
Stacked Hierarchical Labeling

Daniel Munoz, J. Andrew Bagnell, and Martial Hebert

The Robotics Institute
Carnegie Mellon University

{dmunoz, dbagnell, hebert}@ri.cmu.edu

Abstract. In this work we propose a hierarchical approach for labeling
semantic objects and regions in scenes. Our approach is reminiscent of
early vision literature in that we use a decomposition of the image in
order to encode relational and spatial information. In contrast to much
existing work on structured prediction for scene understanding, we by-
pass a global probabilistic model and instead directly train a hierarchical
inference procedure inspired by the message passing mechanics of some
approximate inference procedures in graphical models. This approach
mitigates both the theoretical and empirical difficulties of learning proba-
bilistic models when exact inference is intractable. In particular, we draw
from recent work in machine learning and break the complex inference
process into a hierarchical series of simple machine learning subproblems.
Each subproblem in the hierarchy is designed to capture the image and
contextual statistics in the scene. This hierarchy spans coarse-to-fine re-
gions and explicitly models the mixtures of semantic labels that may be
present due to imperfect segmentation. To avoid cascading of errors and
overfitting, we train the learning problems in sequence to ensure robust-
ness to likely errors earlier in the inference sequence and leverage the
stacking approach developed by Cohen et al.

1 Introduction

The challenging problem of segmenting and labeling an image into semantically
coherent regions can be naturally modeled as a hierarchical process to interpret
the scene [23]. Typically, a graphical model is used where each node represents
the labels present in some region of the image with dependencies that tie to-
gether multiple regions [3,6]. The nodes at the bottom of the hierarchy provide
low-level discriminative information, while nodes higher up resolve ambiguities
using global information. While these representations seem intuitive, learning
the optimal components of the model is practically intractable due to complex
dependencies. Furthermore, even with simplified representations exact inference
remains intractable [13] and prohibits learning these models. Although training
with exact inference is infeasible, a natural alternative is to use approximate in-
ference. However, as we discuss in the next section, these approximations during
learning can lead to undesirable behavior [16]. Therefore, we move away from a
representation for which training is intractable and toward an approach which
relies on effective components that are simple to train.
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Fig. 1. A synthetic example of our hierarchical labeling process. Given an image and its
hierarchical decomposition of regions, we sequentially predict the proportion of labels
present (drawn in the dashed boxes) using image features and previous predictions.

In this work, we model low-level information combined with higher-order
reasoning using a hierarchical representation. Our approach is similar to previ-
ous structured models with the key difference that we no longer attempt the
intractable task of finding the mode of the joint posterior distribution using a
generic approximate inference algorithm. Instead we simplify the problem into
a series of subproblems that are specifically trained to perform well for our task.
That is, we train these subproblems to model the relations present in the image
so that the overall prediction is correct. One major advantage of this approach
is that test-time structured prediction is simply a sequence of predictions. Our
contribution is a novel hierarchical algorithm for labeling semantic regions.

An idealized example of our approach is depicted in Fig. 1. We represent the
inference process as a series of predictions along the hierarchy from coarse to
fine. Given an image, we first create a hierarchy of regions that range from very
large regions in the image (including the image itself as one region at the top)
down to small regions (e.g., superpixels) at the bottom. We do not rely on each
region to contain one label; instead we explicitly model the label proportions
in each region. Starting with the entire image, we train a classifier1 to predict
the proportions of labels in the image. As we further discuss in Sect. 3, these
predictions are passed to the child level and are used to train another classifier
over the child subregions. The procedure is repeated until the leaves are reached.

1 In this work, we refer to a classifier as an algorithm that predicts a distribution over
labels, instead of a single label.
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Fig. 2. Hierarchy analysis for two images. From left to right: input image with ground
truth overlaid, the segmentation maps for L2 (second level), L4, L6, L8, and most likely
label for each region in L8.

Since we model label proportions over regions: we are robust to imperfect seg-
mentation, we can use features defined over large regions, and we do not make
hard commitments during inference.

Figure 2 illustrates four levels from the hierarchy on two images from the
Stanford Background Dataset (SBD) [8]. Ideally the leaves in the hierarchy are
regions that contain only one label, but as Fig. 2 also illustrates, this assumption
is not always true, especially for more complex scenes. With our hierarchical ap-
proach, we demonstrate state-of-the-art performance on SBD and MSRC-21 [26]
with the added benefit of drastically simpler computations over global methods.

