)

The objective (6)–(10) is the MAP estimate of a prob-
ability measure of joint detections x and clusterings y, z
of body parts, where prior probabilities pdc and pdd′cc′ are
estimated independently from data, and the likelihood is a
positive constant if (x, y, z) satisfies (1)–(4), and is 0, other-
wise. The exact form (6)–(10) is obtained when minimizing
the negative logarithm of this probability measure.

2.3. Optimization

In order to obtain feasible solutions of the ILP (6) with
guaranteed bounds, we separate the inequalities (1)–(5) in
the branch-and-cut loop of the state-of-the-art ILP solver
Gurobi. More precisely, we solve a sequence of relaxations
of the problem (6), starting with the (trivial) unconstrained
problem. Each problem is solved using the cuts proposed
by Gurobi. Once an integer feasible solution is found, we
identify violated inequalities (1)–(5), if any, by breadth-first-
search, add these to the constraint pool and re-solve the
tightened relaxation. Once an integer solution satisfying
all inequalities is found, together with a lower bound that
certifies an optimality gap below 1%, we terminate.

3. Pairwise Probabilities
Here we describe the estimation of the pairwise terms.

We define pairwise features fdd′ for the variable zdd′cc′



(Sec. 2). Each part detection d includes the probabilities
fpdc

(Sec. 4.4), its location (xd, yd), scale hd and bound-
ing box Bd coordinates. Given two detections d and d′,
and the corresponding features (fpdc

, xd, yd, hd, Bd) and
(fpd′c , xd′ , yd′ , hd′ , Bd′), we define two sets of auxiliary
variables for zdd′cc′ , one set for c = c′ (same body part class
clustering) and one for c 6= c′ (across two body part classes
labeling). These features capture the proximity, kinematic
relation and appearance similarity between body parts.
The same body part class (c = c′). Two detections de-
noting the same body part of the same person should be
in close proximity to each other. We introduce the fol-
lowing auxiliary variables that capture the spatial relations:
∆x = |xd−xd′ |/h̄, ∆y = |yd−yd′ |/h̄, ∆h = |hd−hd′ |/h̄,
IOUnion, IOMin, IOMax. The latter three are intersec-
tions over union/minimum/maximum of the two detection
boxes, respectively, and h̄ = (hd + hd′)/2.

Non-linear Mapping. We augment the feature repre-
sentation by appending quadratic and exponential terms.
The final pairwise feature fdd′ for the variable zdd′cc is
(∆x,∆y,∆h, IOUnion, IOMin, IOMax, (∆x)

2
,

. . . , (IOMax)
2
, exp (−∆x), . . . , exp (−IOMax)).

Two different body part classes (c 6= c′). We encode the
kinematic body constraints into the pairwise feature by in-
troducing auxiliary variables Sdd′ and Rdd′ , where Sdd′ and
Rdd′ are the Euclidean distance and the angle between two
detections, respectively. To capture the joint distribution of
Sdd′ and Rdd′ , instead of using Sdd′ and Rdd′ directly, we
employ the posterior probability p(zdd′cc′ = 1|Sdd′ , Rdd′)
as pairwise feature for zdd′cc′ to encode the geometric rela-
tions between the body part class c and c′. More specifically,
assuming the prior probability p(zdd′cc′ = 1) = p(zdd′cc′ =
0) = 0.5, the posterior probability of detection d and d′ have
the body part label c and c′, namely zdd′cc′ = 1, is

p(zdd′cc′ = 1|Sdd′ , Rdd′)

=
p(Sdd′ , Rdd′ |zdd′cc′ = 1)

p(Sdd′ , Rdd′ |zdd′cc′ = 1) + p(Sdd′ , Rdd′ |zdd′cc′ = 0)
,

where p(Sdd′ , Rdd′ |zdd′cc′ = 1) is obtained by conducting
a normalized 2D histogram of Sdd′ and Rdd′ from posi-
tive training examples, analogous to the negative likelihood
p(Sdd′ , Rdd′ |zdd′cc′ = 0). In Sec. 5.1 we also experiment
with encoding the appearance into the pairwise feature by
concatenating the feature fpdc

from d and fpd′c from d′, as
fpdc

is the output of the CNN-based part detectors. The final
pairwise feature is (p(zdd′cc′ = 1|Sdd′ , Rdd′), fpdc

, fpd′c).

3.1. Probability Estimation

The coefficients α and β of the objective function (Eq. 6)
are defined by the probability ratio in the log space (Eq. 7 and
Eq. 8). Here we describe the estimation of the corresponding
probability density: (1) For every pair of detection and part

classes, namely for any (d, c) ∈ D × C, we estimate a
probability pdc ∈ (0, 1) of the detection d being a body
part of class c. (2) For every combination of two distinct
detections and two body part classes, namely for any dd′ ∈(
D
2

)
and any cc′ ∈ C2, we estimate a probability pdd′cc′ ∈

(0, 1) of d and d′ belonging to the same person, meanwhile
d and d′ are body parts of classes c and c′, respectively.
Learning. Given the features fdd′ and a Gaussian prior
p(θcc′) = N (0, σ2) on the parameters, logistic model is

p(zdd′cc′ = 1|fdd′ , θcc′) =
1

1 + exp(−〈θcc′ , fdd′〉)
. (11)

(|C| × (|C|+ 1))/2 parameters are estimated using ML.
Inference Given two detections d and d′, the coefficients
αdc for xdc and αd′c for xd′c are obtained by Eq. 7, the
coefficient βdd′cc′ for zdd′cc′ has the form

βdd′cc′ = log
1− pdd′cc′
pdd′cc′

= −〈fdd′ , θcc′〉. (12)

Model parameters θcc′ are learned using logistic regression.

4. Body Part Detectors
We first introduce our deep learning-based part detection

models and then evaluate them on two prominent bench-
marks thereby significantly outperforming state of the art.

4.1. Adapted Fast R-CNN (AFR-CNN)

To obtain strong part detectors we adapt Fast R-
CNN [16]. FR-CNN takes as input an image and set of
class-independent region proposals [39] and outputs the soft-
max probabilities over all classes and refined bounding boxes.
To adapt FR-CNN for part detection we alter it in two ways:
1) proposal generation and 2) detection region size. The
adapted version is called AFR-CNN throughout the paper.
Detection proposals. Generating object proposals is essen-
tial for FR-CNN, meanwhile detecting body parts is chal-
lenging due to their small size and high intra-class variability.
We use DPM-based part detectors [28] for proposal gener-
ation. We collect K top-scoring detections by each part
detector in a common pool of N part-independent proposals
and use these proposals as input to AFR-CNN. N is 2, 000
in case of single and 20, 000 in case of multiple people.
Larger context. Increasing the size of DPM detections
by upscaling every bounding box by a fixed factor allows
to capture more context around each part. In Sec. 4.3 we
evaluate the influence of upscaling and show that using larger
context around parts is crucial for best performance.
Details. Following standard FR-CNN training procedure Im-
ageNet models are finetuned on pose estimation task. Center
of a predicted bounding box is used for body part location
prediction. See Appendix A for detailed parameter analysis.



Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

oracle 2000 98.8 98.8 97.4 96.4 97.4 98.3 97.7 97.8 84.0

DPM scale 1 48.8 25.1 14.4 10.2 13.6 21.8 27.1 23.0 13.6

AlexNet scale 1 82.2 67.0 49.6 45.4 53.1 52.9 48.2 56.9 35.9
AlexNet scale 4 85.7 74.4 61.3 53.2 64.1 63.1 53.8 65.1 39.0

+ optimal params 88.1 79.3 68.9 62.6 73.5 69.3 64.7 72.4 44.6

VGG scale 4 optimal params 91.0 84.2 74.6 67.7 77.4 77.3 72.8 77.9 50.0
+ finetune LSP 95.4 86.5 77.8 74.0 84.5 78.8 82.6 82.8 57.0

Table 1. Unary only performance (PCK) of AFR-CNN on the LSP
(Person-Centric) dataset. AFR-CNN is finetuned from ImageNet to
MPII (lines 3-6), and then finetuned to LSP (line 7).

4.2. Dense Architecture (Dense-CNN)

Using proposals for body part detection may be sub-
optimal. We thus develop a fully convolutional architecture
for computing part probability scoremaps.

Stride. We build on VGG [34]. Fully convolutional VGG
has stride of 32 px – too coarse for precise part localization.
We thus use hole algorithm [6] to reduce the stride to 8 px.

Scale. Selecting image scale is crucial. We found that scal-
ing to a standing height of 340 px performs best: VGG
receptive field sees entire body to disambiguate body parts.

Loss function. We start with a softmax loss that outputs
probabilities for each body part and background. The down-
side is inability to assign probabilities above 0.5 to several
close-by body parts. We thus re-formulate the detection as
multi-label classification, where at each location a separate
set of probability distributions is estimated for each part. We
use sigmoid activation function on the output neurons and
cross entropy loss. We found this loss to perform better than
softmax and converge much faster compared to MSE [37].
Target training scoremap for each joint is constructed by
assigning a positive label 1 at each location within 15 px to
the ground truth, and negative label 0 otherwise.

Location refinement. In order to improve location preci-
sion we follow [16]: we add a location refinement FC layer
after the FC7 and use the relative offsets (∆x,∆y) from a
scoremap location to the ground truth as targets.

Regression to other parts. Similar to location refinement
we add an extra term to the objective function where for each
part we regress onto all other part locations. We found this
auxiliary task to improve the performance (c.f. Sec. 4.3).

Training. We follow best practices and use SGD for CNN
training. In each iteration we forward-pass a single image.
After FC6 we select all positive and random negative sam-
ples to keep the pos/neg ratio as 25%/75%. We finetune
VGG from Imagenet model to pose estimation task and use
training data augmentation. We train for 430k iterations with
the following learning rates (lr): 10k at lr=0.001, 180k at
lr=0.002, 120k at lr=0.0002 and 120k at lr=0.0001. Pre-
training at smaller lr prevents the gradients from diverging.

Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

MPII softmax 91.5 85.3 78.0 72.4 81.7 80.7 75.7 80.8 51.9
+ LSPET 94.6 86.8 79.9 75.4 83.5 82.8 77.9 83.0 54.7

+ sigmoid 93.5 87.2 81.0 77.0 85.5 83.3 79.3 83.8 55.6
+ location refinement 95.0 88.4 81.5 76.4 88.0 83.3 80.8 84.8 61.5

+ auxiliary task 95.1 89.6 82.8 78.9 89.0 85.9 81.2 86.1 61.6
+ finetune LSP 97.2 90.8 83.0 79.3 90.6 85.6 83.1 87.1 63.6

Table 2. Unary only performance (PCK) of Dense-CNN VGG on
LSP (PC) dataset. Dense-CNN is finetuned from ImageNet to MPII
(line 1), to MPII+LSPET (lines 2-5), and finally to LSP (line 6).

4.3. Evaluation of Part Detectors

Datasets. We train and evaluate on three public benchmarks:
“Leeds Sports Poses” (LSP) [20] (person-centric (PC)), “LSP
Extended” (LSPET) [21]2, and “MPII Human Pose” (“Sin-
gle Person”) [3]. The MPII training set (19185 people) is
used as default. In some cases LSP training and LSPET are
added to MPII (marked as MPII+LSPET in the experiments).
Evaluation measures. We use the standard “PCK” met-
ric [33, 38, 37] and evaluation scripts available on the web
page of [3]. In addition, we report “Area under Curve”
(AUC) computed for the entire range of PCK thresholds.
AFR-CNN. Evaluation of AFR-CNN on LSP is shown in
Tab. 1. Oracle selecting per part the closest from 2, 000 pro-
posals achieves 97.8% PCK, as proposals cover majority of
the ground truth locations. Choosing a single proposal per
part using DPM score achieves 23.0% PCK – not surprising
given the difficulty of the body part detection problem. Re-
scoring the proposals using AFR-CNN with AlexNet [24]
dramatically improves the performance to 56.9% PCK, as
CNN learns richer image representations. Extending the re-
gions by 4x (1x≈ head size) achieves 65.1% PCK, as it incor-
porates more context including the information about sym-
metric parts and allows to implicitly encode higher-order part
relations. Using data augmentation and slightly tuning train-
ing parameters improves the performance to 72.4% PCK.
We refer to the Appendix A for detailed analysis. Deeper
VGG architecture improves over smaller AlexNet reaching
77.9% PCK. All results so far are achieved by finetuning
the ImageNet models on MPII. Further finetuning to LSP
leads to remarkable 82.8% PCK: CNN learns LSP-specific
image representations. Strong increase in AUC (57.0 vs.
50%) is due to improvements for smaller PCK thresholds.
Using no bounding box regression leads to performance drop
(81.3% PCK, 53.2% AUC): location refinement is crucial
for better localization. Overall AFR-CNN obtains very good
results on LSP by far outperforming the state of the art (c.f.
Tab. 3, rows 7− 9). Evaluation on MPII shows competitive
performance (Tab. 4, row 1).
Dense-CNN. The results are in Tab. 2. Training with VGG
on MPII with softmax loss achieves 80.8% PCK thereby

