Efficient Representation of Traffic Scenes by Means of Dynamic Stixels

David Pfeiffer and Uwe Franke
Daimler Research, Sindelfingen, Germany
Email: [david.pfeiffer, uwe.franke] @daimler.com

Abstract— Correlation based stereo vision has proven its
power in commercially available driver assistance systems.
Recently, real-time dense stereo vision has become available
on inexpensive FPGA hardware. In order to manage the
huge amount of data, a medium-level representation named
“Stixel World” has been proposed for further analysis. In this
representation the free space in front of the vehicle is limited
by adjacent rectangular sticks of a certain width. Distance and
height of each so called stixel are determined by those parts of
the obstacle it represents. This Stixel World is a compact but
flexible representation of the three-dimensional traffic situation.
The underlying model assumption is that objects stand on the
ground and have approximately vertical pose with a flat surface.

So far, this representation is static since it is computed for
each frame independently. Driver assistance, however, is most
interested in pose and motion of moving obstacles. For this
reason, we introduce tracking of stixels in this paper. Using
the 6D-Vision Kalman filter framework, lateral as well as
longitudinal motion is estimated for each stixel. That way,
the grouping of stixels based on similar motion as well as
the detection of moving obstacles turns out to be significantly
simplified. The new dynamic Stixel World has proven to be well
suited as a common basis for the scene understanding tasks of
driver assistance and autonomous systems.

I. INTRODUCTION

Ambitious driver assistance for complex urban scenarios
demands full awareness of the situation, including all moving
and stationary objects that determine the free space available
for driving. We are convinced that stereo vision will play an
essential role for scene understanding. It delivers position,
size, and shape of arbitrary objects and thus allows for
their detection and recognition irrespective of their specific
appearance. The tracking of those objects or even parts of
them allows us to estimate their motion, helping at the same
time to distinguish between stationary and moving obstacles.

Today’s disparity estimation commonly relies on a corre-
lation based scheme. ASIC as well as FPGA stereo solutions
have been developed for vehicle applications.

Recently, the dense stereo algorithm “Semi-Global Match-
ing” (SGM) has been proposed [1], which offers accurate
object boundaries and smooth surfaces. Due to the compu-
tational effort, in particular the required memory bandwidth,
the SGM algorithm is still too complex for a general purpose
CPU. Fortunately, we were able to implement SGM on an
FPGA [2]. Figure 1 shows the result of the SGM method
applied to an common urban traffic situation.

The task at hand is to extract and track every object of
interest captured within the stereo stream. The research of
the last decades was focused on the detection of cars and
pedestrians from mobile platforms. Often different object

Fig. 1: The left camera image and the corresponding disparity
image are illustrated. The colors encode the distance for the
disparity measurements with red representing close and green
representing far image points.

classes are recognized using independent methods, thus the
image is evaluated multiple times. This common approach
has several drawbacks for a practical implementation:

1) complex software structures, which remain incomplete
in detection, since only objects of interest are observed,

2) porting the software implementation to hardware is
expensive, due to the amount of processed data and the
complexity of the required software structures which
makes high demands on the hardware solution,

3) evaluation of correctness and a required integrity level
can only be achieved at extraordinary expense. This
point will gain importance when the upcoming ASIL
(Automotive Safety Integrity Levels) norm comes into

effect.

I:
[H T
I I
" |||||.||| (L g
||||E LIS |II |||
i |i|“!||||!:;? Ve ey

Fig. 2: Static Stixel World representation encoding the ob-
stacles and the free space of the current traffic scene. The
color scheme encodes the distance for each stixel. The stixel
width is set to w = 5 px.

Engineers of all ages have managed the growing complexity
by introducing hierarchies and abstraction layers. Following
this principle we have developed a medium level repre-
sentation that bridges the gap between the pixel and the
object level [3]. It has the following properties required by
automotive environment perception:

« compactness: it offers a significant reduction of the data
volume, while the complete information of interest is
preserved,

« stability: small changes of the underlying data do not
cause rapid changes within the representation,

« robustness: outliers have very little or no impact on the
resulting representation,

« explicitness: the information of interest is available
without the need for transformation and further com-
putation.

The Stixel World represents the 3D-situation by a set of
rectangular sticks named “stixels” as shown in Figure 2. Each
stixel is defined by its 3D-position in relation to the camera
and stands vertically on the ground, having a definite height.
Each stixel limits the free space and approximates the object
boundaries. The Stixel World has been used successfully in
the work of Barth et al. [4] using the silhouette of grouped
stixels as a constraint for position and orientation in vehicle
tracking.