2 Background

2.1 Motivation

Random field models in vision have proven to be an effective tool and are also at-
tractive due to their convex nature (assuming no latent states) [19]. Furthermore,
although exact inference is NP-hard over these models, there has been much
recent progress towards efficient approximate inference techniques [12,14]. How-
ever, correctly optimizing these convex models requires exact inference during
learning. Unfortunately, when exact inference cannot be performed, converging
to the optimum is no longer guaranteed [16]. For example, Kulesza and Pereira
[16] demonstrate a case where learning with bounded approximate inference can
prevent the learning procedure from ever reaching a feasible zero empirical risk
solution. Similarly in another example, they show that learning with loopy belief
propagation can diverge.

As we are forced to use approximate inference during learning, the learned
model (e.g., parameters) is tightly tied to the chosen inference procedure in both
theory [29] and in practice [17]. However, learning the best model for the chosen
inference procedure is often still difficult. Due to this fundamental limitation
when training with approximate inference techniques, we move away from the
global probabilistic interpretation used in hierarchical random field formulations,
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such as [18]. Instead, in a manner inspired by inference procedures over graphical
models, we propose a novel method using iterative classifiers that are trained to
encode interactions between levels but correspond to no explicit joint probability
distribution.

2.2 Related work

Our hierarchical formulation resembles early directed graphical models from
Bouman and Shapiro [3] and Feng et al. [6] for scene analysis. Whereas these
approaches rely on tree-based interactions to enable tractable learning, we no
longer train a graphical model and are not restricted in the types of contextual
cues that we can use. Instead we focus on maximizing what we ultimately care
about: predicting correct labelings. This idea is analogous to the difficult and
non-convex problem of maximizing the marginals [11]. The notion of training
the inference algorithm to make correct predictions is also similar to Barbu [2]
for image denoising, in which a model is trained knowing that an inaccurate, but
fast, inference algorithm will be used. In our approach we break up the complex
structured prediction problem into a series of simpler classification problems, in-
spired by recent works in machine learning focused on sequence prediction [4,5].
In the vision setting, this notion of a series of classification problems is similar
to Auto-context [27], in which pixel classifiers are trained in series using the
previous classifier’s predictions with pairwise information to model contextual
cues. In our work, we go beyond typical site-wise representations that require
entities to contain one label. Because we model label proportions, we can use
features defined over large regions to better represent the context, rather than
an aggregation of site-wise labels. Furthermore, the hierarchy provides spatial
support context between levels and naturally propagates long-range interactions
that may be hard to capture with pairwise interactions. We build on the for-
ward sequential learning approach used and analyzed in [28,10,25] to prevent
cascading errors and leverage the sequential stacking idea to minimize cascaded
overfitting [30,4,15].

3 Stacked Hierarchical Labeling

3.1 Overview

Given an image and its hierarchical region representation, we train a series of
classifiers, from coarse to fine, to predict the label proportions in each region in
the level. After a level has been trained, the predicted labels are passed to the
child regions to be used as features that model contextual relationships. Figure 3
illustrates (on test data) how the probabilities for the respective labels increase
and become more precise along three levels in the lower half of the hierarchy. Our
approach is robust to the quality of the segmentation at each level as we explicitly
model that regions may contain multiple labels. Therefore, depending on how
the hierarchy is constructed, our algorithm will learn how regions for different
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Fig. 3. Refinement in label predictions down the hierarchy. Row 1: Test image (with
ground truth overlaid) and predictions for three levels in the hierarchy. Rows 2-4: The
respective level’s label probability maps, where white indicates high probability.

labels are split between levels. We create the hierarchy using the technique from
Arbelaez et al. [1,22].

The next subsections describe each component of the training procedure.
We first introduce the notations and describe the basic classifier used at each
level (Sect. 3.2). We then describe how predictions from a parent region are
incorporated as features (Sect. 3.3) and how classifiers are trained across levels
in the hierarchy to finalize the procedure (Sect. 3.4).

