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Abstract—As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities

arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the

predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection

performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or

viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages

the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we

gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information,

resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple

object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer

object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the

state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal

VOC 2007 [5], EPFL multi-view cars [6]).

Index Terms—Object detection, 3D object models, deformable part models, structured output learning

Ç

1 INTRODUCTION

OBJECT class detection has reached remarkable perfor-
mance for a wide variety of object classes, based on

the combination of robust local image features with statis-
tical learning techniques [1], [7], [8], [9], [10]. Success is
typically measured in terms of 2D bounding box (BB)
overlap between hypothesized and ground truth objects
[11] favoring algorithms implicitly or explicitly optimiz-
ing this criterion [1].

Although the state-of-the-art methods for object class
detection are appearance based, in the early days of com-
puter vision, geometry based 3D representations of
objects and entire scenes were considered the holy grail
[12], [13], [14], [15]. Being more compact and providing a
more faithful approximation of the physical world than
2D image projections, they were deemed more powerful
w.r.t. reasoning about individual objects, their interac-
tions in complete scenes, and even functions [16], [17].
Despite being rich, these representations could not be reli-
ably matched to real-world imagery. As a consequence,
they were largely neglected in favor of 2D appearance
based representations of object classes. Recently, research-
ers have reconsidered the 3D nature of the vision problem
in the context of scene understanding. Here, 3D informa-
tion has shown to be valuable to reduce false detections
[18], [19], [20]. This has also fueled the development of

multi-view recognition methods [3], [21], [22], [23], [24],
[25], [26], [27], [28], [29], providing richer object hypothe-
ses in the form of viewpoint estimates as additional cue
for scene-level reasoning [30], [31], [32]. However, most
approaches are still either limited with respect to the
degree of 3D modeling, or can not provide competitive
performance in terms of 2D BB localization. In particu-
lar, the ability to provide richer object hypotheses than
2D BB is typically associated with sacrificing 2D localiza-
tion performance in comparison to state-of-the-art object
detectors.

In this work, we aim to combine the best of both worlds,
namely, to leverage performance from one of the most pow-
erful appearance based 2D object class detectors to date,
and a geometry based 3D object class representation that
allows for fine-grained 3D object and scene reasoning. In
this way, we hope to benefit from the natural, compact and
rich 3D representation while retaining the robustness in
matching to real-world images. The goal is to leave the
beaten path towards 2D BB prediction, and to explicitly
design an object class detector with outputs amenable to 3D
geometric reasoning. By basing our implementation on one
of the arguably most successful 2D BB-based object class
detectors to date, the deformable part model (DPM) [1], we
ensure that the added expressiveness of our model comes at
minimal loss with respect to its robust matching to real
images. To that end, we propose to successively add geo-
metric information to our object class representation, at four
different levels.

First, we rephrase the DPM as a genuine structured out-
put prediction task, comprising estimates of both 2D object
BB and viewpoint. This enables us to explicitly control the
trade-off between accurate 2D BB localization and view-
point estimation. Second, we introduce 3D geometric con-
straints on the latent positions of object parts in the DPM.
This ensures consistency between parts across viewpoints
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(i.e., a part in one view corresponds to the exact same physi-
cal portion of the object in another view). Third, we extend
the notion of discriminatively trained, deformable parts to
3D, by explicitly parametrizing the parts positions and dis-
placement distributions in 3D object coordinates rather than
in the image plane (see Fig. 1). And fourth, we introduce a
continuous appearance model (see Fig. 1), which allows for
arbitrarily fine viewpoint estimates in contrast to state-of-
the-art multi-view detection methods which can predict
only a discrete set of viewpoint classes.

In this work we make the following specific contribu-
tions. First, we propose a 3D extension of the powerful
DPM, combining the representational power of 3D model-
ing with robust matching to real-world images. Second, we
demonstrate that our models deliver richer object hypothe-
ses than 2D BB, in the form of viewpoint estimates of arbi-
trary granularity and part localization consistent across
viewpoints, outperforming prior work various datasets.
Third, in contrast to previous work on 3D object models, we
show competitive performance to state-of-the-art techni-
ques for 2D BB localization. Fourth, we use 3D CAD data of
the object class of interest mainly as a 3D geometry cue, as
well as to enrich the appearance model with rendered
images from CAD data. While being not as representative
as real world images in terms of feature statistics, these
images come with perfect BB and viewpoint annotation,
which we can use to improve localization performance and
viewpoint estimates.

2 RELATED WORK

Object class detection is at the core of many computer vision
problems, and as such has been addressed since the begin-
nings of computer vision. 2D features-based representations
for general object class recognition [1], [9], [10], [33], [34],
[35], [36], have been the dominant paradigm in object detec-
tion in recent years. Multi-view detectors and 3D object rep-
resentations have been receiving increasing attention
recently, due to its potential to aid scene-level reasoning
[30], [31], [32]. In the following we review these groups of
object detection methods.

2.1 Bounding Box Object Detection

Inspired by the challenging object detection benchmarks
(Pascal VOC [11], ImageNet [37], SUN [38]) BB driven

object class detectors have achieved fascinating detection
performance. Combining precomputed (SIFT [39], HOG
[40]) or directly learned from data (CNN [41], OverFeat [10])
image features, with discriminative learning techniques
(SVM [42], AdaBoost [43], Random Forests [44]) these meth-
ods have been the main driving force in object detection.
Methods like the implicit shape model [8], which spatially
aggregates object votes, or the DPM [1], representing the
object as a collection of 2D parts have emerged. While these
methods are using precomputed image features, recently,
due to the arrival of large datasets (ImageNet), deep learning
based methods that directly learn features from raw images
(RCNN [9], OverFeat [10], DetectorNet [45]) have become
popular.

While BB oriented detectors are the de-facto state-of-the-
art in object detection, they provide very limited output,
consisting of a BB and a class label, completely ignoring the
3D nature of objects. On the other hand, models with higher
expressiveness have the potential to boost higher-level tasks
like 3D scene understanding. In this work we want to over-
come the limitations of these methods. To that end, we aim
to construct an object detector that retains the matching abil-
ity of the BB oriented detectors while being aware of the 3D
geometry of the object class of interest (see Section 3.5).

2.2 Multi-View Object Detection

The interest in richer object hypotheses has inspired the
creation of several multi-view detection benchmarks (3D
object classes [3], EPFL multi-view cars [6], Pascal3D+ [4],
KITTI [2]). The best performing multi-view detectors usu-
ally model object classes as a collection of distinct views,
forming a bank of viewpoint-dependent detectors. The
form of these detectors is typically inspired by existing
approaches from the literature that have proven to per-
form well for the single view case. Variants include shape
templates [27], implicit shape models [21], HOG tem-
plates [6], constellation models [25] and DPM [4], [29],
[46], [47], [48], [49]. Neighboring views are either treated
independently [6], [25], connected by means of feature
tracking [21], or considered jointly in a convex optimiza-
tion framework [27], [29], [46], [50].

While multi-view approaches achieve remarkable
results in predicting a discrete set of object poses [4], [29],
[46], they have several limitations. First, they usually treat
the discrete views independently [25], [29], [46]. Second,
they typically require evaluating a large number of view-
based detectors , resulting in considerable runtime com-
plexity (e.g., 32 shape templates [27], 36 constellation
models [25]). In contrast, our 3D object detectors (see
Sections 3.4 and 3.5) establishes part correspondences
across views and are able to synthesize appearance mod-
els for viewpoints of arbitrary granularity on the fly. This
results to significant speed-ups (see Section 4.4).

2.3 3D Object Class Representations

Other methods acknowledge the 3D nature of objects and
maintain an explicit representation of the 3D placement of
individual features [3], [22], [28], [51], [52], or object parts
[23], [24], [26], [47], [48], [53], [54]. 3D geometry is either
provided in the form of a depth sensor [22], [51], [52],
structure-from-motion [28], [48], [53], [55], or 3D CAD

Fig. 1. 3D2PM model visualization. Learned part 3D displacement distri-
butions along with the continuous appearance model.
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models [24], [26], [54], [56] during training, and modeled
either non-parametrically [22], [28], [51], [52], in the form
of 3D Gaussians [24], or 3D wireframe models [26], [53].