Besides the position of a stixel, its motion is of utter
importance for scene understanding. The static Stixel World
computed from a single stereo image pair is not able to
infer motion information. Therefore, we extend this approach
and track the stixels over time. Using Kalman filters we
are able to estimate longitudinal as well as lateral motion
and obtain the pose with increased precision. This allows to
distinguish between static and moving stixels and supports
the subsequent grouping of stixels to objects.

Section II describes the single steps required to build the
static Stixel World from raw stereo data. The new dynamic
Stixel World obtained by Kalman filter based stixel tracking
is described in Section III. Section IV presents results
and properties of the proposed representation. Section V
concludes this paper.

II. BUILDING THE STATIC STIXEL WORLD

Traffic scenes typically consist of a relatively planar free
space limited by three-dimensional obstacles that have a
nearly vertical pose. Figure 3 exemplary displays the dispar-
ity input used to extract the stixel representation as well as
the current traffic situation. The different steps necessary to
construct this representation are sketched first and described
in detail in the following.

First of all a dense disparity image is computed using
the image pair of our stereo camera system. In the second
step, the free space is computed, which ends by definition at
the base point of vertical obstacles. Instead of accumulating
pixels above ground in an occupancy grid, we propose a new
method for computing the free space directly, following an
idea published in [5]. A cost image is computed (Figure 4)
and subsequently analyzed. We formulate the problem in

such a way that we are able to use dynamic programming,
which yields a global optimum when determining the free
space.

The goal of the third step is to determine the height
of the stixel covering an obstacle. Stereo disparities vote
for their membership to the vertical obstacle generating a
membership image and a cost image (Figure 5). A second
dynamic programming pass allows the optimal estimation of
the height of the obstacles. An appropriate formulation of this
problem allows us to reuse the same dynamic programming
algorithm for this task, as applied for the free space computa-
tion. Finally, using the results of the free space computation
and height segmentation the static stixel representation is
extracted.

When using a stixel width of w = 5px, an image with
640 x 480px is described by 128 static stixels only. Each
stixel is described by just two parameters (distance/disparity
and height). Their lateral position is encoded by the order
from left to right. The exemplary result for the scene from
Figure 1 is illustrated in Figure 2.

A. Dense Stereo

Stereo vision has been an active area of research for
decades. For real-time stereo algorithms correlation-based
approaches are popular (e.g. [6]). Among the top-performing
algorithms in the Middlebury database [7], we found semi-
global matching (SGM) [1] to be the most efficient.

Roughly speaking, SGM performs an energy minimization
in a dynamic-programming fashion on multiple 1D paths
crossing each pixel and thus approximating the 2D image.
The energy consists of three parts: a data term for photo-
consistency, a small smoothness energy term for slanted
surfaces that change the disparity slightly, and a larger (con-
stant) penalty term for depth discontinuities. Based on this
algorithm, we have introduced the first real-time dense stereo
implementation that runs at 25 Hz with a power consumption
of less than 3 W [2]. The implementation runs on a Xilinx
FPGA platform.

The following steps describe the required steps for con-
structing the stixel world and are illustrated on an exemplary
scene depicted in Figure 1.

B. Image Based Free Space Computation

The first step when extracting the stixel representation is
to determine the base point of each stixel (e.g. the coordinate
where it touches the ground). By definition this point is
identical to the limit of the free space along that direction.
In our previous work we obtained the free space by using
occupancy grids and a dynamic programming scheme as
proposed by Badino et al. [8], [9]. This method has proven to
be quite robust, especially when dealing with faulty disparity
measurements due to bad weather conditions or other stereo
artifacts. On the other hand it requires a high computational
effort.

Kubota et al. presented an approach where the free space is
obtained directly by warping the stereo image pairs without
the need of a real stereo computation [5].

Object
Background

Z

Fig. 3: Distribution of stereo measurements along one col-
umn of the image and the model assumption of road, object
and background. The disparities are assumed to divide into
three separate sections: road evidence (light green), object
evidence (red) and background disparities (blue).

Here we propose a related method. Instead of warping
the images we directly utilize the disparities to obtain a
score image. This score image is then used in a dynamic
programming scheme to extract the optimal free space path
cutting the image from left to right while favoring temporal
and spatial smoothness [8].