3.2 Modeling Heterogeneous Regions

We denote by K the set of possible labels, L the number of levels in the hierarchy,
T the set of training images, ℐI the image data for image I, ℛI its set of regions
in the hierarchy, and ℛI,ℓ the set of regions at level ℓ. For each region r ∈ ℛI ,
we define Yr to be the random variable that represents the label of the region.
For each level ℓ, we train a probabilistic classifier to match the empirical label
distribution of r ∈ ℛI,ℓ across all training images. For its simplicity, we use a
generalized maximum entropy classifier q�ℓ

, where �ℓ : ℝd → ℝ is a function
that defines the distribution:

q�ℓ
(Yr = a∣ℐI) =

exp(�ℓ(fI(r, a)))∑
k∈K exp(�ℓ(fI(r, k)))

, (1)
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Algorithm 1 train maxent

Inputs: Dataset of region features with true distributions D = {(fI(r, k), pI,r,k)}I,r,k
where pI,r,k = pI(Yr = k), Step size �t, Number of iterations T .
� = 0
for t = 1 . . . T do
A = ∅
for (fI(r, k), pI,r,k) ∈ D do

if �I(r, k) ∕= 0 then
A ← A∪ {(fI(r, k), �I(r, k))}

end if
end for
ℎt = train multi class regressor(A)
�← �+ �tℎt // (or, line-search instead of constant �t)

end for
Return: MaxEnt classifier �

and fI : ℛI × K → ℝd are the feature functions that extract (label-specific)
features describing the region from image data ℐI , such a texture and color (see
Appendix). In the following subsection, we discuss how predictions from parent
regions are appended to this vector to model context.

At each level, we match the distributions by minimizing the cross entropy of
the empirical label distributions p and the classifier q, which reduces to:

�∗ℓ = arg max
�ℓ

∑
I∈T

∑
r∈ℛI,ℓ

∑
k∈K

pI(Yr = k) log q�ℓ
(Yr = k∣ℐI). (2)

This is a standard maximum log-likelihood estimation where the samples are
weighted by pI(Yr = k), i.e., the number of pixels labeled k in the region di-
vided by its area. The optimization may be performed through standard convex
optimization (e.g., gradient ascent) and provides competitive performance in our
experiments; however, we found using a non-linear model further improves per-
formance. We train a non-linear model in a boosting manner through Euclidean
functional gradient ascent [24]; the following describes the optimization but it is
not specific to our hierarchical procedure.

The functional gradient of the inner term in (2) is �I(r, k)�fI(r,k), where

�I(r, k) = pI(Yr = k)− q�ℓ
(Yr = k∣ℐI), (3)

and �x is the Dirac delta function centered at feature value x. As a form of
boosting, we train a new function ℎ to match the functional gradient residu-
als and add it to �. The residuals indicate how to update the function when
evaluated at the respective feature locations so that the predicted and ground
truth distributions match. We repeat this procedure until convergence and then
return � =

∑
t �tℎt, where �t is the step size. We refer to [24] for more details.

The training algorithm is given in Algorithm 1. In our experiments we train a
separate Random Forest for each class as the multi-class regressor ℎ.
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Cspatial Cglobal

Fig. 4. Illustration of the context features described in Sect. 3.3. Gray indicates the
pixels that are being used to compute the feature.

Partial Labelings Ideally all pixels in the training set are assigned a label;
however, most datasets contain many images with unlabeled pixels (such as
MSRC-21). We assume that if a class is labeled in the image, then all instances of
that class are labeled in that image. In the case a region r is partially labeled, we
propose for the classifier to match the proportions of the classes actually present
(K̂r) and to not penalize the predictions made for the classes not present (K̄r), as
the unlabeled pixels may actually contain classes from K. We do this by treating
(2) as a negative loss function and by only penalizing the terms with labels in K̂r
and ignoring the remaining labels, i.e., setting pI(Yr = a) = 0,∀a ∈ K̄r discards
losses over the labels not present.

