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Abstract— Visual odometry is one of the most active topics
in computer vision. The automotive industry is particularly
interested in this field due to the appeal of achieving a high
degree of accuracy with inexpensive sensors such as cameras.
The best results on this task are currently achieved by systems
based on a calibrated stereo camera rig, whereas monocular
systems are generally lagging behind in terms of performance.
We hypothesise that this is due to stereo visual odometry
being an inherently easier problem, rather than than due to
higher quality of the state of the art stereo based algorithms.
Under this hypothesis, techniques developed for monocular
visual odometry systems would be, in general, more refined
and robust since they have to deal with an intrinsically more
difficult problem.

In this work we present a novel stereo visual odometry system
for automotive applications based on advanced monocular
techniques. We show that the generalization of these techniques
to the stereo case result in a significant improvement of the
robustness and accuracy of stereo based visual odometry. We
support our claims by the system results on the well known
KITTI benchmark, achieving the top rank for visual only
systems™.

I. INTRODUCTION

The main distinction we make when discussing visual
odometry systems is that between stereo and monocular
systems. Due to the difficulties imposed by a single camera
setting, monocular visual odometry systems are still hard
pressed to compete with stereo systems despite significant
improvements in the last few years.

Monocular challenges such as scale estimation: Whether
through ground-plane estimation or object recognition is a
tough task with inherent uncertainties, requiring long tracks
and long optimization windows which can propagate the
scale information through the translations over longer time
spans. Moving objects present a different challenge by caus-
ing outliers which cannot always be identified immediately
and necessitate careful maintenance of tracks. Similarly
noisy measurements and poor pose estimates further require a
robustification of the triangulation and estimation processes.
Finally since monocular systems must rely only on the
quality of its existing tracks, the initialization of a monocular
system must be performed with great care.

Stereo systems by comparison, have a fixed known base-
line that can be easily exploited to recover a global metric
scale. Though in rare cases using only local data may leave
the system vulnerable to distant scenes. Moving objects are,
in general, easier to identify for the same reason but suffer
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from a similar problem. Noisy tracks cause less problems
since they can be readily triangulated at every new couple
of frames for verification and new tracks can be added
with estimated depth from a single stereo pair. Furthermore,
redundancy in the visual information due to the overlapping
field of view helps stabilize tracks observed in both images.
In essence the problems monocular systems face in every
frame for every track are reduced to rare occurrences for the
stereo system.

The hypothesis motivating the design of our system is that
the methods used in monocular visual odometry are more
robust by necessity and would perform well if generalized to
the stereo case. In particular we use motion model predicted
tracking by matching not dissimilar to the scheme proposed
by Song et al [1], delayed outlier identification [2], long
optimization windows and robust iterative triangulation.

This work describes the building blocks of our system
as well as the general outline. We present a novel way of
combining and tuning state of the art components to obtain
a new stereo visual odometry system that outperforms the
state of the art. Since our target is visual odometry for
automotive applications, the many driving sequences in the
KITTI odometry benchmark [3] serve as a strong indicator
of practical performance.

II. RELATED WORK

Visual odometry is undoubtedly one of the most active
topics in computer vision in the last years. Since the sem-
inal work of Moravec [7] more and more research groups
became interested in the topic of self-localization of a system
relying solely or mainly on visual data. Real time monocular
SLAM using commodity components was first achieved by
Davison et al with MonoSLAM [8] and the filtering approach
dominated the field for four years. But it was PTAM [9] by
Klein et al, a bundle adjustment based system, which finally
broke the barrier to direct augmented reality applications and
piqued the interest of the public in 2007. These two works
are still considered among the most important in the field
because they showed what was possible to do by relying just
on inexpensive cameras for self-localization and mapping.
The obvious applications of successful systems attracted the
attention of military contractors and many leading industries,
especially in the automotive field. This, in turn, sparked an
explosion of high quality works on the topic in the last few
years. An extensive literature review on the topic is beyond
the scope of this paper and we will focus exclusively on
a brief overview the most relevant works for automotive
applications that are of specific interest for this paper. The



interested reader can, however, find more complete reviews
of the topic in review papers such as [10].