While these 3D representations constitute more compact
and more faithful descriptions of object classes than their
2D counterparts, they typically can not compete with mod-
ern object class detectors optimized for 2D BB localization
such as the DPM or RCNN. In our work we aim to over-
come this limitation of 3D object class representations by
designing a 3D extension of the DPM. To that end, we grad-
ually reformulate the model as a 3D DPM by representing
part appearance as well as positions in 3D. As a conse-
quence, our formulation models part positions as true 3D
distributions and allows to synthesize part appearance
models for arbitrary viewpoints.

2.4 Model Learning

From the perspective of learning, the BB oriented object
detectors (DPM, RCNN) are typically trained using loss
functions that are tuned for classification, sometimes even
using a pre-selected set of BBs to detect on (e.g., RCNN uses
proposal regions from [36]). In addition, multi-view recog-
nition is often phrased as a multi-class classification prob-
lem [4], [27], [29] ignoring the continuous nature of the
viewpoint variable.

In contrast, we formulate a coherent structured output
learning framework comprising both objectives: (i) 2D
object localization and (ii) viewpoint estimation. The joint
consideration of the two tasks at hand leads to consistently
better object localization and viewpoint estimation on sev-
eral datasets (see Section 4.2).

3 MULTI-VIEW AND 3D DEFORMABLE

PART MODELS

In this section we introduce our geometry-aware multi-view
and 3D object models. We start with the well-known DPM
[1] and gradually introduce 3D geometry cues. This results
in a 3D object model, a full 3D extension of DPM. The result-
ing model parameterizes part positions and distributions in
3D and has a continuous appearance model. We refer to it
as 3D2PM. Because we encode the underlying 3D object
structure, the model becomes more compact with a smaller
total number of parameters compared to the DPM. At the
same time, we obtain a model that is more descriptive of the
3D object of interest.

We describe our models successively. First, in Section 3.1
we introduce notation and the idea behind a part-based
model. After revisiting the DPM of [1] in Section 3.2, we
introduce the 2D DPM-VOC+VP in Section 3.3, a multi-
view object detector which in contrast to the DPM predicts
object viewpoint, in addition to the 2D BB. We proceed by
introducing 3D geometry into the model and in Section 3.4
present DPM-3D-Constraints that leverages 3D part con-
straints, by parameterizing part positions in 3D object coor-
dinates. This establishes part correspondences across
different views of the same object. In Section 3.5 we intro-
duce the 3D object model 3D2PM, parameterizing part posi-
tions, as well as displacement distributions in 3D. The

3D2PM includes a continuous appearance model.

3.1 Part Based Models Preliminaries

We are given data fXg1;...;N where X represents an object,
defined in image space, or in 3D object coordinates, like a
CAD model. The idea behind part-based models is to repre-
sent an object by a collection of parts [1], [57], [58]. Previous
work has considered different spatial configurations of
parts, ranging from star-shaped [1], tree-shaped [58], to
fully-connected constellations [25]. Here we build upon the
view of a generalized deformable part model as a star-
shaped conditional random field (CRF). A star-shaped CRF
defines a distribution over object and part positions
o ¼ ðo0; . . . ; oP Þ1 where oi denotes an object part, with o0
being the whole object or the root node and the rest being
the child nodes. We define an object part as an axis-aligned
hypercube. An object part can be defined in 3D object coor-
dinates as pi ¼ ½x1; y1; z1; x2; y2; z2� in which case the CRF
defines a distribution over 3D bounding cubes, or in the
image plane as qi ¼ ½u1; v1; u2; v2�, defining a distribution
over 2D BBs. Thus, given an object X and a star-shaped
CRF model uu, the joint probability distribution over the
object hypotheses reads

pðojuu; XÞ /
YP
i¼0

Cuðoi;ai; XÞ
YP
i¼1

Cpðoi; o0;biÞ: (1)

This distribution decouples in part-wise terms and for each
part oi there are two terms. First, the unary factor
Cuðoi;ai; XÞ scores an object part hypothesis oi, given the
object X. This unary factor is also referred to as the
“appearance” term as it captures the appearance of an object
part. The second factor is a pairwise term, Cpðoi; o0;biÞ,
referred to as the “spatial” term. The pairwise term specifies
part oi placements w.r.t. the root part oo. All factors are log-
linear. We denote the full set of parameters by uu ¼ ½aa;bb� that
includes parameters of the unary aa ¼ ½a0; . . . ;aP � and
pairwise terms bb ¼ ½b1; . . . ;bP �. For the feature functions
we write ff ¼ ½fðo0; XÞ; . . . ;fðoP ;XÞ� for the unaries and
hh ¼ ½hðo1; o0Þ; . . . ; hðop; o0Þ� for the pairwise features respec-
tively, so the energy of the CRF in this general form reads

huu;cci ¼ haa;ffi þ hbb; hhi: (2)

In the following sections we specify the unary and pair-
wise terms for each of the models. Fig. 2a depicts the graphi-
cal model defined by the star-shaped CRF.

Previous work on object detection with part-based mod-
els (e.g., the DPM [1]) defines a distribution over 2D object
hypotheses by parameterizing parts, unary and pairwise
terms in the 2D image space. The models that we present in
this work extend the DPM, and gradually shift the parame-
terization from 2D image space to 3D object space, resulting
in an object model parameterized entirely in 3D.

3.2 DPM-Hinge

The 2D part-based model of [1] is one of the most successful
object detectors nowadays, as evidenced by its performance
on benchmark datasets [59] and its use as a building block

1. We use regular font characters to denote part parameters of fea-
tures. We use characters with bold font whenever we stack parameters
from multiple parts or components.
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in many subsequent works. Given an image, the DPM
outputs a set of 2D BBs, coarsely localizing the objects. In
the remainder of this paper we will refer to the DPM ver-
sion of [1] as DPM-Hinge, as it uses the hinge loss during
model learning and allows us to distinguish it from the
other models.

Representation. DPM-Hinge is a mixture model with C
components, defined in 2D image space. Each component
c 2 f1; . . . ; Cg captures the appearance and part placement
of an object in a particular aspect (often coinciding with
viewpoint). DPM-Hinge parameterizes an object hypothesis
as a collection of 2D BBs of the object q0 and it’s parts
q1; . . . ; qP . For an image I, the score of component c for an
object hypothesis q ¼ ½q0; . . . ; qP � is defined as

huuc;cccðq; IÞi ¼
XP
i¼0
hai;c;fðqi; IÞi þ

XP
i¼1
hbi;c; hðqi; q0Þi; (3)

where uuc ¼ ½aac;bbc� denote unary aac and pairwise bbc

parameters of component c. In particular, the parameters
collect per-part qi variables as aac ¼ ½a0;c; . . . ;aP;c� and
bbc ¼ ½b1;c; . . . ;bP;c�. The unary part parameters ai;c are 2D

filters for the HOG [40] appearance features fðqi; IÞ. The
pairwise factor corresponds to a Gaussian distribution
over the part qi placement relative to q0. The feature func-
tion computes the natural parameters of a 2D Gaussian
Nðqi j q0;mi;c;Si;cÞ. The pairwise features are defined

as hiðqi; q0Þ ¼ �½dui; dvi; du
2
i ; dv

2
i �, where ½dui; dvi� ¼ qi �

ð2q0 þ jiÞ2. Here, ji represents the anchor part position rel-
ative to the root. The variables can be understood as
bi;c ¼ ½mu

i;c;m
v
i;c; s

u
i;c; s

v
i;c�, the parameters of a 2D Gaussian.

For the full DPM-Hinge model all parameters from all
mixture components are stacked uuuu ¼ ½uuuu1; . . . ; uuuuC �. The graph-
ical model depicting the DPM-Hinge is illustrated in Fig. 2b.

Inference. During inference [1] computes the maximum-a-
posteriori (MAP) estimate over object hypotheses and com-
ponents c�;q� ¼ argmaxc;qhuuuuc;cccðq; IÞi. This problem
involves maximization over two variables, the discrete mix-
ture component c and all part placements q. For each com-
ponent c the part placement can be found using the efficient
distance transform, and the search over c is done by exhaus-
tive enumeration [1].