The disparities measurements are assumed to be parti-
tioned into three connected sections: road disparities, obsta-
cle disparities and background disparities. This is illustrated
in Figure 3. In the current version, we do not require the
road to be absolutely planar but use the approach proposed
by Wedel et al. [10]. They presented a general technique
for robust modeling of non-planar ground surfaces using
B-Splines that allows to estimate a disparity profile dg(v)
giving the disparity of the road surface at each row v
(assuming a camera roll angle of ~ 0).

For each pixel d, of each column in the disparity image
Q, a score I',, is computed that consists of two sub-scores:
one for road evidence I'? and one for obstacle evidence T'€.

r, = alFf—l—ango, with
vp
e = > ldr(w) —d,|
v=vp—h,
\4
I = Y |dr(v) - do|)
V=vp

The score for the object penalizes derivations from the
base point disparity dg(vp), while the score for street surface
penalizes derivations from the given disparity profile dg(v).
V' corresponds to the height of the image and h, gives
the number of pixels to determine the object score. h,, is
dynamically generated as a sum of a constant minimum
number h. and the required number of pixels h, of an
assumed virtual obstacle with the height parameter ~ 1 m
standing on the ground at row v.

hv = hc + ho (2)

The resulting score image is shown in Figure 4 and
corresponds to the scene shown in Figure 1. The free space
that is obtained when using this score image for dynamic
programming is given beside the score image.

(a) Cost image for free space.

(b) Resulting free space

Fig. 4: The cost image for the free space computation
is shown on the left side. The right image illustrates the
result of the free space computation after applying dynamic
programming to the cost image.

C. Height Segmentation

The height of the objects which interrupt the free space is
obtained by finding the optimal segmentation between object
and background disparities. Just like to the computation of
the free space, this is achieved by first computing a cost
image and then applying dynamic programming again to find
the upper boundary of the objects.

Given the set of free space points (v, d,), d,, being the
disparity value of the base point and their corresponding
triangulated coordinate vectors (X, Z,), the task is to find
the optimal row position vy where the upper boundary of
the object at (X, Z,,) is located.

Every disparity d,, € 2, of each column from the disparity
image votes for its membership to the foreground object. In
the simplest case a disparity votes positively or negatively.
Positively, if it does not deviate more than a maximal
distance from the expected object disparity d,, and negatively
otherwise. However, such a Boolean assignment makes the
threshold for the distance very sensitive: if it is too large, all
disparities vote for the foreground membership, if it is too
small, they all vote for the background. A better alternative
is to approximate the Boolean membership in a continuous
variation with an exponential function of the form

My, = (-(55)) | 3)

A3

Z
AD, is a computed parameter. AZ, represents the allowed
deviation in [m] to the base point Z,, before M,, ,, turns into a
negative value. b corresponds to the base length and f, to the
focal length of the stereo camera system. Our experiments
show that the explicit choice of the function (3) is not crucial
as long as it is continuous. From the membership values the
cost image is computed:

AD, = dy — fa(Zy + AZy) , with f4(Z) =

i=v =V
Cuw= Y Myg— > My 5)
f=vp b=v+1

This formula expresses the idea that the maximum C', 4,
and thus the highest likelihood for the height segmentation,

(a) Membership votes.

(b) Height costs.

Fig. 5: The left side depicts the membership voting with
white meaning positive votes and black meaning negative
votes. Gray stands for neutral. The right image shows the
resulting cost image for the height segmentation.

for each column is supposed to be reached at row v,,4.
when most positive membership votes lie below (foreground)
and the most negative membership values lie above v,q,
(background). Figure 5 shows an exemplary membership
voting and a cost image for the scene shown in Figure 1.

D. Extraction of Static Stixel Measurements

Once the free space computation and height segmentation
have been applied successfully, all required input is given and
extracting the static stixel measurements is straightforward.
In combination with a predefined width for the stixels (e.g.
w = Hpx), the base points vy, . .. Vpy4w and the top points
Uty - - - Uyt Span a rectangle. All covered image points
and disparities within that area belong to the static stixel
measurement. Instead of taking the base point disparity as
reference, the covered disparity values are now used to
accurately adjust the distance associated with the stixel. For
this purpose we rely upon a histogram based approach, yet
any other method that offers outlier rejection would suffice
as well.

This process leads to (static) stixel measurements that
encode the free space as well as position and height of the
first obstacle along each viewing direction within the image
with high precision. The resulting stixel representation is
illustrated in Figure 2.

III. BUILDING THE DYNAMIC STIXEL WORLD
A. The 6D-Vision Principle

The precision of static stixels can be further improved
if measurements of consecutive images are combined prop-
erly. In addition, tracking the stixels can reveal the motion
of Stixels covering dynamic objects. Estimating motion of
other objects requires knowledge of the ego-motion. In the
following, we extend the basic idea of building a static stixel
representation to the time domain.

