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Abstract. We propose a method to label roads in aerial images and
extract a topologically correct road network. Three factors make road
extraction difficult: (i) high intra-class variability due to clutter like cars,
markings, shadows on the roads; (ii) low inter-class variability, because
some non-road structures are made of similar materials; and (iii) most
importantly, a complex structural prior: roads form a connected network
of thin segments, with slowly changing width and curvature, often bor-
dered by buildings, etc. We model this rich, but complicated contextual
information at two levels. Locally, the context and layout of roads is
learned implicitly, by including multi-scale appearance information from
a large neighborhood in the per-pixel classifier. Globally, the network
structure is enforced explicitly: we first detect promising stretches of
road via shortest-path search on the per-pixel evidence, and then select
pixels on an optimal subset of these paths by energy minimization in a
CRF, where each putative path forms a higher-order clique. The model
outperforms several baselines on two challenging data sets, both in terms
of precision/recall and w.r.t. topological correctness.

1 Introduction

In this paper we deal with automated extraction of the road network from over-
head images.! The emergence of on-line services like Google Maps, navigation
systems, and location-based services has lead to an increased demand for up-to-
date maps, particularly in densely populated urban areas. Road extraction is a
classical problem which dates back almost 40 years [1] and considerable progress
has been achieved, see overviews in [10, 24]. Still, no automatic method is robust
enough to be employed in practice, and roads are digitized by hand, which is
slow and costly. What makes roads (and other linear structures like waterways)
special is that topological completeness of the network is often more important
than pixel-accurate segmentation. Consider a routing task where the shortest
connection from A to B is sought. While slightly misplaced road boundaries will
not harm the routing, even a very narrow gap may cause a lengthy detour. We

1 As often done in aerial imaging, when it is available we regard the height-field from
dense matching as an additional image channel, and do not separately refer to it.
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thus put an emphasis on network quality, i.e. our main objective is extracting
topologically complete and correct road networks.

Road extraction in urban environments is challenged by varying road ap-
pearance, occlusions as well as heterogeneous background. Unlike highways in
the countryside, city streets are frequently occluded (e.g. by trees) or lie in
cast shadow. Shape properties like road width, straightness and network density
exhibit greater variation. Moreover, many background objects have road-like ap-
pearance when viewed from above, e.g. concrete roofs. Thus, classification based
on local appearance is unreliable. On the other hand, roads offer a lot of structure
and context: locally, road pixels form narrow, elongated strips, often bordered
by buildings or lined with trees; globally, they form a connected network with
(mostly) slowly changing segment width. Importantly, these structural proper-
ties are quite universal, whereas geometric properties vary from place to place,
e.g. American cities have wider roads laid out in a rectangular grid, whereas
central European cities have narrower, and more irregular road networks.

We pose road extraction as a pixel-wise labeling task with two classes “road”
and “background”; and address local context and long-range structure separately.
Context is learned directly from data, by training a classifier that uses rich ap-
pearance features extracted from a large window, and in this way implicitly
includes the local co-occurrence patterns, similar to [17]. The network is mod-
eled explicitly: from the pixel-wise road score, we predict the likelihood that a
road of a certain width is present. Based on the resulting (z,y, width)-volume
of road likelihoods we apply a recover-and-select strategy: in the recover step
many candidates for larger stretches of road are sampled. The select step then
picks a subset of these candidates that best explains the image evidence (i.e.
optimally covers the roads). The selection is formulated as a higher-order CRF,
in which the pixels belonging to each road candidate form a large clique, and
the clique potential favors consistent labeling of the member pixels. The CRF
thus models two preferences: (i) pixels should only be labeled as road if they
lie on a well-supported long-range connection (or large square) of the network,
thus improving precision; and (ii) if in a clique the evidence for road outweighs
the one for background, then (almost) all of its pixels should be labeled as road,
thus improving recall and preventing gaps in the network.

CRF models are currently the standard way of encoding dependencies be-
tween pixels in labeling problems, and the search for maximum-evidence (resp.
minimum-cost) paths is a classical approach to reconstruct networks — not only
roads, but also blood vessels or neurons in medical imaging. Our work is, to
our knowledge, the first road extraction framework that attempts to embed
minimum-cost paths in a CRF framework, leading on the one hand to a more
global solution (because paths can overlap without “double counting”), and on
the other hand to a more accurate segmentation (because pixel-to-path mem-
bership is a soft constraint and can change during inference).