Learning. For parameter estimation, the training data is
available in pairs fðIi; yiÞgi¼1;...;N where I is an image and y ¼

ðyl; ybÞ 2 Y is a tuple of annotations. The annotation includes

an object class label yl 2 f�1; 1; . . . ; Lg, and a 2D BB yb.
Felzenszwalb et al. [1] propose to learn the free parame-

ters of their model using a regularized risk objective with
the hinge loss. For every object class k 2 f1; . . . ; Lg there is a
separate optimization problem

min
uu;��0

1

2
kuuk2 þ C

XN
i¼1

�i

sb:t: 8i : yli ¼ k : max
c;qyi

huuc;cccðqyi
; IiÞi � 1� �i

8i : yli 6¼ k : max
c;qyi

huuc;cccðqyi
; IiÞi � �1þ �i;

(4)

where qyi
¼ ½ybi ; q1 . . . ; qP �, where yb is the BB of the exam-

ple and fixed for every training example. The part posi-
tions qi are latent variables, because part annotations are
not available. In [1] initial values for the component
assignments are obtained via aspect ratio clustering and
are kept latent during training. This problem is a latent
SVM [1] with hinge loss, which is the reason we refer to
the DPM as DPM-Hinge.

3.3 DPM-VOC+VP

The DPM-Hinge has shown remarkable performance in
terms of 2D object localization, it is however not designed
to predict the viewpoint of an object. A multi-view object
detector could boost object detection quality and it could be
beneficial for high level tasks like 3D scene understanding
[31]. The first extension we introduce, DPM-VOC+VP, aug-
ments DPM-Hinge output with a viewpoint variable v.

Representation. In DPM-VOC+VP we allocate a separate
mixture component to each discrete viewpoint v. Every
viewpoint component uuuuv ¼ ½aav;bbv�, has its own unary aav ¼
½a0;v; . . . ;aP;v� and pairwise bbv ¼ ½b0;v; . . . ;bP;v� parameters.

DPM-VOC+VP has the same CRF structure as the DPM-
Hinge. In addition, it explicitly encodes the object viewpoint
v. Fig. 3a illustrates the DPM-VOC+VP model.

Inference. The inference is the same as for DPM-Hinge,
a MAP estimate over viewpoints and BBs q�; v� ¼
argmaxv;qhuuuuv;ccvðq; IÞi. We use the same inference technique

as DPM-Hinge.
Learning. Since we are interested in joint object 2D localiza-

tion and viewpoint estimation,we leverage viewpoint annota-
tions in the datasets. We denote the viewpoint class label of a
given training example as yv 2 f1; . . . ;Kg, in addition to the

BB yb and the class yl labels. In contrast to the DPM-Hinge,
there is a semantic meaning to the selected component and
thus it must be chosen correctly. Therefore we adapt a struc-
tured SVM [60] with margin rescaling for optimization. This
objective has previously been proposed for BB detection in
[61]. The final latent-SSVMoptimization problem is

min
uu;��0

1

2
kuuk2 þ C

XN
i¼1

�i

sb:t: 8i; �y 6¼ yi : max
qyi

huuuuyv
i
;ccyv

i
ðqyi

; IiÞi

�max
�v;�q
huuuuv;cc�vð�q; IiÞi � Dðyi; �yÞ � �i;

(5)

Fig. 2. Graphical models depicting (a) general part-based model as a
CRF over the parts oi conditioned on the data X. (b) The 2D DPM,
conditioned on an image I. With shaded nodes, we denote the observed
variables.

2. We use the upper left corners of the parts to compute the displace-
ment features.
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where qyi
¼ ½ybi ; q1; . . . ; qP � as before is the annotated object

BB ybi with the latent part placements and �qi ¼ ½�yb; �q1; . . . ; �qP �
a different object hypothesis. Note that for the positive train-
ing examples, the viewpoint component is observed. Like in

[61] we define ccvðqyi
; IiÞ ¼ 0 whenever yli ¼ �1. This has

the effect to include the two constraint sets of problem (4)
into this optimization problem.

The loss function D is defined on both the predicted
BBs and viewpoint at the same time. We use a convex
combination of a BB localization DVOC and viewpoint loss
DVP , namely Dðy; �yÞ ¼ gDVOCðy; �yÞ þ ð1� gÞDVP ðy; �yÞ, with
g 2 ½0; 1�.

The performance measure for BB accuracy in the
standard benchmarks is the intersection over union
score Aðy \ �yÞ=Aðy [ �yÞ of two BBs y; �y. Therefore, as pro-
posed in [61] we use the following loss function as a
proxy:

DVOCðy; �yÞ ¼
0; if yl ¼ �yl ¼ �1
1� ½yl ¼ �yl� Aðy\�yÞAðy[�yÞ ; otherwise:

(
(6)

The viewpoint loss DVP is the 0/1 classification error with
different discrete viewpoint predictions treated as different
classes.

In case only the location of the object is of interest, one
can set g ¼ 1, in which case we refer to the model as DPM-
VOC, which uses the same initialization, based on aspect
ratio clustering, as for the DPM-Hinge. If both tasks are of
interest, we set g ¼ 0:5 and refer to the resulting model as
DPM-VOC+VP.

Algorithm 1. DPM-VOC+VP training algorithm

Input: fIi; yigN1 Ii is an image, yi annotations
Output: Trained DPM-VOC+VP uu

1 uu InitModel (pos; neg)
2 P ¼ ;; S ¼ ;; N ¼ ;
3 while outer loop do

//Find optimal parts for each positive example

4 foreach i 2 pos do
5 qi  argmaxqihuuvi ;ccvi

ðqi; IiÞi
6 P ¼ P [ ½yvi ;qi�
7 end
8 while inner loop do

//Find a set of violating constraints

9 foreach i 2 pos do
10 f½vi; �qi�g  argmaxv;�qhuuv;ccvð�q; IiÞi þ Dð½v; �q0�; yiÞ
11 S ¼ S [ f½vi; �qi�g
12 end

//Find a set of hard negative examples

13 foreach i 2 neg do
14 f½vi; �qi�g  argmaxv;�qihuuv;ccvð�qi; IiÞi
15 N ¼ N [ f½vi; �qi�g
16 end
17 uu sgd (uu, P, S,N ); //update model

18 end
19 end

Optimization.We solve (5) using our own implementation
of stochastic gradient descent (SGD) with delayed con-
straint generation. The latent variables turn the optimiza-
tion problem into a mixed integer program, solved using
coordinate descent. Algorithm 1 describes the DPM-VOC
+VP learning in detail. We start by initializing the model

Fig. 3. Comparison of the different presented models. In the first row from left to right the graphical models of (a) DPM-VOC+VP, (b) DPM-3D-Con-
straints, and (c) 3D2PM, are shown. In the second row, the part parameterization is illustrated. The third row shows a possible layout of the part con-
figuration. The last row visualizes the covariances of the placement distributions. The variables bi;v, of the 3D2PM are implicitly defined via

projection, see Section 3.5. Both DPM-3D-Constraints and 3D2PM define parts in a 3D reference frame, therefore it is possible to establish part-cor-
respondences across different viewpoints.
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(line 1), and learning the root appearance terms a0;v for each
viewpoint component independently, using a standard
SVM. The main part of the algorithm has an outer and inner
loop. In the outer loop, the latent parts qi are found for
every positive training example Ii (line 5), resulting in a set
P of positive training examples. Then in an inner loop, the
top K (K ¼ 10 in our experiments) active violating con-
straints ½vi; �qi� are found for every positive training example
fyi; Iig. This is the loss-augmented inference problem
(line 10) and yields a current set of active constraints S. We

choose the violating constraints such that Að�q0[ybÞ
Að�q0\ybÞ > 0:1.

Then, we search for negative examples from the negative
labeled images (line 14), resulting in a set of “hard” negative
examples N . Finally the model parameters uuuu are found by
SGD (line 17).

3.4 DPM-3D-Constraints

The DPM-VOC+VP parameterizes part positions in 2D
image space, independently across viewpoints. In this sec-
tion we introduce the DPM-3D-Constraints that fundamen-
tally changes the parameterization and works with parts in
3D. This way of modeling reflects the nature of the problem,
observed are only 2D projections of what really are physical
objects in a 3D world. Therefore, a parameterization in 3D
appears both more meaningful and also should be beneficial
for applications such as 3D object tracking or multi-view
reconstruction.

Since annotated data is only available as 2D information,
we use CAD models of the object classes of interest in addi-
tion to the annotated images. Being constructed of triangu-
lar surface meshes, 3D CAD models provide geometric
descriptions of object class instances, lending themselves to
3D part parameterizations.