In [11] Franke et al. presented a method called 6D-Vision
that allows for the simultaneous estimation of 3D-position
and 3D-motion for a large number of image points. Their
position is tracked over time, and a rich 6D representation
combining position and velocity in the state vector £ =
(XY, Z, X,Y.Z)T is determined using Kalman filters [12].
The underlying motion model for each tracked pixel is
constant velocity with a = 0.

For our tracking purpose we follow this principle with the
restriction Y = 0, since we do not expect the stixels to move
vertically. Therefore our state vector is reduced to 4D and
only position and velocity Z = (X, Z, X, Z)T are estimated.

B. Ego-motion Estimation

In order to estimate the true motion of the stixels in world
coordinates, the motion of the ego vehicle must be known.
Certainly, this information can be taken from inertial sensors.
However, we prefer to use the method described in [13] since
it outperforms available standard inertial sensors. The basic
idea of this approach is to track static image points over
time and use their depth to estimate the motion with full six
degrees of freedom.

C. Estimation of Dynamic Stixels

_ Assuming a constant velocity v. and a constant yaw rate
1. over the time interval At, the movement of a vehicle can
be described in this car’s right handed coordinate system by

At ;
Ve [1 — cosp.At
Az, = dr = — . . (6
z, /0 v (T)dr 7 (sin At (6)
The new position of a world point located at z;, = (X, Z)T
after the time At is described by
z, = Ry() ()1 + v At — Az,).

Having a filter position (X, Z)7 and an estimated velocity
(X,Z)T of a stixel, the system and measurement model of
the extended Kalman filter is deduced as follows. The system
model is given by

Iy, = Aptr—1 + Br + wg. @)
With
_ ([Ry(¥) AtRy(¢))
Ae = (O2x2 Ry (¥)
1 — cos At
1 — sin At
B, = % 8 ®)

R, corresponds to the 2 x 2 rotational matrix revolving
around the y-axis. The noise term wj is assumed to be
Gaussian white noise with covariance matrix Q.

A measurement to update a tracked stixel consists of three
parts: The disparity measurement dyeas, the column position
Umeas and a height observation Apeys.

In addition to stereo, we also require an algorithm to
estimate the 2D-motion between consecutive images. For
this purpose we rely on the dense optical flow method
as introduced by Zach et al. [14] that is based upon the
variational approach of Horn and Schunk [15]. However, any
other optical flow algorithm serves the purpose.

Since the stereo and optical flow computation works on
rectified images, we are able to use the pin-hole camera
model using the non-linear measurement equation

U X fu
z= v = Yf,
d bfu

+7 €))

N =

with the focal lengths f,, and f, and the baseline b of the
stereo camera system. The noise vector v is assumed to be
Gaussian white noise with a covariance matrix R. This non-
linear projection from our system state to the measurements
forces us to use an extended Kalman filter. The input
disparity dpe,s and column position wumeys 1S extracted from
the disparity and the horizontal component of an optical flow
image using the predicted position of the stixel # = (X,2)T
for time step k. is projected into the image. The measured
column position wye,s 18 computed by

Umeas = Uk—1 T du('&) (10)

with du () being the displacement that is extracted from the
area the stixel covers within the optical flow image around
the predicted column «. The disparity measurement dpeys 1S
taken directly from the disparity image. The measurement-
state-relation for the filter is obtained by the Jacobian ap-
proximation of (9).

The height of each stixel is assumed to be constant. Still
- when approaching an observed object - the quality of
the height measurement tends to increase and an additional
update is reasonable. To obtain a height observation for a
dynamic stixel, the closest static stixel measurement in a
certain range is determined and its height is used, so no
additional height segmentation for the dynamic stixels is
required. The height information is updated by means of a
low pass filter via

hk :Ol'hk71 +(1—()é) 'hmeas (11)

with o = 0.95 as a fixed parameter.

Due to the possible lateral movement, stixels are no
longer bound to equidistant columns. As a consequence,
their maximum total number is not fixed, since they start to
overlap partially and/or belong to objects in different depths.