2To reduce labeling noise we re-annotated original high-resolution im-
ages and make the data available at http://datasets.d2.mpi-inf.
mpg.de/hr-lspet/hr-lspet.zip

http://datasets.d2.mpi-inf.mpg.de/hr-lspet/hr-lspet.zip
http://datasets.d2.mpi-inf.mpg.de/hr-lspet/hr-lspet.zip
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(a) LSP (PC) (b) MPII Single Person
Figure 2. Pose estimation results over all PCK thresholds.

outperforming AFR-CNN (c.f. Tab. 1, row 6). This shows
the advantages of fully convolutional training and evalua-
tion. Expectedly, training on larger MPII+LSPET dataset
improves the results (83.0 vs. 80.8% PCK). Using cross-
entropy loss with sigmoid activations improves the results to
83.8% PCK, as it better models the appearance of close-by
parts. Location refinement improves localization accuracy
(84.8% PCK), which becomes more clear when analyzing
AUC (61.5 vs. 55.6%). Interestingly, regressing to other
parts further improves PCK to 86.1% showing a value of
training with the auxiliary task. Finally, finetuning to LSP
achieves the best result of 87.1% PCK, which is significantly
higher than the best published results (c.f. Tab. 3, rows 7−9).
Unary-only evaluation on MPII reveals slightly higher AUC
results compared to the state of the art (Tab. 4, row 3− 4).

4.4. Using Detections in DeepCut Models

The SPLP problem is NP-hard, to solve instances of it
efficiently we select a subset of representative detections
from the entire set produced by a model. In our experiments
we use |D| = 100 as default detection set size. In case of the
AFR-CNN we directly use the softmax output as unary prob-
abilities: fpdc

= (pd1, . . . , pdc), where pdc is the probability
of the detection d being the part class c. For Dense-CNN
detection model we use the sigmoid detection unary scores.

5. DeepCut Results
The aim of this paper is to tackle the multi person case.

To that end, we evaluate the proposed DeepCut models on
four diverse benchmarks. We confirm that both single person
(SP) and multi person (MP) variants (Sec. 2) are effective
on standard SP pose estimation datasets [20, 3]. Then, we
demonstrate superior performance of DeepCut MP on the
multi person pose estimation task.

5.1. Single Person Pose Estimation

We now evaluate single person (SP) and more general
multi person (MP) DeepCut models on LSP and MPII SP
benchmarks described in Sec. 4. Since this evaluation setting
implicitly relies on the knowledge that all parts are present
in the image we always output the full number of parts.
Results on LSP. We report per-part PCK results (Tab. 3)
and results for a variable distance threshold (Fig. 2 (a)).

Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

AFR-CNN (unary) 95.4 86.5 77.8 74.0 84.5 82.6 78.8 82.8 57.0
+ DeepCut SP 95.4 86.7 78.3 74.0 84.3 82.9 79.2 83.0 58.4

+ appearance pairwise 95.4 87.2 78.6 73.7 84.7 82.8 78.8 83.0 58.5
+ DeepCut MP 95.2 86.7 78.2 73.5 84.6 82.8 79.0 82.9 58.0

Dense-CNN (unary) 97.2 90.8 83.0 79.3 90.6 85.6 83.1 87.1 63.6
+ DeepCut SP 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1 63.5
+ DeepCut MP 96.2 91.2 83.3 77.6 91.3 87.0 80.4 86.7 62.6

Tompson et al. [37] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3
Chen&Yuille [7] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4 40.1
Fan et al. [41]∗ 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0 43.2
∗ re-evaluated using the standard protocol, for details see project page of [41]

Table 3. Pose estimation results (PCK) on LSP (PC) dataset.

DeepCut SP AFR-CNN model using 100 detections im-
proves over unary only (83.0 vs. 82.8% PCK, 58.4 vs.
57% AUC), as pairwise connections filter out some of the
high-scoring detections on the background. The improve-
ment is clear in Fig. 2 (a) for smaller thresholds. Using
part appearance scores in addition to geometrical features in
c 6= c′ pairwise terms only slightly improves AUC, as the
appearance of neighboring parts is mostly captured by a rela-
tively large region centered at each part. The performance of
DeepCut MP AFR-CNN matches the SP and improves over
AFR-CNN alone: DeepCut MP correctly handles the SP case.
Performance of DeepCut SP Dense-CNN is almost identical
to unary only, unlike the results for AFR-CNN. Dense-CNN
performance is noticeably higher compared to AFR-CNN,
and “easy” cases that could have been corrected by a spatial
model are resolved by stronger part detectors alone.

Comparison to the state of the art (LSP). Tab. 3 compares
results of DeepCut models to other deep learning methods
specifically designed for single person pose estimation. All
DeepCuts significantly outperform the state of the art, with
DeepCut SP Dense-CNN model improving by 13.7% PCK
over the best known result [7]. The improvement is even
more dramatic for lower thresholds (Fig. 2 (a)): for PCK
@ 0.1 the best model improves by 19.9% over Tompson et
al. [37], by 26.7% over Fan et al. [41], and by 32.4% PCK
over Chen&Yuille [7]. The latter is interesting, as [7] use a
stronger spatial model that predicts the pairwise conditioned
on the CNN features, whereas DeepCuts use geometric-only
pairwise connectivity. Including body part orientation infor-
mation into DeepCuts should further improve the results.

Results on MPII Single Person. Results are shown in
Tab. 4 and Fig. 2 (b). DeepCut SP AFR-CNN noticeably
improves over AFR-CNN alone (79.8 vs. 78.8% PCK, 51.1
vs. 49.0% AUC). The improvement is stronger for smaller
thresholds (c.f. Fig. 2), as spatial model improves part local-
ization. Dense-CNN alone trained on MPII outperforms
AFR-CNN (81.6 vs. 78.8% PCK), which shows the ad-
vantages of dense training and evaluation. As expected,
Dense-CNN performs slightly better when trained on the
larger MPII+LSPET. Finally, DeepCut Dense-CNN SP is
slightly better than Dense-CNN alone leading to the best



Setting Head Sho Elb Wri Hip Knee Ank PCKh AUC

AFR-CNN (unary) 91.5 89.7 80.5 74.4 76.9 69.6 63.1 78.8 49.0
+ DeepCut SP 92.3 90.6 81.7 74.9 79.2 70.4 63.0 79.8 51.1

Dense-CNN (unary) 93.5 88.6 82.2 77.1 81.7 74.4 68.9 81.6 56.0
+LSPET 94.0 89.4 82.3 77.5 82.0 74.4 68.7 81.9 56.5

+DeepCut SP 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4 56.5

Tompson et al. [37] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6 51.8
Tompson et al. [36] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0 54.9

Table 4. Pose estimation results (PCKh) on MPII Single Person.

result on MPII dataset (82.4% PCK).
Comparison to the state of the art (MPII). We com-
pare the performance of DeepCut models to the best
deep learning approaches from the literature [37, 36]3.
DeepCut SP Dense-CNN outperforms both [37, 36] (82.4
vs 79.6 and 82.0% PCK, respectively). Similar to them
DeepCuts rely on dense training and evaluation of part de-
tectors, but unlike them use single size receptive field and
do not include multi-resolution context information. Also,
appearance and spatial components of DeepCuts are trained
piece-wise, unlike [37]. We observe that performance dif-
ferences are higher for smaller thresholds (c.f. Fig. 2 (b)).
This is remarkable, as a much simpler strategy for location
refinement is used compared to [36]. Using multi-resolution
filters and joint training should improve the performance.