Representation. The DPM-3D-Constraints has the same
graph structure as the DPM-VOC+VP, (see Fig. 3b). The
difference is for every discrete viewpoint component
there is a perspective projection matrix Pv that connects
the 3D parameterization of parts with the 2D part place-
ment observation (see Fig. 4).

For every part p we need to specify the appearance
(unary factor), and 2D part placement (pairwise factor). We
use the setup of [25] to generate a non-photorealistic, gradi-
ent-based renderings of 3D CAD models. The renderings
are used to compute HOG features for each part p. From a
3D bounding cube pi of a part, with qi ¼ Pvpi

3 we denote
the 2D BB obtained by projecting the part into the viewpoint
v. Then, the appearance features of the part are computed
from the projected BB ccðpi; v; IÞ :¼ ccðPvpi; IÞ.

The pairwise factor acts on 3D parts and computes the
relative placement in the projected space. For the 3D root
p0 and part pi, the feature function of the DPM-VOC+VP
is re-used, but after projections hðpi; p0; vÞ ¼ hðPvpi;Pvp0Þ.
There are separate parameters bv for every viewpoint
component v.

In summary, the score of a 3D object hypothesis p and
viewpoint v is

huuv;ccðp; v; IÞi ¼
XP
i¼0
hai;v;fðPvpi; IÞi

þ
XP
i¼1
hbi;v; hðPvpi;Pvp0Þi:

(7)

There are two main differences between DPM-3D-Con-
straints and DPM-VOC+VP. First, the 2D parts qi are
observed as projections Pv of their 3D counterparts pi.
Second, the model establishes part correspondences
between different viewpoints. That is for a CAD model for
which multiple renderings from different viewpoints are
available, the estimated parts will be in correspondence
across the renderings. Fig. 3b, illustrates the model. The dot-
ted lines emphasize the deterministic relation (projection
Pv) between the 3D parts pi and their 2D counterparts qi.

Inference. The inference problem is the same as for DPM-
VOC+VP. We solve for the MAP estimate argmaxv;qhuuuuv;
ccðq; v; IÞi. The predicted BB and viewpoint is provided by
the highest scoring mixture component.

Learning. The optimization problem, loss function
DVOCþVP , and Algorithm 1 for the DPM-3D-Constraints is
the same as for DPM-VOC+VP. Different is the use of CAD
data. During learning (Algorithm 1, line 5) 3D part positions
of multiple renderings of a CADmodel from different view-
points are inferred. We enforce these to be consistent in 3D
(thus the name DPM-3D-Constraints).

The training data in the form of images and annotations
are augmented with a set of 3D CAD models fy�g of the
object class of interest. Both are needed. The non-synthetic
examples contribute to a realistic appearance model and the
CAD models are used to encode 3D object geometry. We
found that learning an appearance model from CAD data
alone is not expressive enough. Assume we are given a 3D
instance y�, then let Sðy�Þ denote the set of all projections of
y�. Further we know the precise viewpoint vi 8i 2 Sðy�Þ. For
a 3D instance the inference is coupled via the set of all its
projections

p� ¼ argmax
p

X
i2SðyoÞ

uuvi ;ccðPvip; vi; IiÞ
� �

: (8)

For part initialization, we use the same data-driven
method of the DPM-VOC+VP, but now in 3D. First, we
define a part to be a 3D cube with size equal to 10 percent of
the largest object size. Second, we choose greedily k non-
overlapping part positions with maximal combined appear-
ance score across views.

Training from CAD data allows to implement part-level
self-occlusion reasoning effortlessly, using a depth buffer.
In each view, we thus limit the number of parts to the ones
with visible area higher than 10 percent of the area of the
projected 3D part cube.

Fig. 4. 3D part parametrization for an example 3D CAD model (center).
Corresponding projected part positions in two different views (left, right).

3. Although the projection in general results in an arbitrary 2D poly-
gon, we use qi ¼ Pvpi to denote the 2D BB surrounding it.
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3.5 3D2PM

In this section we describe the 3D2PM model, a 3D DPM

entirely defined in 3D space. The 3D2PM defines a condi-
tional distribution over 3D object hypotheses p and only
implicitly, through marginalization, for 2D object hypothe-
ses q. While DPM-3D-Constraints uses a 3D part parameter-
ization, it is still a mixture model with different mixture
components for different viewpoints, being limited to dis-

crete set of viewpoints. The 3D2PM model is continuous in
the viewpoint variable v 2 V.

Representation. Starting from DPM-3D-Constraints, two
ingredients are needed to obtain a full 3D object model: a
continuous appearance model, and a 3D part displacement
distribution.

For the definition of the continuous unary factor we
introduce a number of support views vk; k ¼ 1; . . . ; K. For a
given viewpoint v we then define the unary factor to be the
weighted combination

hai;v;fðPvpi; IÞi ¼
XK
k¼1

wkðvÞhai;vk ;fðPkpi; IÞi; (9)

with wkðvÞ being a viewpoint dependent scalar. The param-
eters of this model are thus the collection of all unary factors
for parts and support views ai;vk ; i ¼ 1; . . . ; P; k ¼ 1; . . . ; K.

In practice, we choose the support views to be equally
spaced in angular distance dv ¼ ffðvk; vk�1Þ on the viewing
circle. This appearance score interpolates for a viewpoint v
filters from neighboring viewpoints. We experiment with
three different models that correspond to different interpo-
lations (i.e., choices of wk): (i) linear interpolation, (ii) expo-
nential interpolation, and (iii) a discrete set of views. In (i)

we set wk ¼ 1� ffðv;vkÞ
ffðvk�1;vkÞ for the two closest support views,

and wk ¼ 0 for the rest. We refer to this model as 3D2PM-C-
Lin, as it uses linear interpolation scheme. In (ii) we set

wk ¼ expð�ff2ðv; vkÞÞ and refer to the model as 3D2PM-C-
Exp. Finally, in (iii) we set wk ¼ 1v¼vk and we refer to this

model as 3D2PM-D as it can output a discrete set of view-
points only.

For a given part pi and root p0, the pairwise factor scores
the joint displacement, again using a Gaussian term, but
different to previous models, in 3D hbi; hiðp0; piÞi /
� lnðN ðpijp0;mi;SiÞÞ. The pairwise parameters are the
biðp0; piÞ ¼ ½mix;miy;miz; six; siy; siz� and the feature function

computes hiðp0; piÞ ¼ �½dx; dy; dz; dx2; dy2; dz2�. This factor
contains only six parameters per part, in contrast to the pre-
vious models where 4K displacement parameters per part
are required.

To define the score for a 2D object hypothesis q in an
arbitrary viewpoint v, the 3D part displacement distribution
is projected to 2D. For an arbitrary viewpoint v the 3D part
displacement distribution is projected via a scaled ortho-
graphic projection Qi;v. The resulting distribution is the
marginal of the Gaussian under this projection. Therefore

the mean mi;v ¼ Qi;vmi, and covariance Si;v ¼ Qi;vSiQ
>
i;v can

be computed in closed form. The parameters of the pairwise
factor in viewpoint v can be computed from the 3D parame-
ters by bi;v ¼ ½mu

i;v;m
v
i;v; s

u
i;v; s

v
i;v; s

uv
i;v�. Analogously, the 2D

displacement features are hiðPvp0;PvpiÞ ¼ �½du; dv; du2;
dv2; 2dudv�.

In summary both factors define the score of a hypotheses
p under viewpoint v for an observation I

huu;ccðp; v; IÞi ¼
XP
i¼0
hai;v;fðPvpi; IÞi

þ
XP
i¼1
hbi;v; hðPvpi;Pvp0Þi:

(10)

For a given 3D model y�, and its projected images Sðy�Þ,
under viewpoints vj the score of the 3D object hypothesis
p is

huu;ccðp; y�Þi ¼
XP
i¼0
hai;fðpi; y�Þi þ

XP
i¼1
hbi; hðpi; p0Þi: (11)

Here, hai;cðpi; y�Þi is a 3D unary term, defined as
hai;fðpi; y�Þi ¼

P
Sðy�Þhai;vj ;fðPvjpi; IjÞi. It accumulates the

2D unary terms for every part from all projected images of
the 3D model.