IV. RESULTS

The video material is recorded in our test vehicle using an
640 x 480 imager with a 42° lens. The SGM stereo algorithm
is running asynchronously on an FPGA within 40 ms causing
one frame delay. The dense optical flow is calculated on the
GPU (NVidia 285GTX) using a CUDA implementation that
takes ~ 35 ms to compute. This step is made asynchronously
as well. The remaining algorithms are running on the CPU
(Core2Quad 3.0Ghz, 333Mhz FSB, 4GB DDR2 800) in real-
time within ~ 40 ms. This time splits as follows:

« rectification: 3 ms

« free space computation: 12 ms - 4 ms for the cost image,
8 ms for the dynamic programming step

o height segmentation: 11 ms - 3ms for the cost image,
8 ms for the dynamic programming step

o static stixel measurements: 5ms (including distance
refinement with histogram based approach)

o dynamic stixels: 10 ms, Note that this is a mean value.
The time taken depends on the actual number of tracked
stixels, which can grow up to about four times the
amount of static stixels.

A\

Fig. 7: Tllustrates the color encoding of speed and direction.
Maximum saturation is reached with 10 m/s. The color value
represents the direction the stixel moves with respect to our
ego-vehicle that is in line with the Z-axis.

A. Result of the Static Stixel World

The images depicted in Figure 6 show a couple of sit-
uations and their corresponding static stixel representations.
These include urban environments as well as humans at close
range. More examples for static stixels including further
scenarios such as highways or rural roads can be found in [3].

Note how the stixel representation is able to follow the
contour of the objects and thus approximating them very
precisely. For all images within the following sub-sections
a stixel width of 5 pixels has been chosen. By varying
this parameter one has the freedom to determine the trade-
off between compactness and the level of detail of the
approximation.

The stixel extraction scheme proves to be quite robust.
All screen shots have been generated with the same set of
parameters without any additional tuning was performed.

B. Results of the Dynamic Stixel World

The recorded images shown in Figure 8 illustrate some
basic examples by featuring only a few moving objects. The
coloring for the dynamic stixels encodes the movement along
the XZ plane and is explained in Figure 7. The Kalman
filters are used without any preconditioned initialization.

Additional scenarios are presented in Figure 9. These
include 3D-views and correspond to more complex traffic
situations with either several moving objects, a higher ego-
motion or even non-rigid motion of the objects themselves
(e.g. a turning truck).

A short explanation regarding the motivation for each
scene as well as a description of contents is given below
each sub-figure. Note that these are just exemplary examples,
though the Stixel algorithm was successfully evaluated in our
test vehicle for hours in open road traffic.

The Kalman filters used for these results estimate position
and velocity for every Stixel independently. Depending on
the filter configuration a reliable motion estimate is available
within 3 update steps. To obtain further state information
like de- and acceleration these filters must be extended

(a) Urban scenario with a leading car, buildings on the right and an

oncoming car on the left side.

(b) Crowded urban scenario with a leading car, several cars on the left,
houses and pedestrians on the right side.

(c) Parking site, a car is turning left.

(d) A person and various other objects are located ahead.

Fig. 6: A set of exemplary scenarios are illustrated together with their corresponding static stixel representation. The colors
of the stixels encode the distance with red representing close and green representing far objects.

accordingly. Due to the complexity of the whole system this
has not been tested yet.

V. SUMMARY AND CONCLUSION

A stereo-based method was presented that allows for the
computation and representation of the free space as well
as obstacles including information of their world motion by
means of dynamic stixels.

The proposed stixel representation serves well as a com-
pact medium level representation with significant compres-
sion rates compared to the raw input that is generated from
dense stereo and optical flow computation.

Dense disparity images are used to compute cost images
for the free space computation and the height segmentation.
Dynamic programming is applied to these cost images to
ensure spatial and temporal smoothness of the results. This
information is used to extract the static stixel representation.
Motion information is derived from tracking dynamic stixels
over time by means of Kalman filters and the use of dense
optical flow.

In conjunction with the motion information, dynamic
stixels form a powerful intermediate level representation to
support further processing steps such as object clustering,
control of attention and reasoning. The estimation of motion
works quite precisely thus delivering reliable state informa-
tion. Experimental results show the robustness of our real-
time capable method.

REFERENCES

[1] H. Hirschmiiller, “Accurate and efficient stereo processing by semi-
global matching and mutual information,” in CVPR, 2005.

[2] S. Gehrig, F. Eberli, and T. Meyer, “A real-time low-power stereo vi-
sion engine using semi-global matching,” in International Conference
on Computer Vision Systems, 2009.

[3] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world - a compact
medium level representation of the 3d-world,” in DAGM Symposium,
(Jena, Germany), September 2009.