In the experiments section, we show that together the proposed measures sig-
nificantly improve the resulting road network. The local context resolves prob-
lems due to ambiguous appearance, and yields a significantly higher labeling
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accuracy than a baseline classifier (16-45% gain in F'1-score), which by itself ap-
proximately doubles the topological correctness. The long-range network prior
on the other hand only brings moderate additional improvement (up to 2% in
Fl-score) in terms of labeling accuracy, but further increases the topological
correctness of the final network by 7%.

2 Related Work

Since the first early works appeared on road extraction from satellite imagery [1],
a large number of methods have been proposed that model road networks with
comprehensive sets of ad-hoc rules (e.g., [6,25,28,9,35,26]). Most often they
are bottom-up processes that hierarchically stitch together short road segments
detected with low-level image processing. The strategy can be successful in rural
and suburban areas, where the roads stand out more clearly, there are fewer
shadows and occlusions, and the background is relatively homogeneous. Typi-
cally many parameters must be tuned empirically. Also, rule-based “expert sys-
tems” rely on hard thresholds rather than probabilistic formulations, so they
cannot recover from mistakes made at early stages. Some authors have also tried
a rule-based approach for more challenging urban environments [11], leading to
even more extensive rule sets.

Marked point processes (MPP) offer a probabilistic framework in which road
elements (e.g. short line segments) are the basic variables, and allow one to
impose high-level topological constraints [31, 16, 18]. Chai et al. [4] recently pro-
posed a comprehensive prior that models both line-segments and junctions of
the road network. MPPs are a powerful tool to formulate priors at the level of
road elements, but inference is hard and has to rely on all-purpose sampling
methods like reversible jump Markov Chain Monte Carlo (RJIMCMC), which
are computationally expensive and need careful tuning.

A conceptually appealing strategy is to view the road network as a set of
minimum cost paths. Such an approach is more flexible in terms of road shape
and directly enforces connectivity. Already in early work [7] an A*-type algo-
rithm is used to iteratively assemble line detector responses to road networks.
In medical imaging, minimum-cost paths are widely used to reconstruct vessel
trees and neurons (e.g., [20, 34, 3,2,39]). Recently [33] also tested an algorithm
originally developed for medical data on suburban road networks.

Perhaps the most related methods to ours are [36] and [32]. In [36] the road
network is also modeled with the help of a CRF with long-range, higher-order
cliques (over super-pixels), using a variant of the PY-Potts model [14]. The road
segments are assumed to be piece-wise straight, and only serve to repair false
negatives of the original labeling. Here, we allow for arbitrarily shaped segments,
which are found in a data-driven manner. Moreover, our method does not have
a foreground bias, but also suppresses false positives in the unaries. Tiiretken et
al. [32] (and the earlier [33] for cycle-free networks) compute multi-scale local
tubularity scores (reminiscent of our road likelihoods), connect seeds with high
foreground scores by minimum cost paths, and prune the over-complete graph
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Fig.1. Given an input image, our method first classifies pixels into road and back-
ground (Sec. 3.1). Next, the presence of a road with a specific width is predicted
(Sec. 3.2). An over-complete set of road candidates is generated (Sec. 3.3), and pruned
to an optimal subset (Sec. 3.4).

to an optimal sub-graph with mixed integer programming. They report good
performance on aerial images with unoccluded roads, although the method was
developed for neurons. The focus is on the center-lines, whereas road pixels are
not individually labeled (and the width is not explicitly recovered).