5.2. Multi Person Pose Estimation

We now evaluate DeepCut MP models on the challenging
task of MP pose estimation with an unknown number of
people per image and visible body parts per person.
Datasets. For evaluation we use two public MP benchmarks:
“We Are Family” (WAF) [13] with 350 training and 175 test-
ing group shots of people; “MPII Human Pose” (“Multi-
Person”) [3] consisting of 3844 training and 1758 testing
groups of multiple interacting individuals in highly articu-
lated poses with variable number of parts. On MPII, we use
a subset of 288 testing images for evaluation. We first pre-
finetune both AFR-CNN and Dense-CNN from ImageNet to
MPII and MPII+LSPET, respectively, and further finetune
each model to WAF and MPII Multi-Person. For WAF, we
re-train the spatial model on WAF training set.
WAF evaluation measure. Approaches are evaluated using
the official toolkit [13], thus results are directly comparable
to prior work. The toolkit implements occlusion-aware “Per-
centage of Correct Parts (mPCP)” metric. In addition, we
report “Accuracy of Occlusion Prediction (AOP)” [8].
MPII Multi-Person evaluation measure. PCK metric is
suitable for SP pose estimation with known number of parts
and does not penalize for false positives that are not a part
of the ground truth. Thus, for MP pose estimation we
use “Mean Average Precision (mAP)” measure, similar to
[35, 42]. In contrast to [35, 42] evaluating the detection

3[37] was re-trained and evaluated on MPII dataset by the authors.

Setting Head U Arms L Arms Torso mPCP AOP

AFR-CNN det ROI 69.8 46.0 36.7 83.7 53.1 73.9
DeepCut MP AFR-CNN 99.0 79.5 74.3 87.1 82.2 85.6

Dense-CNN det ROI 76.0 46.0 40.2 83.7 55.3 73.8
DeepCut MP Dense-CNN 99.3 81.5 79.5 87.1 84.7 86.5

Ghiasi et. al. [15] - - - - 63.6 74.0
Eichner&Ferrari [13] 97.6 68.2 48.1 86.1 69.4 80.0
Chen&Yuille [8] 98.5 77.2 71.3 88.5 80.7 84.9

Table 5. Pose estimation results (mPCP) on WAF dataset.

of any part instance in the image disrespecting inconsis-
tent pose predictions, we evaluate consistent part configura-
tions. First, multiple body pose predictions are generated and
then assigned to the ground truth (GT) based on the highest
PCKh [3]. Only single pose can be assigned to GT. Unas-
signed predictions are counted as false positives. Finally, AP
for each body part is computed and mAP is reported.
Baselines. To assess the performance of AFR-CNN and
Dense-CNN we follow a traditional route from the literature
based on two stage approach: first a set of regions of inter-
est (ROI) is generated and then the SP pose estimation is
performed in the ROIs. This corresponds to unary only per-
formance. ROI are either based on a ground truth (GT ROI)
or on the people detector output (det ROI).
Results on WAF. Results are shown in Tab. 5. det ROI is
obtained by extending provided upper body detection boxes.
AFR-CNN det ROI achieves 57.6% mPCP and 73.9% AOP.
DeepCut MP AFR-CNN significantly improves over AFR-
CNN det ROI achieving 82.2% mPCP. This improvement
is stronger compared to LSP and MPII due to several rea-
sons. First, mPCP requires consistent prediction of body
sticks as opposite to body joints, and including spatial model
enforces consistency. Second, mPCP metric is occlusion-
aware. DeepCuts can deactivate detections for the occluded
parts thus effectively reasoning about occlusion. This is
supported by strong increase in AOP (85.6 vs. 73.9%). Re-
sults by DeepCut MP Dense-CNN follow the same tendency
achieving the best performance of 84.7% mPCP and 86.5%
AOP. Both increase in mPCP and AOP show the advantages
of DeepCuts over traditional det ROI approaches.

Tab. 5 shows that DeepCuts outperform all prior methods.
Deep learning method [8] is outperformed both for mPCP
(84.7 vs. 80.7%) and AOP (86.5 vs. 84.9%) measures. This
is remarkable, as DeepCuts reason about part interactions
across several people, whereas [8] primarily focuses on the
single-person case and handles multi-person scenes akin to
[42]. In contrast to [8], DeepCuts are not limited by the num-
ber of possible occlusion patterns and cover person-person
occlusions and other types as truncation and occlusion by
objects in one formulation. DeepCuts significantly outper-
form [13] while being more general: unlike [13] DeepCuts
do not require person detector and not limited by a number
of occlusion states among people.

Qualitative comparison to [8] is provided in Fig. 3.
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Figure 3. Qualitative comparison of our joint formulation DeepCut MP Dense-CNN (middle) to the traditional two-stage approach
Dense-CNN det ROI (top) and the approach of Chen&Yuille [8] (bottom) on WAF dataset. In contrast to det ROI, DeepCut MP is able
to disambiguate multiple and potentially overlapping persons and correctly assemble independent detections into plausible body part
configurations. In contrast to [8], DeepCut MP can better predict occlusions (image 2 person 1− 4 from the left, top row; image 4 person 1,
4; image 5, person 2) and better cope with strong articulations and foreshortenings (image 1, person 1, 3; image 2 person 1 bottom row;
image 3, person 1-2). See Appendix B for more examples.

Results on MPII Multi-Person. Obtaining a strong detec-
tor of highly articulated people having strong occlusions and
truncations is difficult. We employ a neck detector as a per-
son detector as it turned out to be the most reliable part. Full
body bounding box is created around a neck detection and
used as det ROI. GT ROIs were provided by the authors [3].
As the MP approach [8] is not public, we compare to SP
state-of-the-art method [7] applied to GT ROI image crops.