Visual odometry is an extremely complex and difficult
problem. Numerous approaches have been proposed and
virtually uncountable variants and assumptions have been
tried to make the problem easier to treat. We like to cluster
the existing systems using four different aspects:

o Feature-based versus direct systems

o Global (loop-closing) versus local systems

« Filter based versus bundle adjustment based systems
e Monocular versus stereo systems

Feature based systems extract keypoints and track or
match them in subsequent frames. These matches are then
used to compute the egomotion by the means of essential
matrix estimation [11], PNP [4], [1] or the trifocal tensor
[12]. Direct methods on the other hand operate on the
whole images thus producing a dense or semi-dense motion
field [13], [14], [15], [16].

Global systems keep track of the complete map built over
time so that at any time instant it is possible to identify
a previously visited location, thus allowing to correct the
current estimate of the trajectory [9], [14]. As argued by
Song et al. this is in general not practical for automotive
applications [1]. Alternative approaches keeping track solely
of recent map information have become more popular in
recent years [1], [4], [5], [S], [17].

Many approaches make use of some form of filter to obtain
a smooth trajectory for the visual odometry and to reduce
the negative effect of noisy measurements [12], [18], [19].
This approach simplifies the fusion of ancillary sensors such
as IMUs, but complicates the process to revert associations
retroactively [20], [21], [22], [23]. The main alternative to
this approach is to instead rely on a bundle adjustment step
to refine the map and camera poses by minimizing the total
reprojection error [24], [4], [11], [5].

Monocular approaches make use solely of the information
provided by a single moving camera, thus information on the
scene and the motion can only be recovered up to a global
scaling factor without assumptions on the scene [1], [25].
Stereo systems, on the other hand, can rely on the known
transformation between the two cameras to extract the metric
scale and on the redundancy of the visual data to improve
stability and robustness [4], [25], [17], [12], [5], [13].

Comparison between different methods has been made
easier recently thanks to a number of free datasets that have
been made available [3], [26], [27], [28]. The KITTI dataset
in particular is currently the most popular one, partly thanks
to the benchmark test made available by the authors [3].
The top performing visual-only systems to date are all stereo
based papers [4], [17], [13], [5]. An exception to this rule
is given by the work of Song et al. which is among the
best scoring systems despite relying on monocular data [1].
This system is a feature based, local method using bundle-
adjustment. The system we propose has many affinities
with this work, but also exploits the advantages given by
a calibrated stereo setup.

III. VISUAL ODOMETRY

This section outlines our visual odometry system and its
components. We denote the chain of measurements in a
sequence of images and the associated 3D point as a ’track’.

The system processes the stereo sequence as follows:

Algorithm 1 Main Loop
1: for each stereo pair do
2: Features = Extract Features(FAST,BRIEF)
3: Track and estimate pose
4: Local bundle adjustment
5 Add new tracks

Initialization of the system differs only in that the motion
model is not applied during the first four stereo-pairs of
tracking.

A. Feature extraction

A scale pyramid is built for each image in the stereo
pair. For each level of the pyramid the FAST [29] corners
are extracted and subjected to a corner response, Adaptive
Non-Maxima Suppression (ANMYS) filter with a fixed radius
of five. The pyramid consists of the full size image and a
2/3 subsampling. BRIEF descriptors are computed for each
FAST corner at the corresponding level [30].

The ANMS filter both reduces the computational cost and
improves estimation by improving the spatial distribution
of the tracks [31]. The BRIEF descriptor was chosen due
to a small advantage in training set accuracy over the
FREAK [32] and ORB [33] descriptors.

B. Tracking

The latest BRIEF descriptor of every recently measured
track is searched after in a large window (radius 25 pixels)
around its predicted position in the new left image by BRIEF
descriptor matching. The track position is predicted using the
pose estimate from the motion model and the estimated 3D
position of the corresponding point.