The 3D2PM model uu ¼ ½aa;bb�, consists of the unary
parameters of the support views ½aa1; . . . ;aaK �, as well as the
parameters of the 3D displacement distribution of each part
bb ¼ ½b1; . . . ;bP �. Note that the 3D part displacement distri-
butions are independent of the viewpoint components, that

is every bi 2 R3. Fig. 3c illustrates the 3D2PM model. Note
that the double circle on the viewpoint variable v denotes
that it is continuous. The 2D displacement parameters bi;v
are obtained via projection from the 3D displacement
parameters bi, therefore they are denoted with an empty
factor.

Inference. The 3D2PM output are 2D or 3D object hypothe-
ses. For an observed image I, we solve again for the MAP
estimate which corresponds to the following optimization

problem: q�; v� ¼ argmaxv;phuuv;ccðp; v; IÞi. For the 3D2PM-D

the viewpoint variable is discrete and the inference is the
same as for DPM-3D-Constraints.

The MAP inference problem for 3D2PM-C is a continu-
ous problem. In practice we choose, at test time, an arbi-
trarily fine viewpoint binning. After this discretization, we

proceed with the same inference procedure as for 3D2PM-
D. Note that this is different from choosing a viewpoint dis-
cretization at training time. This model allows to estimate
the viewpoint up to an arbitrary precision, only chosen at
test time.

For a 3D example y�, the inference problem is
p� ¼ argmaxphuuuu;ccðp; y�Þi, that is a consistent output is

required for all images of the same instance. First, all unary
terms are computed by collecting evidence from all avail-
able image projections of y�, then, the 3D distance transform
can be used to solve for optimal part placements in 3D.

Learning. Real images and additionally 3D models are
used for training. We assume that the training data comes
with angular accurate viewpoint annotations yv 2 ½0�; 360�Þ.
The 3D2PM and all of its variants are learned using the
same regularized risk objective as the DPM-VOC+VP,
described in Eq. (5). Again, the loss measures detection and
viewpoint estimation, with the difference that the loss
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reflects the continuous viewpoint estimate DVP ðy; �yÞ ¼
ffðyv; �yvÞ=180. Note that the learning algorithm does not
need to change, we use Algorithm 1 with the only modifica-
tion in line 17. To obtain the gradients w.r.t. the 3D parame-
ters b, we simply take the gradients via the projected
parameters using the chain rule. Table 1 summarizes the
qualitative differences among the different models.

Rendering CAD models. We use the non-photorealistic
wireframe-like renderings of [62], using a perspective pro-
jection. Depending on the dataset, we render all the CAD
models in f8; 12; 16; 18; 24; 36g equally spaced viewpoints,
independently from the viewpoint statistics of the given
dataset.

4 EXPERIMENTS

In this section, we thoroughly evaluate our models on vari-
ous datasets measuring their performance in terms of 2D BB
localization, viewpoint estimation, and, in the case of DPM-
3D-Constraints and 3D2PM, their ability to predict part that
correspond across viewpoints. To that end, we follow the
ordering of Section 3, and successively add 3D information
to the models under consideration.

We start by analyzing the performance of our structured
output learning framework in comparison to the standard
DPM formulation [1], highlighting its ability to provide
both better BB localization (DPM-VOC) and simultaneous
viewpoint estimation (DPM-VOC+VP) (Section 4.2). Second,
we examine the impact of parameterizing object parts in 3D
object coordinates rather than in the 2D image plane (DPM-
3D-Constraints and 3D2PM), again for the task of 2D BB
localization and viewpoint estimation (Section 4.3), demon-
strating superior performance in comparison to both previ-
ous work in 3D object class modeling and the standard

DPM [1]. Third, we leverage the ability of our 3D2PMmodel
to predict viewpoints of arbitrary granularity for fine-
grained viewpoint estimation (Section 4.4), again outper-
forming prior work. And fourth, we apply DPM-3D-Con-

straints and 3D2PM to the task of ultra-wide baseline
matching, quantifying their ability to localize corresponding
parts in multiple views of the same object (Section 4.5).

All experiments are conducted on publicly available
standard benchmarks for the respective task (Section 4.1)
and include extensive comparisons to previous work.

4.1 Data Sets

We commence with a brief overview of the five diverse
datasets used in the experiments.

Pascal VOC 2007. The detection benchmark of the Pascal
VOC suite [11] provides a challenging test bed for 2D
bounding box localization of 20 object classes. It is consid-
ered challenging due to strong variations in object appear-
ance, background clutter, and partial occlusion. The 2007
version [5] has emerged as the standard benchmark for
object detection approaches.

Pascal3D+. Recently, 12 object classes of Pascal VOC 2012
have been enriched with additional viewpoint annotations
[4] by fitting 3D CAD models to images in a semi-automatic
procedure. The performance is measured in terms of simul-
taneous 2D BB localization and viewpoint estimation. A
candidate detection can only qualify as a true positive if it
satisfies both the VOC intersection-over-union criterion [11]
and provides correct viewpoint class estimate. We refer to
the joint metric as average viewpoint precision (AVP).

3D object classes. Introduced in 2007, the 3D Object Clas-
ses dataset [3] still constitutes the de-facto standard dataset
for multi-view recognition (i.e., 2D BB localization and
viewpoint estimation). It provides images of nine object
classes taken under controlled conditions w.r.t. viewpoint
(three discrete different camera distances, three elevations,
and eight azimuth angles) but exhibiting considerable back-
ground clutter and challenging lighting variations. View-
point estimation on this dataset is typically phrased as an
8-class classification problem (one class per azimuth angle).

EPFL multi-view cars. This dataset [6] has been recorded
in the course of a car exhibition, where cars are presented to
the audience on rotating platforms. While it features only a
single object per image, lighting conditions are challenging
(bright lights lead to specularities and saturation effects).
Viewpoint annotations are almost angle-accurate (derived
from platform rotation speed) and provide for a challenging
fine-grained viewpoint estimation benchmark.

KITTI. The KITTI dataset [2] has been recorded from a
moving vehicle driving through the city of Karlsruhe. It
comes with manual BB and viewpoint annotations derived
from 3D Lidar scans. It is challenging due to significant
amounts of occlusion.

4.2 Structured Output Learning

We first compare the performance of our structured output
learning framework (DPM-VOC, DPM-VOC+VP, Section
3.3) to the standard DPM. We evaluate on the following
three data sets: Pascal VOC 2007, 3D Object Classes, and
Pascal3D+. In all experiments, we use images from the
respective data sets for training, following the protocols
established as part of the data sets.

2D Bounding box localization. Table 2 gives results for 2D
BB localization on the Pascal VOC 2007 dataset, according
to the Pascal criterion, reporting per-class average precision
(AP). It compares our DPM-VOC (row 2) to the DPM-Hinge
[59] (row 1) and to the multi-kernel learning approach of
Vedaldi et al. [63] (row 3), both of which are considered to
be among the state-of-the-art on this data set. We first
observe that DPM-VOC outperforms DPM-Hinge on 18 of
20 classes, and [63] on eight classes. While the relative per-
formance difference of 1:1 percent on average (31:4 percent
AP vs. 30:3 percent AP) to DPM-Hinge is moderate in terms
of numbers, it is consistent and speaks in favor of the struc-
tured loss over the standard hinge loss. In comparison to

TABLE 1
Comparison of Different Models in Terms of Part
Parameterization, Appearance Model, Component

Initialization and Training Loss

model parts appear. init loss

pos. displ.

DPM-Hinge [1] 2D 2D disc. AR hinge
DPM-VOC 2D 2D disc. AR voc
DPM-VOC+VP 2D 2D disc. VP vocvp
DPM-3D-Constraints 3D 2D disc. VP vocvp
3D2PM 3D 3D cont. VP vocvp
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[63] (32:1 percent AP), DPM-VOC loses only 0:7 percent
while the DPM-Hinge has 1:8 percent lower AP. We note
that [63] exploits a variety of different features for perfor-
mance, while the DPM-VOC and DPM-Hinge use HOG fea-
tures only.

Fig. 5 (left) gives the corresponding results for nine 3D
object classes, comparing DPM-Hinge (col. 1), DPM-Hinge-
VP (col. 2), and DPM-VOC+VP (col. 3), where we initialize
and fix each component of the DPM-Hinge with training
data from just a single viewpoint, identical to DPM-VOC
+VP. We observe a clear performance ordering, improving
from DPM-Hinge over DPM-Hinge-VP to DPM-VOC+VP,
which wins for five of nine classes. While the average
improvement is again moderate (performance increases
from 88:0 percent over 88:4 percent to 88:7 percent AP), it
confirms the benefit of the structured output objective, com-
pared to the classification one.