[4] A. Barth, D. Pfeiffer, and U. Franke, “Vehicle tracking at urban
intersections using dense stereo,” in Submitted, 2009.

[5] S. Kubota, T. Nakano, and Y. Okamoto, “A global optimization
algorithm for real-time on-board stereo obstacle detection systems,”
in Intelligent Vehicles Symposium, IEEE, 2007.

(a) A car moving from left to right is shown. Its estimate velocity is (b) A car is shown that is moving away from us with an estimated speed
=~ 12 m/s. Parking vehicles and the infrastructure are correctly estimated of ~ 9 m/s. Note how the drawn arrows are aligned in parallel and thus
as standing still. point into the same direction.

E

(c) This illustration features an approaching car that takes a left turn (d) We are driving at &~ 13m/s behind a leading car trying to keep a
just in front of our vehicle. The stixels approximating its front correctly = constant distance of ~ 18 m. Our yaw rate is ~ 0. All stixels covering
point into that direction. The rear of this car has just been visible a few the car point in the same direction. Their velocity estimate corresponds
frames. Therefore the stixels on the rear are not yet recognized correctly to our ego-motion. The car on the right is correctly estimated as standing
as moving. This car moves with ~ 5m/s. This frame is identical to the still. Some stixels on the left side approximating parking cars are wrongly
one shown in Figure 6c. estimated as moving.

Fig. 8: Four different exemplary scenes are illustrated showing rather clearly arranged traffic scenes with only a few moving
obstacles. The sequences within the parking site were taken while standing still. If stixels are estimated as moving, arrows
are drawn that point into the direction where they are expected within the next half second. The color encoding is explained
in Figure 7.

[6] U. Franke, “Real-time stereo vision for urban traffic scene understand- rep., Department of Computer Science, University of North Carolina
ing,” in Intelligent Vehicles 2000, 2000. at Chapel Hill, 1995.

[7] D. Scharstein and R. Szeliski, “Middlebury online stereo evaluation,” [13] H. Badino, “A robust approach for ego-motion estimation using a
2002. http://vision.middlebury.edu/stereo. mobile stereo platform,” in 15t International Workshop on Complex

[8] H. Badino, U. Franke, and R. Mester, “Free space computation using Motion (IWCM’04), (Giinzburg, Germany), Springer, October 2004.
stochastic occupancy grids and dynamic programming,” in Workshop [14] C. Zach, T. Pock, and H. Bischof, “A duality based approach for
on Dynamical Vision, ICCV, (Rio de Janeiro, Brazil), October 2007. realtime tv-11 optical flow,” in DAGM, 2007.

[9] H. Badino, R. Mester, T. Vaudrey, and U. Franke, “Stereo-based free ~ [15] B. K. P. Horn and B. G. Schunk, “Determining optical flow,” in
space computation in complex traffic scenarios,” in Image Analysis Artificial Intelligence, vol. 17, pp. 185-203, 1981.

and Interpretation, pp. 189-192, 2008.

[10] A. Wedel, U. Franke, H. Badino, and D. Cremers, “B-spline modeling
of road surfaces for freespace estimation,” in [Intelligent Vehicles
Symposium, IEEE, 2008.

[11] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion
of stereo and motion for robust environment perception,” in DAGM
Symposium, 2005.

[12] G. Welch and G. Bishop, “An introduction to the kalman filter,” tech.

Ll St TR s &k

SR
(a) This figure illustrates a common traffic scene within an urban environment, containing both static and moving objects. Our ego-motion is ~ 8 m/s

and =~ 0. One can observe the walls aside standing still (white coloring) while the three cars (one in front and two on our left side) move along in our
direction (blue). In a distance of ~ 35m a fourth car on an approaching lane is visible. Its heading direction is roughly estimated correctly contrary

to our movement. Due to the distance and the small number of frames it has been visible yet the velocity values of the corresponding stixels are still
quite scattered.

(b) The view on an intersection is illustrated within this figure. A truck is moving in from the left and turning to its left. The performed rotation is
made visible by the different colors of stixels covering the truck, since the rear moves differently from the front.

2

¢

(4
3

150 fi8lsts
W0 meters
BOmeess

Blimegy

s) i

¥ E ST b

(c) A car is moving from right to left and performs a left turn at an intersection. It moves rather rigidly, which is denoted by the uniform orange
coloring.

Fig. 9: More complex results of dynamic stixels are shown. The color encoding is explained in Figure 7. To be able to
illustrate the motion properties and spatial alignment in detail, 3D-views of the scene are given besides the pictures.