3 Model

We model the road network as the union of elongated segments (termed paths)
and large compact regions (termed blobs). Both paths and blobs come with an
associated scale, i.e. we do not only represent road centerlines, but also the local
width of the road, respectively the size/diameter of large undirected parts of
the network like squares or parking lots. We start with a conventional pixel-wise
classification into road and background pixels (Sec. 3.1). In this stage we al-
ready include local context via per-pixel feature vectors that encode appearance
information over a large spatial neighborhood. In the raw map of road (fore-
ground) scores the local scale (width) of the roads is contained only implicitly.
To make it explicit we add a further classification step (Sec. 3.2), which takes
as input statistics about the local distribution of the raw scores, and predicts
the likelihood that a road with a specific width is present.? A set of putative
paths and blobs (together referred to as road candidates) are then sampled on
the basis of the resulting (x,y, width)-volume of road likelihoods (Sec. 3.3), by
connecting random seed points with paths of maximal cumulative road likeli-
hood, respectively finding large blobs with maximal cumulative likelihood. In
order to achieve high recall we follow a recover-and-select strategy: the set of
candidates is generated such that it is over-complete, but covers as many of the
actual road pixels as possible. Finally, a subset of all candidates is selected by
energy minimization, resp. MAP estimation, in a CRF (Sec. 3.4). The original
road scores form the pixel-wise unaries, and each candidate is a higher-order
clique with a robust PV -Potts potential that encourages clique members to take

2 In principle the two-stage classification could potentially be replaced by some form
of structured prediction. This would require significantly more training data.



Mind the gap: modeling local and global context in (road) networks 5

on the same label. Our binary labeling problem allows for globally optimal CRF
inference with the min-cut algorithm. The approach is summarized in Fig. 1.

3.1 Context-aware road scores

To obtain pixel-wise road /background scores that take into account the context
in the vicinity of a pixel we adopt the multi-feature extension [17] of the Texton-
Boost algorithm [30]. The pipeline works as follows: first multiple types of fea-
tures — SIFT [22], textons [23], local ternary patterns [13] and self-similarity [29]
— are extracted densely for all pixels. Each feature is soft-quantized to the 8 near-
est neighbors in a dictionary of 512 words, using distance-based weighting with
the exponential kernel [8]. To include the context, the quantized words are then
accumulated into bags-of-words over a (fixed) set of 200 random rectangles that
cover a large image region around a pixel. Rectangles range from 4 x 4 to 80 x 80
pixels in size, and their locations are sampled in a neighborhood of 160 x 160
neighborhood, from a Gaussian distribution (i.e. their density decreases with dis-
tance). The final feature set is the concatenation of all 200 bags-of-words, and
thus is aware of the context, in the form of the feature distribution in a large
160-pixel neighborhood around a pixel (compared to an average road width of
~ 30 pixels in our data).

A classifier is then learned by 5000 rounds of boosting decision stumps on
single feature dimensions (also called “shape filters” [30]). Features are not kept
in memory, but extracted on the fly using integral images. The boosting output is
transformed to pseudo-probabilities Syoqd, Spg in the standard way, by mapping
it to the range [0..1] with a sigmoid.

3.2 Road likelihoods

In order to generate promising candidates in the subsequent step, we need for
each pixel not only a single road score, but the likelihood to encounter a piece of
road of a particular width w. To estimate that likelihood (for a range of discrete
widths), we generate a scale-space representation from the road scores S;.q4, by
computing a pyramid of pixel-wise responses to scale-normalized Laplacian-of-
Gaussian (LoG) filters of different scales [21]. We found that rather than using
the raw LoG responses (or simple transformations of them), it is more robust
to resort to a second round of discriminative classification: we feed the mean,
median and standard deviation of the pixel-wise LoG responses into a random
forest (20 trees, max-depth 15) trained on ground truth road widths, to predict
the local likelihood for each possible road width, resulting in a volume L(x, y, w)
of likelihoods. In our experience this “learned mapping” from LoG responses to
road width likelihoods works better than obvious ad-hoc mappings like rescaling
or sigmoid fitting, presumably because it can learn, from the additional infor-
mation contained in the training labels, to correct typical failures and noise in
the raw road scores. At the conceptual level this is in agreement with [27], who
also observe an improvement by “cleaning up” raw classifier responses with a
second round of classification that looks at their local distribution. In [33] the
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order is reversed: paths are constructed after the first round, then segments of
those paths are reclassified to get more reliable scores.