3.3 Context Features

In addition to the image features computed at each level, we need to define the
information that is passed from one classifier to the next. It is this information
that ties together the individual classifiers trained at each level to yield the global
image interpretation generator. Intuitively, using the label distribution predicted
by the parent’s classifier will make training the child’s level distribution predic-
tor an easier problem. At each level, we receive probabilities from the parent
level regions. Since this information is of variable length per image, specifically
∣ℛI,ℓ−1∣ × ∣K∣, we need to summarize it into a fixed-length vector that can be
used as input to a generic classifier. For each region in ℛℓ, we define three types
of contextual features that are computed using the predictions from the regions
in ℛℓ−1. For the first, each region simply uses its parent region’s label predic-
tions (Cparent ∈ ℝ∣K∣). The next two are illustrated in Fig. 4. The second is the
weighted average of the neighboring region’s probabilities. The weights are the
areas of the region’s dilated mask that overlaps with the respective neighbors. In
order to describe spatial layout, we compute the averages above and below the
region separately (Cspatial ∈ ℝ2∣K∣). The third is the weighted average (by size)
of the probabilities across all regions in the parent level (Cglobal ∈ ℝ∣K∣); this
feature is duplicated for all regions in the current level. These context features
are then appended to the respective region’s fI image-based feature vector.

3.4 Hierarchical Stacking

The MaxEnt classifier described in Sect. 3.2 is the basic component used at each
level in the hierarchy. Collectively training the classifiers is prone to two problems
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Fig. 5. Example of test-time error recovery. Left: test image with ground truth over-
laid. Top: segmentation maps for L5, L6, L7. Bottom: most likely label per region.

of cascading errors. First, if we train each level’s classifier independently using
the parent regions’ ground truth, we will have cascading errors at test-time due
each classifier being trained with perfect contextual information. Therefore, we
have to train the hierarchical procedure in the same way it is executed at test-
time: in sequence, using the predictions from the previous level. After predicting
the label distributions for each region in a level, we pass this information to
the child level, similar to what is done during inference over a graphical model.
Similar to other hierarchical methods [18], we pass these predicted per-class
probabilities for each region as a vector from which the children construct the
context features as described above. Ideally, high levels in the hierarchy can
represent the type of environment which “primes” the lower levels with a smaller
set of labels to consider. Second, now using predictions from the same data used
for training is prone to a cascade of errors due to overfitting as subsequent levels
will rely heavily on still optimistically correct context. While parent predictions
are important, we also want to learn how to recover from mistakes that will be
made at test time by trading off between the parent probabilities and image
features. To achieve this robust training, we use the idea of stacking [30,4] when
training the classifier. Figure 7 illustrates how stacking addresses the overfitting
behavior on the MSRC-21 dataset.

Stacking trains a sequence of classifiers where the outputs of one classifier
are treated as additional features and are used to train another classifier. In
order to avoid overfitting, the outputs are predicted on data that was not used
to train the classifier. Obtaining held-out predictions is achieved in a manner
similar to cross-validation where the training data is split into multiple subsets
that multiple classifiers train on. Because the predictions are made on unseen
data, the procedure simulates the test-time behavior and ideally learns how to
correct earlier mistakes. An example of this correcting behavior during test-time
is illustrated in Fig. 5. In L5, the person is part of a very large region for which
label building is most confident. In L6, the person is segmented out from its large
parent region; however, the most likely label for this region incorrectly follows
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Fig. 6. Predictions between levels during learning/inference for image A.

from the parent’s label (building). In L7, the region recovers from this error and
is correctly labeled foreground.

We now describe the stacking procedure in detail (Fig. 6). For each image
I ∈ T , we receive the predictions for each parent region in ℛI,ℓ−1; we denote
this ∣ℛI,ℓ−1∣ × ∣K∣ set of predictions per image I as bI,ℓ−1. Using bI,ℓ−1, we
compute the context features (Sect. 3.3) for each region in ℛI,ℓ and append
them to its image features fI . We then generate held-out predictions for all
regions at level ℓ (across all training images) by training temporary classifiers on
subsets of regions and predicting on the held-out regions. That is, to generate the
predictions for regions ℛA,ℓ in image A, we train a classifier �̃A,ℓ over the regions
∪I∈T ∖AℛI,ℓ and then classify the held-out regions ℛA,ℓ to generate predictions

b̃A,ℓ. This process is repeated ∣T ∣ times to generate predictions across all images2.
This stacking procedure is done solely during training to generate predictions to
compute the context features. Therefore, we train a final classifier �̃ℓ across all
regions at level ℓ to be used at test time. The main idea is that the temporary
classifiers simulate the behavior �̃ℓ will have on the unseen test data. Since these
classifiers use predictions from the parent level, we refer to them as inter-level
classifiers.