Results are shown in Tab. 6. DeepCut MP AFR-CNN
improves over AFR-CNN det ROI by 4.3% achieving 51.4%
AP. The largest differences are observed for the ankle, knee,
elbow and wrist, as those parts benefit more from the con-
nections to other parts. DeepCut MP UB AFR-CNN using
upper body parts only slightly improves over the full body
model when compared on common parts (60.5 vs 58.2% AP).
Similar tendencies are observed for Dense-CNNs, though im-
provements of MP UB over MP are more significant.

All DeepCuts outperform Chen&Yuille SP GT ROI, par-
tially due to stronger part detectors compared to [7] (c.f.
Tab. 3). Another reason is that Chen&Yuille SP GT ROI does
not model body part occlusion and truncation always pre-
dicting the full set of parts, which is penalized by the AP
measure. In contrast, our formulation allows to deactivate the
part hypothesis in the initial set of part candidates thus effec-
tively performing non-maximum suppression. In DeepCuts
part hypotheses are suppressed based on the evidence from
all other body parts making this process more reliable.

Setting Head Sho Elb Wri Hip Knee Ank UBody FBody

AFR-CNN det ROI 71.1 65.8 49.8 34.0 47.7 36.6 20.6 55.2 47.1
AFR-CNN MP 71.8 67.8 54.9 38.1 52.0 41.2 30.4 58.2 51.4
AFR-CNN MP UB 75.2 71.0 56.4 39.6 - - - 60.5 -

Dense-CNN det ROI 77.2 71.8 55.9 42.1 53.8 39.9 27.4 61.8 53.2
Dense-CNN MP 73.4 71.8 57.9 39.9 56.7 44.0 32.0 60.7 54.1
Dense-CNN MP UB 81.5 77.3 65.8 50.0 - - - 68.7 -

AFR-CNN GT ROI 73.2 66.5 54.6 42.3 50.1 44.3 37.8 59.1 53.1
Dense-CNN GT ROI 78.1 74.1 62.2 52.0 56.9 48.7 46.1 66.6 60.2
Chen&Yuille SP GT ROI 65.0 34.2 22.0 15.7 19.2 15.8 14.2 34.2 27.1

Table 6. Pose estimation results (AP) on MPII Multi-Person.

6. Conclusion

Articulated pose estimation of multiple people in uncon-
trolled real world images is challenging but of real world
interest. In this work, we proposed a new formulation as a
joint subset partitioning and labeling problem (SPLP). Dif-
ferent to previous two-stage strategies that separate the de-
tection and pose estimation steps, the SPLP model jointly
infers the number of people, their poses, spatial proxim-
ity, and part level occlusions. Empirical results on four
diverse and challenging datasets show significant improve-
ments over all previous methods not only for the multi per-
son, but also for the single person pose estimation problem.
On multi person WAF dataset we improve by 30% PCP over
the traditional two-stage approach. This shows that a joint
formulation is crucial to disambiguate multiple and poten-
tially overlapping persons. Models and code available at
http://pose.mpi-inf.mpg.de.

http://pose.mpi-inf.mpg.de


Appendices
A. Additional Results on LSP dataset

We provide additional quantitative results on LSP dataset
using person-centric (PC) and observer-centric (OC) evalua-
tion settings.

A.1. LSP Person-Centric (PC)

First, detailed performance analysis is performed when
evaluating various parameters of AFR-CNN and results are
reported using PCK [33] evaluation measure. Then, per-
formance of the proposed AFR-CNN and Dense-CNN part
detection models is evaluated using strict PCP [14] measure.
Detailed AFR-CNN performance analysis (PCK). De-
tailed parameter analysis of AFR-CNN is provided in Tab. 7
and results are reported using PCK evaluation measure. Re-
specting parameters for each experiment are shown in the
first column and parameter differences between the neighbor-
ing rows in the table are highlighted in bold. Re-scoring the
2000 DPM proposals using AFR-CNN with AlexNet [24]
leads to 56.9% PCK. This is achieved using basis scale 1 (≈
head size) of proposals and training with initial learning rate
(lr) of 0.001 for 80k iterations, after which lr is reduced by
0.1, for a total number of 140k SGD iterations. In addition,
bounding box regression and default IoU threshold of 0.5 for
positive/negative label assignment [16] have been used. Ex-
tending the regions by 4x increases the performance to 65.1%
PCK, as it incorporates more context including the informa-
tion about symmetric body parts and allows to implicitly
encode higher-order body part relations into the part detector.
No improvements observed for larger scales. Increasing lr
to 0.003, lr reduction step to 160k and training for a larger
number of iterations (240k) improves the results to 67.4, as
higher lr allows for for more significant updates of model
parameters when finetuned on the task of human body part
detection. Increasing the number of training examples by
reducing the training IoU threshold to 0.4 results into slight
performance improvement (68.8 vs. 67.4% PCK). Further
increasing the number of training samples by horizontally
flipping each image and performing translation and scale
jittering of the ground truth training samples improves the
performance to 69.6% PCK and 42.3% AUC. The improve-
ment is more pronounced for smaller distance thresholds
(42.3 vs. 40.9% AUC): localization of body parts is im-
proved due to the increased number of jittered samples that
significantly overlap with the ground truth. Further increas-
ing the lr, lr reduction step and total number of iterations
altogether improves the performance to 72.4% PCK, and
very minor improvements are observed when training longer.
All results above are achieved by finetuning the AlexNet
architecture from the ImageNet model on the MPII training
set. Further finetuning the MPII-finetuned model on the LSP

training set increases the performance to 77.9% PCK, as the
network learns LSP-specific image representations. Using
the deeper VGG [34] architecture improves over more shal-
low AlexNet (77.9 vs. 72.4% PCK, 50.0 vs. 44.6% AUC).
Funetuning VGG on LSP achieves remarkable 82.8% PCK
and 57.0% AUC. Strong increase in AUC (57.0 vs. 50%)
characterizes the improvement for smaller PCK evaluation
thresholds. Switching off bounding box regression results
into performance drop (81.3% PCK, 53.2% AUC) thus show-
ing the importance of the bounding box regression for better
part localization. Overall, we demonstrate that proper adap-
tation and tweaking of the state-of-the-art generic object
detector FR-CNN [16] leads to a strong body part detection
model that dramatically improves over the vanilla FR-CNN
(82.8 vs. 56.9% PCK, 57.8 vs. 35.9% AUC) and signifi-
cantly outperforms the state of the art (+9.4% PCK over the
best known PCK result [7] and +9.7% AUC over the best
known AUC result [37].