Viewpoint estimation. Fig. 5 (right) gives results for view-
point estimation, phrased as a classification problem, dis-
tinguishing among eight distinct azimuth angle classes.
In line with previous work [3], [29], we report the mean
precision in pose estimation (MPPE) on true positive
detections according to the Pascal criterion (equivalent to
the average over the diagonal of the confusion matrix).
While there is an explicit association between mixture
components and viewpoints for DPM-Hinge-VP and
DPM-VOC+VP, we let the DPM-Hinge predict the most
likely viewpoint by collecting votes from training exam-
ple annotations for each component.

Clearly, the explicit association between viewpoints and
mixture components already helps significantly (74:7 per-
cent DPM-Hinge-VP vs. 55:8 percent DPM-Hinge), but we
achieve a further boost by 12:4 percent in performance by
applying a structured rather than hinge-loss (87:1 percent
DPM-VOC+VP vs 74:7 percent DPM-Hinge-VP). A nice
side effect is that training becomes considerably faster when
fixing the mixture component assignments.

Simultaneous BB localization and VP estimation. So far, we
have evaluated viewpoint estimation under rather special
conditions. We have considered with 3D Object Classes a
dataset for which 2D BB localization performance has

essentially saturated beyond 95 percent AP for many clas-
ses. Then, we have evaluated viewpoint estimation entirely
separately from 2D BB localization, on successful detections.
While this is in line with standard evaluation procedures
and prior work, it seems artificial for higher level applica-
tions, such as scene-understanding, or object tracking which
require to solve both tasks simultaneously.

We hence turn to the recently proposed Pascal3D+ data-
set that is both highly challenging in terms of 2D BB locali-
zation and comes with viewpoint annotations that allow to
evaluate AVP (Section 4.1) in four different granularities (4,
8, 16, and 24 viewpoint classes). As baselines we again use
DPM-Hinge, as well as the VDPM introduced in [4]. The
VDPM is a viewpoint initialized DPM-Hinge (similarly to
DPM-Hinge-VP), except that [4] flips the viewpoint compo-
nents, resulting in twice as many components compared to
DPM-VOC+VP.

Table 3 provides the corresponding AVP results and also
gives separate 2D BB localization AP results as a reference.
In terms of AVP, DPM-VOC+VP (24:5, 22:2, 17:9, and 14:4
percent for the four different viewpoint granularities) out-
performs both the VDPM (19:5, 18:7, 15:6, 12:1 percent) and
the DPM-Hinge (21:1, 13:2, 7:5, 3:0 percent) by large mar-
gins, for all viewpoint granularities (it improves over the
VDPM by 5:0, 3:5, 2:3, and 2:3 percent respectively, and
over the DPM-Hinge by 3:4, 9:0, 10:4 and 11:4 percent).
Interestingly, DPM-VOC+VP can better deal with opposing
object viewpoints than VDPM, since it explicitly incorpo-
rates the viewpoint loss.

In terms of pure 2D BB localization, our DPM-VOC+VP
with 27:5, 28:8, 29:0, 28:2 percent outperforms the DPM-
Hinge (28:2, 26:8, 25:4, 23:5 percent) on three of four view-
point granularities. Compared to VDPM (26:8, 29:9, 30:0,
29:5 percent), DPM-VOC+VP is slightly worse (0:7 percent
on average), which can be attributed to the fact that VDPM
flips the viewpoint components, thus effectively having two
components per viewpoint.

4.3 3D Object Class Representations

In the previous section, we confirmed improvements
from the structured output learning framework for 2D
BB localization and viewpoint estimation over the stan-
dard DPM. Here, we analyze the impact of adding 3D
information, by first introducing a 3D part parameteriza-
tion (DPM-3D-Constraints) and then adding 3D part dis-
placement and continuous appearance models (3D2PM).
Experiments are conducted on 3D Object Classes, KITTI
and Pascal VOC 2007.

In addition, we examine the effect of adding synthetic
data in the form of rendered 3D CAD models (Section 3.4)
to the respective training sets of real-world images, result-
ing in two different training data settings: (i) real data only,

TABLE 2
2D BB Localization Performance on Pascal VOC 2007 [5], Comparing our DPM-VOC to DPM-Hinge and [63]

AP aero bird bicyc boat bottle bus car cat cow table dog horse mbike person plant sheep sofa train tv chair AVG

DPM-Hinge 30.4 1.8 61.1 13.1 30.4 50.0 63.6 9.4 30.3 17.2 1.7 56.5 48.3 42.1 6.9 16.5 26.8 43.9 37.6 18.5 30.3
DPM-VOC 31.1 2.7 61.3 14.4 29.8 51.0 65.7 12.4 32.0 19.1 2.0 58.6 48.8 42.6 7.7 20.5 27.5 43.7 38.7 18.7 31.4

Vedaldi [63] 37.6 15.3 47.8 15.3 21.9 50.7 50.6 30.0 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 17.3 32.1

Note that [63] uses a kernel combination approach that makes use of multiple complementary image features.

Fig. 5. 2D bounding box localization (left) and viewpoint estimation (right)
results on nine 3D Object classes [3].
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and (ii) mixed data (real and synthetic). Please note that
both DPM-3D-Constraints and 3D2PM always employ 3D
CAD models for establishing a 3D coordinate system, irre-
spective of whether synthetic images are used for training
appearance models.

3D object classes. Table 4 compares the DPM-VOC+VP,
DPM-3D-Constraints, and 3D2PM with state-of-the-art
results on 3D object classes [3], distinguishing 2D and 3D
object class representations. Wemake the following observa-
tions. First, DPM-VOC+VP (91:3 percent AP, 91:6 percent
MPPE) outperforms all other methods on average (last row)
as well as on six of nine classes. It outperforms the next best
prior result of 82:3 percent AP and 81:3 percent MPPE
obtained by the aspect layout model (ALM) [54] by 9:0 and
10:3 percent respectively, despite the ALM making use of
additional human annotation in the form of aspect layout
parts. Second, the top performance of DPM-VOC+VP is
almost matched by both of our 3D object class representa-
tions, DPM-3D-Constraints (89:6 percent AP, 91:1 percent

MPPE) and 3D2PM (90:4 percent AP, 89:4 percent MPPE).
This is remarkable since the 3D representations put addi-
tional (3D) constraints on the learned model, while DPM-
VOC+VP is only bound by the combined localization and
viewpoint loss, directly optimizing for the task at hand with-
out any additional constraints. And third, we see that our
models also compare favorably to prior work that has spe-
cialized on certain object classes, such as cars. Specifically,

3D2PM outperforms the voting-based approach of [28] (99:2
percent AP, 85:3 percent MPPE) which relies on 3D recon-
structions of the object class of interest as training data.

KITTI. Table 6 provides 2D BB localization and view-
point estimation results on the challenging KITTI dataset
for our models, trained from either purely real or mixed
training data. We split the dataset into three equal sets,
used for training, validation and testing. Starting with the
real data setting, we observe that all our models consistently
outperform the DPM-Hinge: the improvements in average
AP range from 0:6 percent (3D2PM) over 2:2 percent (DPM-
3D-Constraints) to 5:8 percent (DPM-VOC+VP) and in

MPPE from as much as 22:3 percent (3D2PM) over 26:9 per-
cent (DPM-3D-Constraints) to 29:3 percent (DPM-VOC
+VP). Comparing our different models, the DPM-VOC+VP
performs best (47:7 percent AP, 54:3 percent MPPE), fol-
lowed by DPM-3D-Constraints (44:1 percent AP, 51:9 per-

cent MPPE) and 3D2PM (42:5 percent AP and 47:3 percent
MPPE)—it seems that the added expressiveness of our 3D

models DPM-3D-Constraints and 3D2PM comes at a (mod-
erate) cost w.r.t. performance, which we attribute to occlu-

sion. 3D2PM performs worse on medium to highly
occluded objects, compared to DPM-VOC+VP. On the 0-20

percent occlusion level, 3D2PM (79.2 percent) achieves
0:3 percent better performance than DPM-VOC+VP (78.9
percent), but on the rest of the occlusion levels it is consis-
tently worse (e.g. on 60-80 percent DPM-VOC+VP is better
by 3.0 percent).