Since descriptor matching often results in several potential
candidates, we use a two step approach. First, the minimum
Hamming distance 2D — 3D correspondences are used to
estimate the pose via RANSAC-PNP. Second, the estimated
pose is used to guide the matching, selecting the best
candidate taking both appearance and re-projection error,
thresholded to 3 pixels, into account. Tracks found in the left
image are matched into the right in the same way with the
same criteria, however we do not require that a right image
match is found. Finally every inlier is matched to the right
image using descriptor matching, the measurement added to
the track if it passes a test on the re-projection error given
the known stereo configuration.

If fewer than fifty tracks are found, the result is considered
untrustworthy and the system uses the motion model to
predict the pose of the current frame and reinitializes.



C. Track Replenishment

We choose to keep ~ 500 tracks at all times, adding
new tracks as needed by the following method. The FAST
corners of the left image are ANMS filtered with a fixed
radius of 18 pixels removing every corner too close to
an existing track or another corner with a higher response
strength. The descriptors of the remaining features are then
matched to the right image, triangulated and filtered by their
re-projection error. Matches are added as candidate tracks.
Candidate tracks are searched after in the next stereo pair
images and added as proper tracks if they are found and
pass the re-projection test and no more than 1000 tracks are
already present. Excess tracks shorter than four stereo-pairs
are discarded.

D. Pose prediction

We use a constant acceleration model in world coordinates
to predict the pose with the added constraint that the car is
driving forward i.e. along the optical axis of the camera.
Let:

o The position at time t: py

o The velocity at time t: vy

e The acceleration at time t: a;

o The velocity in the camera coordinates at time t: v,y

« A noise component n, ; ~ N(0,0%)

Model:
t3
Di+1 :pt—&—vt(;—l—a? +npy (D
Vg1 = U+ axls +nyy (2)
Q41 = Q¢ + Ng e 3)
(1,1,0)vct = Nyeye 4)

The predictive states i.e. v,a; are found by minimizing
So(n2 ,4n2 ,4+n2 4+n2,. ) over a window of twenty vehicle
poses.

E. RANSAC-PNP

We use the P3P of Kneip et al [36] wrapped in the
MLESAC [37] loop followed by optimization of the re-
projection errors of the inlier set using the Ceres Solver.
We perform [250 — 1000] RANSAC iterations depending on
data.

F. Local Bundle adjustment

The total track re-projection errors are minimized by the
Ceres Solver [34] over a local window over the track 3D
positions and the vehicle poses. The cost contains every
measurement of every recently measured track with an
average re-projection error below 3 pixels.

Every track failing this test is re-triangulated indepen-
dently, iteratively removing the worst measurement until the
average re-projection error reaches the threshold. We found
experimentally that this reduces the total computational cost
compared to the use of robust cost functions.

The vehicle poses outside the optimization window which
enter the cost are set constant approximating the proper
transfer of the information.

e Let z; be a 3D point feature.
Let p : p(x;) = L(IU)
° o P\ Ti2 \Ti1
o Let P, transform from vehicle to camera ¢ coordinates.
e Let P; transform from world to vehicle at time t.
o Let y.; be a pinhole normalized measurement of x; by
camera c at time t.

We minimize an equivalent to:

Z(ycti — o(P.P,x;))*Vept,i € window 5)

The rotations are parametrized as unit-quaternions. Nor-
malization is maintained by backprojection to the unit sphere.

G. Robust Triangulation

New tracks or tracks which may have been corrupted by
outliers need to be triangulated before becoming part of the
BA optimization cost function. In the former case to ensure
a good initalization and in the latter to improve convergence
speed.

A track is triangulated by minimizing > (yer — @(2et))?
where z., = P.P,xz The optimization is initialized by the
midway method applied to the two measurements taken the
furthest apart, a track which is found behind either camera
is moved in front of both. We use iterative minimization
of the re-projection error due to its superior accuracy and
performance over polynomial methods [35].

IV. EXPERIMENTS

For our tests, we use the publicly available KITTI dataset.
This dataset provides ground truth egomotion for the 11
training sequences, furthermore a benchmark is available
to test methods on a separate set of test sequences. This
benchmark is used to test the methods for the KITTI
odometry challenge. The average change in pose per meter
is used as error metric. The distribution of the per frame
error is computed using the training data ground truth.Since
automotive applications require low latency the errors are
computed on the estimates directly after the tracking step
for each stereo-pair frame.