Overall performance using PCP evaluation measure.
Performance when using the strict “Percentage of Correct
Parts (PCP)” [14] measure is reported in Tab. 8. In con-
trast to PCK measure evaluating the accuracy of predicting
body joints, PCP evaluation metric measures the accuracy
of predicting body part sticks. AFR-CNN achieves 78.3%
PCP. Similar to PCK results, DeepCut SP AFR-CNN slightly
improves over unary alone, as it enforces more consistent
predictions of body part sticks. Using more general multi-
person DeepCut MP AFR-CNN model results into similar
performance, which shows the generality of DeepCut MP
method. DeepCut SP Dense-CNN slightly improves over
Dense-CNN alone (84.3 vs. 83.9% PCP) achieving the best
PCP result on LSP dataset using PC annotations. This is
in contrast to PCK results where performance differences
DeepCut SP Dense-CNN vs. Dense-CNN alone are minor.

We now compare the PCP results to the state of the art.
The DeepCut models outperform all other methods by a large
margin. The best known PCP result by Chen&Yuille [7] is
outperformed by 10.7% PCP. This is interesting, as their
deep learning based method relies on the image conditioned
pairwise terms while our approach uses more simple ge-
ometric only connectivity. Interestingly, AFR-CNN alone
outperforms the approach of Fan et al. [41] (78.3 vs. 70.1%
PCP), who build on the previous version of the R-CNN de-
tector [17]. At the same time, the best performing dense
architecture DeepCut SP Dense-CNN outperforms [41] by
+14.2% PCP. Surprisingly, DeepCut SP Dense-CNN dra-
matically outperforms the method of Tompson et al. [37]
(+17.7% PCP) that also produces dense score maps, but ad-
ditionally includes multi-scale receptive fields and jointly
trains appearance and spatial models in a single deep learning
framework. We envision that both advances can further im-
prove the performance of DeepCut models. Finally, all pro-
posed approaches significantly outperform earlier non-deep



Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

AlexNet scale 1, lr 0.001, lr step 80k, # iter 140k, IoU pos/neg 0.5 82.2 67.0 49.6 45.4 53.1 52.9 48.2 56.9 35.9
AlexNet scale 4, lr 0.001, lr step 80k, # iter 140k, IoU pos/neg 0.5 85.7 74.4 61.3 53.2 64.1 63.1 53.8 65.1 39.0
AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.5 87.0 75.1 63.0 56.3 67.0 65.7 58.0 67.4 40.8
AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.4 87.5 76.7 64.8 56.0 68.2 68.7 59.6 68.8 40.9
AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.4, data augment 87.8 77.8 66.0 58.1 70.9 66.9 59.8 69.6 42.3
AlexNet scale 4, lr 0.004, lr step 320k, # iter 1M, IoU pos/neg 0.4, data augment 88.1 79.3 68.9 62.6 73.5 69.3 64.7 72.4 44.6

+ finetune LSP, lr 0.0005, lr step 10k, # iter 40k 92.9 81.0 72.1 66.4 80.6 77.6 75.0 77.9 51.6

VGG scale 4, lr 0.003, lr step 160k, # iter 320k, IoU pos/neg 0.4, data augment 91.0 84.2 74.6 67.7 77.4 77.3 72.8 77.9 50.0
+ finetune LSP lr 0.0005, lr step 10k, # iter 40k 95.4 86.5 77.8 74.0 84.5 78.8 82.6 82.8 57.0

Table 7. PCK performance of AFR-CNN (unary) on LSP (PC) dataset. AFR-CNN is finetuned from ImageNet on MPII (lines 1-6, 8), and
then finetuned on LSP (lines 7, 9).

Torso Upper Lower Upper Fore- Head PCP
Leg Leg Arm arm

AFR-CNN (unary) 93.2 82.7 77.7 75.5 63.5 91.2 78.3
+ DeepCut SP 93.3 83.2 77.8 76.3 63.7 91.5 78.7

+ appearance pairwise 93.4 83.5 77.8 76.6 63.8 91.8 78.9
+ DeepCut MP 93.6 83.3 77.6 76.3 63.5 91.2 78.6

Dense-CNN (unary) 96.2 87.8 81.8 81.6 72.3 95.6 83.9
+ DeepCut SP 97.0 88.8 82.0 82.4 71.8 95.8 84.3
+ DeepCut MP 96.4 88.8 80.9 82.4 71.3 94.9 83.8

Tompson et al. [37] 90.3 70.4 61.1 63.0 51.2 83.7 66.6
Chen&Yuille [7] 96.0 77.2 72.2 69.7 58.1 85.6 73.6
Fan et al. [41]∗ 95.4 77.7 69.8 62.8 49.1 86.6 70.1
Pishchulin et al. [28] 88.7 63.6 58.4 46.0 35.2 85.1 58.0
Wang&Li [40] 87.5 56.0 55.8 43.1 32.1 79.1 54.1
∗ re-evaluated using the standard protocol, for details see project page of [41]

Table 8. Pose estimation results (PCP) on LSP (PC) dataset.

learning based methods [40, 28] relying on hand-crafted
image features.

A.2. LSP Observer-Centric (OC)

We now evaluate the performance of the proposed part
detection models on LSP dataset using the observer-centric
(OC) annotations [12]. In contrast to the person-centric (PC)
annotations used in all previous experiments, OC annotations
do not penalize for the right/left body part prediction flips
and count a body part to be the right body part, if it is on the
right side of the line connecting pelvis and neck, and a body
part to be the left body part otherwise.

Evaluation is performed using the official OC annotations
provided by [27, 12]. Prior to evaluation, we first finetune
the AFR-CNN and Dense-CNN part detection models from
ImageNet on MPII and MPII+LSPET training sets, respec-
tively, (same as for PC evaluation), and then further finetuned
the models on LSP OC training set.
PCK evaluation measure. Results using OC annotations
and PCK evaluation measure are shown in Tab. 9 and in
Fig. 4. AFR-CNN achieves 84.2% PCK and 58.1% AUC.
This result is only slightly better compared to AFR-CNN
evaluated using PC annotations (84.2 vs 82.8% PCK, 58.1
vs. 57.0% AUC). Although PC annotations correspond to
a harder task, only small drop in performance when us-
ing PC annotations shows that the network can learn to
accurately predict person’s viewpoint and correctly label
left/right limbs in most cases. This is contrast to earlier
approaches based on hand-crafted features whose perfor-

Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

AFR-CNN (unary) 95.3 88.3 78.5 74.2 87.3 84.2 81.2 84.2 58.1

Dense-CNN (unary) 97.4 92.0 83.8 79.0 93.1 88.3 83.7 88.2 65.0

Chen&Yuille [7] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.5 44.8
Ouyang et al. [26] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.0 43.1
Pishchulin et. [28] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 71.0 45.0
Kiefel&Gehler [22] 83.5 73.7 55.9 36.2 73.7 70.5 66.9 65.8 38.6
Ramakrishna et al. [30] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 69.0 35.2

Table 9. Pose estimation results (PCK) on LSP (OC) dataset.
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Figure 4. Pose estimation results over all PCK thresholds on LSP
(OC) dataset.

mance drops much stronger when evaluated in PC evaluation
setting (e.g. [28] drops from 71.0% PCK when using OC
annotations to 58.0% PCK when using PC annotations). Sim-
ilar to PC case, Dense-CNN detection model outperforms
AFR-CNN (88.2 vs. 84.2% PCK and 65.0 vs. 58.1% AUC).
The differences are more pronounced when examining the
entire PCK curve for smaller distance thresholds (c.f. Fig. 4).