One potential problem occurs when a large region at level ℓ− 1 is split into
many small regions at level ℓ. In that case, the context feature Cspatial for most
of the offspring regions is uninformative because it uses the predictions only from
the one parent region without capturing any context. To address this problem,
we apply a second round of stacking. In that second round, a new classifier is
learned and new predictions bI,ℓ are generated by using the same procedure as
described above, with the one critical difference that Cspatial is computed by
using the predictions at level ℓ generated from the classifier learned in the first
round, b̃I,ℓ, rather than by using the predictions from the previous level, bI,ℓ−1.
In addition, we also append each region’s respective prediction from the first
round, b̃I,ℓ. The resulting set of predictions bI,ℓ from this intra-level stacking
are then passed to the next level and classifier �ℓ is saved for test-time. The
two-stage process is then repeated for the next level. In practice, we do not do
the second stage at the top level.

2 In practice, we hold out 10% of the training images instead of just one.
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(a) (b) (c)

Fig. 7. Confusion matrices on MSRC-21 dataset. Performance on training set without
stacking (a), and performance on testing set without (b) and with (c) stacking.

3.5 Inference

Given a test image I and its hierarchy of regions, inference proceeds in the same
cascading manner. At level ℓ, we receive the parent level probabilities bI,ℓ−1 to

create the context features and then use the inter-level classifier �̃ℓ to predict
b̃I,ℓ. Next, we use bI,ℓ−1 and b̃I,ℓ to create the same context features from the
second stage and then predict bI,ℓ with the intra-level classifier �ℓ. Therefore,
performing inference over the hierarchy requires 2L− 1 predictions (since there
are no intra-level predictions for the first level).

4 Experiments

We evaluate our algorithm on the MSRC-21 and Stanford Background datasets
and demonstrate that we can achieve high performance predictions as with other
structured models, even though we never explicitly model global configurations.
In both experiments we use the same set of standard image features, mostly
computed from the STAIR Vision Library [9], and the same set of learning
parameters used to train the hierarchy; see the Appendix for specific details.

4.1 MSRC-21

The MSRC-21 dataset [26] contains a variety of outdoor environments with 21
possible classes; we use the standard evaluation split from [26]. Although not
ideal for our hierarchical regions, we use the image-based region features from
the flat CRF model of [7] and demonstrate favorable quantitative performance
compared to this and other similar recent work. As illustrated in Table 1, we
compare with related models that are structured [31,20], use hierarchical re-
gions [21], and sequentially trained (over sites) [27]; “Hier.” is our hierarchical
approach and “Leaf” is a site-wise classifier trained only over the leaf regions
without any context. Although the hierarchical CRF model of [20] demonstrates
superior performance, it should be noted that their pixel-wise classifier can ob-
tain an overall accuracy of 80%, which suggests the use of much more discrimi-
native features. In Fig. 8, we quantify the hierarchy’s refinement in labeling by
plotting, at each level, the accuracies if we assign the regions’ pixels their most
probable label.
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Table 1. Performances on the MSRC-21 dataset. Overall is the total number of pixels
correct and Average is the mean across the columns. ∗Averaged over 5 different splits.
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[7]∗ 77 64 72 95 81 66 71 93 74 70 70 69 72 68 55 23 83 40 77 60 50 50 14
[31] 75 65 77 93 70 58 64 92 57 70 61 69 67 74 70 47 80 53 73 53 56 47 40
[21] – 67 30 71 69 68 64 84 88 58 77 82 91 90 82 34 93 74 31 56 54 54 49
[27] 75 69 69 96 87 78 80 95 83 67 84 70 79 47 61 30 80 45 78 68 52 67 27
[20] 86 75 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9
Leaf 74 60 72 96 85 74 70 91 63 58 65 59 69 58 32 22 84 25 83 55 33 54 4
Hier. 78 71 63 93 88 84 65 89 69 78 74 81 84 80 51 55 84 80 69 47 59 71 24

Fig. 8. Accuracies when assigning regions, at each level, their most probable label.