Our method is currently the top ranked stereo system in
the KITTI odometry benchmark  under the name cv4xv1i-sc.

A. Benchmark Results

In this section we present some sample results our system
achieved on the KITTI benchmark test sequences.

Figures 1 and 2 show the path reconstructed from our
visual odometry system compared with the ground truth data
on two test sequences of the KITTI benchmark.

Further test results are available on the KITTI odometry
website.

Figures: 3 and 4 Show that our method(CV4X) outper-
forms the state of the art visual odometry systems. Including
the previously top ranked MFI [4], TLBBA [5] and 2FOCC
aswell as MLM-SFM [1] and even DEMO [6] a monocular
system supported by a high end laser depth sensor. The

Thttp://www.cvlibs.net/datasets/kitti/eval_odometry.php (accessed on 30
Jan 2015)
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Fig. 2. Reconstructed path for test sequence 13. Ground truth and our
method.

results show a slight improvement on the rotation estimate
and a significant improvement on the translation estimate.
Figures 1 and 2 show the trajectory of the vehicle as
estimated by our system.

B. Results on the training data

We also provide some results our method achieved on
the training set of the KITTI benchmark. Ground truth is
provided for these sequences, we therefore evaluated our
method on them using the same metrics used for the test
set by the KITTI benchmark.

Figures 5 and 6 respectively show the rotation and transla-
tion error plots for all the 11 sequences in the KITTI training
set.

In figures 7 and 8, we show the distribution of the
errors in the training sequences, for rotation and translation
respectively.

Its worth noting that the systems recovery method is not
tested as no tracking failure occurs in any of the KITTI
sequences.
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C. Time Performance

Similar to the elegant two thread PTAM system, our sys-
tem parallelizes tracking and mapping. We also use OpenMP
and cuda for further parallelization subtasks.

The bundle adjustment iterates for up to 90 ms and the
tracking takes on average 140 ms. We believe that further
CUDA paralellization should allow the system to run in the
full 10 fps of the KITTI dataset video source. We performed
the experiments on a 4Ghz core I7x4 and a GTX 770
graphics card.

V. ANALYSIS

The analysis of the results shows that the translation errors
vary significantly among the sequences in the training set.
In particular for sequence 01, a highway scene with largely
distant image areas driving at high speed, the translation
estimates are poor. This is most likely caused by the very
long distances of the majority of feature points from the
cameras. This sequence also has severe perceptual aliasing
during a few frames, which cause failures if the motion
model tracking constraint is disabled, indicating that the
motion prediction improves robustness.

The translation error distribution graphs show a signifi-
cantly higher noise than the long term drift, this indicates
that an error in one frame will be compensated for by
opposed error in the next. Further the error is also reduced
by the BA optimization. Figure 9 also shows that the error
is proportional to speed as expected.

It is also interesting that the error distributions show
how the system is able to recover from large PNP errors,
up to 2 degrees or nearly 30% presumably surrounded by
frames with opposed errors. This may also explain the rather
counterintuitive observation that the system is less accurate
and robust with a small re-projection threshold such as 1
pixel rather than 3 when evaluated on the training sequences.
Though the errors do not cause a tracking failure, they are
the main cause of the odd behaviour of the KITTI rotation



error for training sequence 00. The error occurs during rapid
rotations which cause the loss of all longer older tracks.

Additionally, our results also show that, though there is
a great deal of work aimed at achieving sub-pixel tracking
accuracy, this is not necessary for visual odometry when the
poses are constrained by hundreds of tracks.

The motion model provides predictions of sufficient qual-
ity for its purpose, given the smoothness of the trajectory
of a car. Direct inclusion of the motion model in the main
cost function, as is common in filtering approaches, holds
the promise of further accuracy improvements.
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VII. CONCLUSIONS

We have developed a stereo visual odometry system which
incorporates several techniques developed for monocular
systems and show that it achieves state of the art performace
on the KITTI odometry benchmark, outperforming all other
published, KITTI ranked, stereo odometry methods.
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