Comparing the performance by AFR-CNN and
Dense-CNN to the state of the art, we observe that both
proposed approaches significantly outperform other methods.
Both deep learning based approaches of Chen&Yuille [7]
and Ouyang et al. [26] are outperformed by +10.7 and
+18.2% PCK when compared to the best performing
Dense-CNN. Analysis of PCK curve for the entire range of
PCK distance thresholds reveals even larger performance
differences (c.f. Fig. 4). The results using OC annotations
confirm our findings from PC evaluation and clearly show
the advantages of the proposed part detection models over
the state-of-the-art deep learning methods [7, 26], as well as
over earlier pose estimation methods based on hand-crafted
image features [28, 22, 30].
PCP evaluation measure. Results using OC annotations



Torso Upper Lower Upper Fore- Head PCP
Leg Leg Arm arm

AFR-CNN (unary) 92.9 86.3 79.8 77.0 64.2 91.8 79.9

Dense-CNN (unary) 96.0 91.0 83.5 82.8 71.8 96.2 85.0

Chen&Yuille [7] 92.7 82.9 77.0 69.2 55.4 87.8 75.0
Ouyang et al. [26] 88.6 77.8 71.9 61.9 45.4 84.3 68.7
Pishchulin et. [28] 88.7 78.9 73.2 61.8 45.0 85.1 69.2
Kiefel&Gehler [22] 84.3 74.5 67.6 54.1 28.3 78.3 61.2
Ramakrishna et al. [30] 88.1 79.0 73.6 62.8 39.5 80.4 67.8

Table 10. Pose estimation results (PCP) on LSP (OC) dataset.

and PCP evaluation measure are shown in Tab. 10. Overall,
the trend is similar to PC evaluation: both proposed ap-
proaches significantly outperform the state-of-the-art meth-
ods with Dense-CNN achieving the best result of 85.0% PCP
thereby improving by +10% PCP over the best published
result [7].

B. Additional Results on WAF dataset
Qualitative comparison of our joint formulation

DeepCut MP Dense-CNN to the traditional two-stage ap-
proach Dense-CNN det ROI relying on person detector, and
to the approach of Chen&Yuille [8] on WAF dataset is shown
in Fig. 5. See figure caption for visual performance analysis.

C. Additional Results on MPII Multi-Person
Qualitative comparison of our joint formulation

DeepCut MP Dense-CNN to the traditional two-stage ap-
proach Dense-CNN det ROI on MPII Multi-Person dataset
is shown in Fig. 6 and 7. Dense-CNN det ROI works well
when multiple fully visible individuals are sufficiently sepa-
rated and thus their body parts can be partitioned based on
the person detection bounding box. In this case the strong
Dense-CNN body part detection model can correctly esti-
mate most of the visible body parts (image 16, 17, 19).
However, Dense-CNN det ROI cannot tell apart the body
parts of multiple individuals located next to each other and
possibly occluding each other, and often links the body parts
across the individuals (images 1-16, 19-20). In addition,
Dense-CNN det ROI cannot reason about occlusions and
truncations always providing a prediction for each body part
(image 4, 6, 10). In contrast, DeepCut MP Dense-CNN is
able to correctly partition and label an initial pool of body
part candidates (each image, top row) into subsets that cor-
respond to sets of mutually consistent body part candidates
and abide to mutual consistency and exclusion constraints
(each image, row 2), thereby outputting consistent body pose
predictions (each image, row 3). c 6= c′ pairwise terms al-
low to partition the initial set of part detection candidates
into valid pose configurations (each image, row 2: person-
clusters highlighted by dense colored connections). c = c′

pairwise terms facilitate clustering of multiple body part
candidates of the same body part of the same person (each
image, row 2: markers of the same type and color). In ad-

dition, c = c′ pairwise terms facilitate a repulsive property
that prevents nearby part candidates of the same type to be
associated to different people (image 1: detections of the
left shoulder are assigned to the front person only). Fur-
thermore, DeepCut MP Dense-CNN allows to either merge
or deactivate part hypotheses thus effectively performing
non-maximum suppression and reasoning about body part
occlusions and truncations (image 3, row 2: body part hy-
potheses on the background are deactivated (black crosses);
image 6, row 2: body part hypotheses for the truncated body
parts are deactivated (black crosses); image 1-6, 8-9, 13-14,
row 3: only visible body parts of the partially occluded peo-
ple are estimated, while non-visible body parts are correctly
predicted to be occluded). These qualitative examples show
that DeepCuts MP can successfully deal with the unknown
number of people per image and the unknown number of
visible body parts per person.
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precht. Probabilistic image segmentation with closedness
constraints. In ICCV, 2011. 2

[3] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d
human pose estimation: New benchmark and state of the art
analysis. In CVPR’14. 1, 5, 6, 7, 8

[4] N. Bansal, A. Blum, and S. Chawla. Correlation clustering.
Machine Learning, 56(1–3):89–113, 2004. 2

[5] V. Belagiannis, S. Amin, M. Andriluka, B. Schiele, N. Navab,
and S. Ilic. 3D pictorial structures for multiple human pose
estimation. In CVPR’14. 2

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Semantic image segmentation with deep convolutional
nets and fully connected crfs. In ICLR, 2015. 5

[7] X. Chen and A. Yuille. Articulated pose estimation by a
graphical model with image dependent pairwise relations. In
NIPS’14. 1, 2, 6, 8, 9, 10, 11

[8] X. Chen and A. Yuille. Parsing occluded people by flexible
compositions. In CVPR, 2015. 2, 7, 8, 11, 12

[9] S. Chopra and M. Rao. The partition problem. Mathematical
Programming, 59(1–3):87–115, 1993. 2, 3