4.2 Stanford Background Dataset

We also evaluate our approach on the recent dataset from [8]. This dataset
contains densely labeled images containing eight semantic labels. All results were
averaged over five random trials, using the splits described in [8].

Table 2 contains the performances of two structured models and our hier-
archical approach. We achieve comparable performance with the global energy
model used in [8] while never explicitly modeling the global configurations. Hold-
ing segmentation and image feature extraction time constant, our hierarchical
inference typically takes 12 s/image (10 s of which is spent on computing the
contextual features), whereas the global energy approach can widely vary from
30 s to 10 min to converge. In Fig. 8, we see a similar label refinement.

4.3 Confident Predictions

Another benefit of our approach over MAP inference techniques (e.g., graph-
cuts) is that we never make hard decisions and always predict a distribution of
labels. Therefore, when eventually assigning a label to a region, we can extract a
notion of confidence in the labeling. We define a labeling as confident when the
most likely label is 0.2 higher than the runner-up, and otherwise uncertain. For
example, in Fig. 9, the cars are confident in the labeling, but the trees in front
of the building are uncertain. On MSRC-21, our confident predictions constitute
79% of the data and achieve an overall accuracy of 89%, while the uncertain
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Table 2. Performances on the Stanford Background Dataset.
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[8] Pixel CRF 74.3 66.6 93.9 67.1 90.3 83.3 55.4 71.4 9.3 62.2
[8] Region Energy 76.4 65.5 92.6 61.4 89.6 82.4 47.9 82.4 13.8 53.7

Leaf 72.8 58.0 89.7 58.3 85.8 69.8 15.8 78.1 1.5 64.9
Hierarchy 76.9 66.2 91.6 66.3 86.7 83.0 59.8 78.4 5.0 63.5

Fig. 9. The ambiguity in ground truth label (top, middle) is correctly modeled in our
predictions (bottom row), resulting in a labeling for the building that is uncertain.

accuracy is 37%. On SBD, our confident predictions constitute 87% of the data
and achieve an overall accuracy of 82%, while the uncertain accuracy is 40%.
These numbers indicate that we make most errors when the labeling is uncertain.

5 Conclusion

We propose an alternative to the graphical model formulation for structured
prediction in computer vision. Our approach is based on training a sequence of
simple subproblems that are designed to use context, bypassing the difficulties
of training typical structured models. Specifically, we designed an algorithm to
train these subproblems in a hierarchical procedure that a) captures the context
over large regions b) explicitly models that regions contain mixed labels and
c) is trained to follow the same procedure during test-time. Our experiments
demonstrate this simple approach is able to capture context and make high
performance predictions without a probabilistic model over global configurations.
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A Image Features

For the top-level in the hierarchy, we use Gist3 computed from 64x64 rescaled
images at 2 scales with 8 and 4 orientations, Pyramid Histogram of Oriented
Gradients4 with 2 levels, 8 histogram bins and 4 orientations, and a color his-
togram over CIELab colorspace with 10 bins over L and 20 bins over a and b
along with the mean and std. per channel. For the remaining levels in the hier-
archy, we primarily use the region appearance features from [7,9]. These features
consist of filters, color and bounding box statistics, location, and the weighted
average of neighboring regions’ features. In addition, we also count the number
of vertices on the convex hull enclosing each region and use a hierarchy-based
descriptor to model relative relocation. This descriptor consists of the orienta-
tion ([−�, �]) and length of the vector extending from the centroid of the parent
to the child, normalized by the diagonal of the parent’s bounding box.

B Hierarchy

The hierarchy is created by thresholding the scale value from 256 at an interval
of -30. During functional gradient boosting, the step size is �t = 1.5√

t
for each

level while we increase the number of iterations T at each level to handle the
increasing amount of data as regions were split: 10, 12, 15, 17, 20, 20, 25, 30. The
Random Forest5 regressor consisted of 10 trees and each tree required at least
15 samples to split a node. We found the entire process is resilient to changes in
these parameters.

3 http://lear.inrialpes.fr/software
4 http://www.robots.ox.ac.uk/˜vgg/research/caltech/phog.html
5 http://code.google.com/p/randomforest-matlab/