Adding synthetic training images improves the perfor-
mance of our models mostly for viewpoint estimation:
DPM-3D-Constraints improves by 2:4 percent, from 51:9 to

54:3 percent MPPE, and 3D2PM from 47:3 to 47:7 percent

MPPE. For 2D BB localization, only 3D2PM improves by

TABLE 3
The Results of DPM-Hinge, VDPM and DPM-VOC+VP Are Shown

AP/AVP aeroplane bicycle boat bus car chair diningtable motorbike sofa train tvmonitor Avg.

DPM-Hinge-4V 35.3/20.3 47.8/26.2 3.6/2.0 52.3/49.8 35.1/24.8 13.9/6.9 9.9/9.5 39.8/23.0 10.7/10.3 26.7/23.9 34.9/34.8 28.2/21.1
DPM-Hinge-8V 35.6/3.9 45.7/6.4 6.3/1.2 48.1/44.9 38.1/17.0 14.2/3.6 9.2/4.0 34.3/5.9 5.6/4.4 24.2/20.8 33.3/32.7 26.8/13.2
DPM-Hinge-16V 33.4/1.0 43.1/1.0 3.9/0.3 44.9/26.7 36.7/6.9 15.3/1.5 5.8/1.8 32.7/1.0 11.0/6.1 21.8/16.1 30.5/20.0 25.4/7.5
DPM-Hinge-24V 28.7/0.3 41.1/0.4 3.7/0.3 38.8/4.9 35.6/2.6 13.0/0.8 8.2/2.0 30.1/1.0 10.1/4.9 21.3/6.2 28.1/9.0 23.5/3.0

VDPM - 4V 40.0/34.6 45.2/41.7 3.0/1.5 49.3/26.1 37.2/20.2 11.1/6.8 7.2/3.1 33.0/30.4 6.8/5.1 26.4/10.7 35.9/34.7 26.8/19.5
VDPM - 8V 39.8/23.4 47.3/36.5 5.8/1.0 50.2/35.5 37.3/23.5 11.4/5.8 10.2/3.6 36.6/25.1 16.0/12.5 28.7/10.9 36.3/27.4 29.9/18.7
VDPM - 16V 43.6/15.4 46.5/18.4 6.2/0.5 54.6/46.9 36.6/18.1 12.8/6.0 7.6/2.2 38.5/16.1 16.2/10.0 31.5/22.1 35.6/16.3 30.0/15.6
VDPM - 24V 42.2/8.0 44.4/14.3 6.0/0.3 53.7/39.2 36.3/13.7 12.6/4.4 11.1/3.6 35.5/10.1 17.0/8.2 32.6/20.0 33.6/11.2 29.5/12.1

DPM-VOC+VP - 4V 43.8/39.4 47.0/43.9 0.5/0.3 51.7/49.1 46.3/37.6 9.2/6.1 5.7/3.0 34.7/32.2 13.3/11.8 17.4/12.5 33.4/33.2 27.5/24.5
DPM-VOC+VP - 8V 42.0/29.7 49.8/42.6 0.9/0.4 52.0/39.5 47.9/36.8 11.3/9.4 5.3/2.6 39.8/32.9 13.5/11.0 21.4/10.3 33.1/28.6 28.8/22.2
DPM-VOC+VP - 16V 39.3/17.0 46.3/24.7 2.6/1.0 55.3/49.0 46.0/30.1 10.4/6.6 7.5/3.0 39.5/17.2 12.7/7.7 28.5/20.4 30.7/20.2 29.0/17.9
DPM-VOC+VP - 24V 37.7/10.6 45.9/16.7 5.6/2.2 55.2/43.5 42.9/25.4 9.1/4.4 7.6/2.3 35.7/11.3 11.5/4.9 31.1/22.4 27.6/14.4 28.2/14.4

The first number indicates the average precision (AP) for detection and the second number shows the AVP for joint object detection and pose estimation.

TABLE 4
Comparison to State-of-the-Art in 2D BB Localization and Viewpoint Estimation on 3D Object Classes [3]

AP/
MPPE

2DModels 3D Models

DPM-VOC
+VP

Lopez
[29]

Bao
[50]

Payet
[27]

3D2PM DPM-3D-
Constraints

ALM [54] Yoruk
[53]

Liebelt [24] Zia
[64]

Glasner
[28]

car 99.9/97.9 96.0/87.9 98.0/95.3 -/86.1 99.8/97.5 99.4/97.5 98.3/93.1 93.3/73.0 76.7/70.0 90.4/84.0 99.2/85.3
bicycle 98.8/97.5 91.0/89.9 93.1/92.3 -/80.8 96.6/96.4 95.8/96.1 93.8/90.1 -/- 69.8/75.5 -/- -/-
iron 98.1/94.2 53.0/90.8 82.5/89.8 -/- 97.2/93.1 97.7/93.6 82.2/86.0 -/- -/- -/- -/-
shoe 98.8/97.6 78.0/89.3 85.5/88.0 -/- 98.3/95.8 97.9/96.1 84.1/86.6 -/- -/- -/- -/-
stapler 89.8/92.6 32.0/79.3 70.2/73.9 -/- 88.4/86.9 86.4/89.1 70.5/73.2 -/- -/- -/- -/-
mouse 77.4/82.0 41.0/66.4 54.5/72.0 -/- 74.9/83.5 77.0/88.3 52.2/69.8 -/- -/- -/- -/-
cell. 71.4/90.7 43.0/75.4 81.0/86.0 -/- 70.1/91.2 67.4/92.7 80.2/86.3 -/- -/- -/- -/-
head 90.9/90.7 76.0/77.4 -/- -/- 92.5/88.7 88.5/88.7 -/- -/- -/- -/- -/-
toaster 97.0/81.6 54.0/56.9 98.2/70.3 -/- 95.4/71.9 96.4/78.1 97.5/65.4 -/- -/- -/- -/-

avg 91.3/91.6 62.7/79.2 83.0/83.5 -/ - 90.4/89.4 89.6/91.1 82.3/81.3 -/ - -/- -/- -/-
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1:5 percent from 42:5 to 44:0 percent AP, while the other
models lose performance (DPM-VOC+VP loses 0:5 percent
AP, DPM-3D-Constraints loses 1:7 percent). We attribute
this mixed behavior to the fact that synthetic training
images come with perfect, angular accurate viewpoint
annotations (improving viewpoint estimation), but often
deviate from real-world training images in terms of
appearance, at least for the chosen type of edge-based ren-
dering—we leave improving the rendering quality for
future work. Fig. 6 shows qualitative results on KITTI and
3D object classes.

Table 5 shows the results in terms of AP and AOS (aver-
age orientation similarity) [2], now on the KITTI testing set
[2]. DPM-VOC+VP (39.3 percent), DPM-3D-Constraints
(35.4 percent) and 3D2PM (36.7 percent) outperform the
DPM-Hinge (34.4 percent) across all the classes.

Pascal VOC 2007. So far, we have compared 3D2PM only
to 3D object models on the 3D object classes dataset. Next,
we want to compare its performance to 3D object models,
now on challenging datasets. 3D object models traditionally
have issueswhen performing object detection on challenging
benchmarks due to the large pose, shape, occlusion, and size
variation that these benchmarks exhibit. To that end, we

compare 3D2PM on the Pascal VOC 2007 dataset to the 3D
voting scheme in [28], as it is the only 3D object model we
have found that reports performance numbers on challeng-

ing benchmarks. 3D2PM-D achieves 62.2 percent AP on the
car class outperforming the previous best 3D Object Model
result of 32 percent AP of [28] by a large margin, while it is
comparable to DPM-3D-Constraints (63.1 percent) and
slightly worse than DPM-VOC (65.7 percent).

4.4 3D Deformations and Continuous Appearance

While accurate 2D BB localization and viewpoint classifica-
tion into coarse classes can be achieved with a purely

view-based 2D (DPM-VOC+VP, Section 4.2) or 3D (DPM-
3D-Constraints, Section 4.3) object class representation, esti-
mating viewpoint on a finer level of granularity demands a
proper 3D object class model with 3D deformations and
continuous appearance, such as 3D2PM. In this section, we

hence highlight the ability of our 3D2PM to predict view-
point up to arbitrary granularity. To that end, we use the
EPFL Multi-view cars dataset (Section 4.1), due to its angle-
accurate viewpoint annotations and uniform sampling of
the viewing circle.