[10] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Cor-
relation clustering in general weighted graphs. Theoretical
Computer Science, 361(2–3):172–187, 2006. 2

[11] M. M. Deza and M. Laurent. Geometry of Cuts and Metrics.
Springer, 1997. 2

[12] M. Eichner and V. Ferrari. Appearance sharing for collective
human pose estimation. In ACCV’12. 10

[13] M. Eichner and V. Ferrari. We are family: Joint pose estima-
tion of multiple persons. In ECCV’10. 2, 7

[14] V. Ferrari, M. Marin, and A. Zisserman. Progressive search
space reduction for human pose estimation. In CVPR’08. 9



de
tR

O
I

1

2

3

4

5

6

1
2

3

45

6

1

2

3

4

5

6

12
3

4 5

6

1

2

3
4

5

6

1

23

4

5

6

1

6

1

2
3

4
5

6

1

6

12
3

4 5

6

12 3

45

6

12

3

4

5

6

1
2 3

45

6

1 2
3

45

6

1

2

34

5

6

12

3

4

5

6

1

2

3

4

5

6

1

2
3

4

5

6

1

2 3

4
5

6
12 3

4

5

6

1

2 3

45

6

1
2

3

4

5

6

1

2

3

4
5

6

D
ee

pC
ut

M
P

1

2

3

4

5

6

1

3

5

6

1

2

3

4

5

6

12
3

4 5

6

1
3

5

6

1

6

1

3

5

6

1

3

5

6

12
4 5

6

12 3

4
5

6

12

4

6

12

3

4

5

6

1

2

3

4

5

6

1

6

1

2

3

4

5

6

12

3

4

5

6

1

2

4

6

1
2

4

6

1

2

4

6
12 3

4 5

6

1

2 3

4
5

6

1
2

3

4

5

6

1

6

C
he

n&
Yu

ill
e

[8
]

1

2

3

4

5

6

1

3

5

6

1
2

3

4 5

6

1
2 3

4
5

6

1

2

3

6

1
2 3

4

6
1

35

6

1
2

3

4

5

6

12
3

4 5

6

12

3

4
5

6

1

2 3

4 5

6

1
2

3

4

5

6

1

2 3

4 5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4 5

6

1

2

3

4

5

6

1

2
3

4

5

6

12 3

4

6

1
2

3

4

5

6

12
3

4
5

6

1

2

3

4

5

6

1
2

3

4

6

1 2 3 4 5

de
tR

O
I

12 3

4 5

6

1
2

3

4

5

6

1
2

3

4
5

6 1

2

3

4

5

6

1
2
3

4

5

6

1

23

4

5

6

1 2
3

4

5

6

1
2

3

4
5

6

1

2

3

4

5

6

1

2

3

4
5

6 2

3

4

5

6

2 3

4

5

6

12
3

4 5

6

1
2 3

4

5

6

1

23

45

6

12 3

4 5

6

1
2

3

4
5

6

1

23

45

6

12 3

4 5

6

12 3

4 5

6

12

3

4

5

6

12
3

45

6

12 3

4 5

6

12 3

4 5

6

1

2
3

4

5

6

1

23

45

6

1

2
3

45

6

1

2 3

4 5

6

1

2
3

45

6

12

34

5

6

1

2

3

4

5

6

1
2

3

4

5

6

12 3

4 5

6

1

2
3

4 5

6

1

2

3

4 5

6

12
3

4 5

6

1

2

3
4

5

6

1

2

3
4

5

6

D
ee

pC
ut

M
P

12 3

4 5

6

1
2

4

6

1
2

4
5

6 1
3

5

6

1
3

5

6

1
3

5

6

1 3

5

6

1 3

5

6

1

6

12

3

4

6

3

5

6

3

5

6

12
3

4 5

6

1
2 3

4

5

6

1
3

5

6

12 3

4 5

6

1

6

1

6

12 3

4 5

6

12 3

4 5

6

12 3

4 5

6

1
2 3

4 5

6

12 3

4 5

6

12 3

4 5

6

1

6

1

6

1

6

1

6

1

6

12

4

6

12
3

4

5

6

1
2

3

4
5

6

12 3

4 5

6

1

2

4

6

1

2 3

4

6

12
3

4
5

6

1
3

5

6

1

6

C
he

n&
Yu

ill
e

[8
]

1

2
3

4 5

6

1

2

3

4

5

6

12

4

6

1

2
3

5

6

1
2 3

5

6

1
3

5

6

1
3

5

6

12

4

6

1

2

4

6

1

2

3

6

1

2

3

5

6

1

3

5

6

12 3

4 5

6

1

2
3

4

5

6

1
2

3

4 5

6

1
2 3

4 5

6

1
2 3

5

6

1
2 3

6

1
2 3

4 5

6

1
2 3

4 5

6

1
2 3

4 5

6

12 3

4
5

6

12 3

4 5

6

1
2 3

4 5

6

1

6

12 3

6

12 3

6

12

6

1
2

6

12 3

4

6

1

2 3

4

5

6

1

2 3

4 5

6

1

2
3

4 5

6

1
2

3

4
5

6

1
2 3

4 5

6

1

2 3

4
5

6

1

2
3

5

6

1
2

3

4

5

6

6 7 8 9 10
Figure 5. Qualitative comparison of our joint formulation DeepCut MP Dense-CNN (rows 2, 5) to the traditional two-stage approach
Dense-CNN det ROI (rows 1, 4) and to the approach of Chen&Yuille [8] (rows 3, 6) on WAF dataset. det ROI does not reason about
occlusion and often predicts inconsistent body part configurations by linking the parts across the nearby staying people (image 4, right
shoulder and wrist of person 2 are linked to the right elbow of person 3; image 5, left elbow of person 4 is linked to the left wrist of person 3).
In contrast, DeepCut MP predicts body part occlusions, disambiguates multiple and potentially overlapping people and correctly assembles
independent detections into plausible body part configurations (image 4, left arms of people 1-3 are correctly predicted to be occluded;
image 5, linking of body parts across people 3 and 4 is corrected; image 7, occlusion of body parts is correctly predicted and visible parts are
accurately estimated). In contrast to Chen&Yuille [8], DeepCut MP better predicts occlusions of person’s body parts by the nearby staying
people (images 1, 3-9), but also by other objects (image 2, left arm of person 1 is occluded by the chair). Furthermore, DeepCut MP is able
to better cope with strong articulations and foreshortenings (image 1, person 6; image 3, person 2; image 5, person 4; image 7, person 4;
image 8, person 1). Typical DeepCut MP failure case is shown in image 10: the right upper arm of person 3 and both arms of person 4 are
not estimated due to missing part detection candidates.
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