4.4.1 Arbitrarily Fine Viewpoint Estimation

In order to assess the ability of our 3D2PM models to gener-
ate viewpoint estimates of arbitrarily fine granularity, we

train 3D2PM-C with a varying number of k 2 f8; 12;
16; 18; 36g support views, interpolating to a varying number
of predicted views of increasing resolution d 2 f45�; 30�;
22:5�; 20�; 10�; 8�; 5�g. Fig. 7 plots the corresponding results

for 3D2PM-C-Lin (left) and 3D2PM-C-Exp (right) as surfaces
of MAE over k and d.

For both models, we observe that both, increasing k for
fixed d and decreasing d for fixed k, in fact results in lower
angular error in most cases, highlighting the benefit of the
3D continuous representation. The respective minima are

attained at k ¼ 36, d ¼ 5� (4:62 degrees MAE for 3D2PM-C-

Lin and 4:70 degrees for 3D2PM-C-Exp), approaching the
dataset viewpoint label noise.

4.4.2 Comparison to State-of-the-Art

Table 7 reports MAE for our 3D2PM models at 5 degree

resolution comparing to state-of-the-art. The 3D2PM-D,

3D2PM-C-Lin, and 3D2PM-C-Exp models with k ¼ 8
achieve 12.89, 12.43 and 12.63 degree MAE outperforming
by almost 12 degree the best published result of 24.8 degree
of [28].

Table 8 gives a comparison to prior results that had been
measured in terms of 2D BB localization (AP) and viewpoint

TABLE 5
2D BB Localization and Viewpoint Estimation

on KITTI Testing [2]

AP/
AOS

DPM-VOC+VP DPM-3D-Const 3D2PM DPM-Hinge

car 48.8/46.5 42.2/40.1 45.6/42.9 41.0/-
ped. 40.4/35.7 36.6/29.6 37.4/30.7 34.8/-
cycl. 28.2/21.6 27.5/21.1 27.1/20.9 27.3/-

avg 39.3/34.6 35.4/30.3 36.7/31.5 34.4/-

Fig. 6. Qualitative results on KITTI and 3D object classes. Correspond-
ing part detections (for a given class) are color coded. 3D2PM (first row),
DPM-3D-Constraints (second row) and DPM-VOC+VP (third row).

TABLE 6
2D BB Localization and Viewpoint Estimation on KITTI [2]

AP/MPPE real mixed baseline

DPM-VOC+VP DPM-3D-Constr. 3D2PM DPM-VOC+VP DPM-3D-Constr. 3D2PM DPM-Hinge

car 63.0/73.6 61.6/70.7 60.3/63.2 61.4/70.8 60.8/71.3 61.3/65.6 60.5/46.1
pedestrian 43.7/46.6 38.0/31.9 36.1/40.0 43.9/45.4 35.9/45.6 38.9/41.3 36.2/22.9
cyclist 36.5/42.6 32.7/53.0 31.1/38.8 36.3/46.8 30.4/45.9 31.8/36.1 28.9/6.0

AVG 47.7/54.3 44.1/51.9 42.5/47.3 47.2/54.3 42.4/54.3 44.0/47.7 41.9/25.0
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estimation performance (MPPE) rather than MAE (note that
MPPE is measured according to the respective number of
support views and is not comparable across table rows). We
observe that our models outperform prior results in AP and
MPPE by significant margins. 3D2PM-C-Lin (99:7 percent
AP, 80:6 percent MPPE) performs best on average, outper-
forming [29] (91:0 percent AP, 73:7 percent MPPE) by
8:7 and 6:9 percent for eight support views, and by 1:8 and
7:5 percent for 16 views, respectively. Interpolation

(3D2PM-C-Lin and 3D2PM-C-Exp) consistently improves

performance by around 2-3 percent over 3D2PM-D in terms

of MPPE, and 3D2PM-C-Lin is around 1-2 percent better

than 3D2PM-C-Exp on average.

4.4.3 Coarse-to-Fine Viewpoint Inference

As we go towards arbitrarily fine viewpoint estimation with
3D2PM-C, we increase the number of model evaluations for
a given position and viewpoint (atomic operation), increas-
ing inference complexity. We thus propose a coarse-to-fine
inference scheme that reduces the number of operations
while not sacrificing too much performance. It uses a greedy
binary search to recursively partition the space of candidate
viewpoints considered.

Table 9 gives results at 5 degrees on EPFL, comparing

3D2PM-C with k ¼ 36 and full inference (row 1) to the same
model with coarse-to-fine inference (row 2), starting with 12
views at the coarse level, and two reference models with

k 2 12; 16. While achieving almost 5 times faster runtime

(0.48 
 1010 vs. 2.2 
 1010 atomic operations), we obtain
comparable AP (99:0 vs. 99:9 percent AP) and only slightly
worse MAE (7.0 vs. 4.62 degree MAE), and comparable per-
formance to the reference models, but at much lower
computational cost. More sophisticated methodologies for
approximate inference, such as Branch and Rank [65], could
further improve run-time.

4.5 3D Part Correspondences

Lastly, we leverage the 3D nature of DPM-3D-Constraints
and 3D2PM to match parts across different viewpoints, as it
is required in multi-view scene understanding or object
tracking. In order to quantify this ability, we perform ultra-
wide baseline matching as established by [64], and measure
how often a fundamental matrix relating two views of
the same object can be estimated from putative part
correspondences.

Table 10 compares DPM-3D-Constraints and 3D2PM
with 12 and 20 parts, respectively, to raw SIFT matches and
[64], for baselines from 45 to 180 degrees. We observe that

both DPM-3D-Constraints (57:1 percent) and 3D2PM
(66:4 percent) with 20 parts outperform the prior result of
[64] (52:0 percent) by considerable margins of 5:1 and
14:4 percent, respectively.

5 CONCLUSION

This paper extends the DPM [1] to include viewpoint and
3D geometry information, thus bringing the world of 2D
object detectors and 3D object representations closer. By
adding 3D geometry information on three different levels
(viewpoints, part parameterization and part distributions),
in this work we have provided a palette of object detectors,
which gradually and successfully introduce object geometry
into the DPM. The 3D2PM extends the DPM to a full 3D
object model. It leverages 3D information from CAD data,
performing viewpoint estimation at arbitrarily fine
granularity.

Fig. 7. Fine viewpoint estimation performance (in MAE) using linear (left)
and exponential interpolation (right).

TABLE 7
Fine Viewpoint Estimation on EPFL [6]

MAE Glasner [28] 3D2PM-D 3D2PM-C-Lin 3D2PM-C-Exp

8 bins 24.80 12.89 12.43 12.63
12 bins - 7.99 7.89 7.99
16 bins - 7.00 6.59 6.77
18 bins - 6.29 6.15 6.15
36 bins - 4.74 4.62 4.70

TABLE 8
2D BB Localization (AP) and Viewpoint Estimation (MPPE [29]) on EPFL [6]

AP/MPPE 3D2PM-D 3D2PM-C-Lin 3D2PM-C-Exp ALM [54] Ozuy.[6] Lopez [29]

8 bins 99.8/77.6 99.7/80.6 98.8/79.4 -/- -/- 91.0/73.7
12 bins 98.9/79.0 99.6/83.1 99.5/81.1 -/- -/- - / -
16 bins 99.8/70.8 99.8/73.5 99.6/74.0 98.1/56.6 85.0/41.6 97.0/66.0
18 bins 99.8/72.1 99.8/75.0 99.9/73.8 -/- -/- -/-
36 bins 99.9/52.7 99.9/55.9 99.7/54.5 -/- -/- -/-

TABLE 9
Detection (AP) and vp. Estimation (MAE); Full vs.

Coarse-to-Fine Inference

AP /MAE at 5� #atomic operations

3D2PM-C vp36 full 99.9/4.62 2.20 
 1010

3D2PM-C vp36 coarse to fine 99.0/7.00 0.48 
 1010

3D2PM vp12 99.6/7.89 2.20 
 1010

3D2PM vp16 99.8/6.59 2.20 
 1010
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In an extensive experimental study on several datasets
with varying level of difficulty, and on several different
classes we have shown that the presented models achieve
state-of-the-art performance in terms of viewpoint estima-
tion and ultra-wide baseline part matching, confirming the
ability to deliver expressive object hypotheses. Therefore,
the models presented in this paper take a step forward
towards bridging the gap between object detection and
higher level tasks like scene understanding and 3D object
tracking.
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