3.3 Sampling of road candidates

The goal of this step is to generate a large set of putative road candidates.
Candidates are either long-range curvilinear paths or large isotropic blobs that
are likely to belong to the road network. Candidate generation aims for high
recall: the union of all candidates must contain as much as possible of the road
network, even at the cost of low precision. Weak candidates are discarded in the
subsequent selection step, but missing candidates cannot be recovered later.

Elongated paths are generated by picking two random points with reasonably
high road likelihood in L(z,y,w) and connecting them with a path through the
volume that maximizes the cumulative likelihood. That path is found with the
3D Fast Marching algorithm [5]. By allowing seed points that are far from each
other the paths are a means to impose the long-range network prior: a path is
always an uninterrupted connection between the seeds and bridges gaps with low
road likelihood where necessary. Note that the path candidates have an explicit
road width assigned at each pixel, which changes smoothly (because the path
through the volume is continuous also in the w-dimension).

Paths alone are not sufficient to represent the road network. In practice
the network also contains large regions without a clear direction like parking
lots, squares, roundabouts etc. Paths between different seed points will always
traverse such regions along the same routes, where the costs are lowest due un-
avoidable fluctuations of the likelihood. To nevertheless include such blob regions
we model them separately. We scan only the top scales w of L(x,y,w), above the
maximum road width, for local maxima, and perform non-maxima suppression
to obtain a set of blob candidates.

3.4 Candidate selection

The final step is to select a subset of candidates that best covers the road net-
work. Among the given candidates, some paths will pass (partially) through
background; different paths will overlap because the fast marching search tends
to use the same high-likelihood regions to connect different seeds; and blobs will
also overlap smaller blobs as well as many paths.

On the other hand, even the best paths will not always perfectly correspond
to roads, especially along the road boundaries. Therefore it is desirable to include
a correction step that slightly modifies the candidates where required, but prefers
to change them as little as possible in order to maintain coverage and connectiv-
ity of the road network. We cast this “selection with correction” as probabilistic
inference in a CRF, 1.e. we minimize an energy £ = 3, Ey(2;)+>_; Ep(Q;) over
all pixels z; of the image.® The pixel-wise unaries F,(x;) = —log(S) are nega-
tive log-likelihoods of the raw road scores from the original classifier (Sec. 3.1).

3 If desired the P~ -Potts model would also allow for conventional pairwise potentials.
We did not find them necessary, the context-based unaries are already locally smooth.
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The candidates enter in the form of higher-order cliques @;, which contain all
pixels that belong to candidate ¢. Their potentials E,(Q);) = min(c, Nk-a_Tﬁ +5)

are robust PY-Potts potentials [15], which encourage all member pixels to have
the same label. Here N, denotes the sum of nodes in the clique that take label
k, and {«, 8,7} are the parameters of a truncated linear function that governs
how the energy increases as more pixels deviate from the dominant label. The
cliques encourage all their member pixels to have the same label. If sufficient
road evidence is accumulated inside the clique, pixels are pulled to the road class,
which helps to correct false negatives in the unaries and maintain connectivity
of the network, while still allowing to correct individual pixels that were wrongly
assigned to the clique. If, taken together, the pixels in a clique have too little
road evidence, then it is discouraged to label only small, scattered parts of it as
road, which helps to suppress false positives not connected to the road network.

Finally, we still need to encode the model assumption that the candidate set
is over-complete, i.e. pixels that are not covered by any path should never be
labeled as roads. In CRF terms this corresponds to a large higher-order clique
Qg which spans all pixels that are not member of any candidate path or blob.
That clique has an asymmetric potential which imposes an infinite penalty if
any of its pixels is labeled as road, and no penalty otherwise. In practice the
same effect can be achieved more efficiently by setting the road likelihoods of
the pixels in Qpq to zero, V; € Qg : Sroad(z;) = 0, Ey(z;) = co. The binary
PN _Potts model can be solved to global optimality with a graph cut, hence our
inference is guaranteed to find a global minimum of the energy with a single run
of the min-cut algorithm.

4 Experimental Results

We perform experiments on two data sets of urban scenes, GRAz (Austria) and
VAIHINGEN (Germany).* Both data sets are orthophoto mosaics with 3 color
channels plus a normalized height channel computed via dense image matching.
The pixel size is 0.25m on the ground. In order to enable parallelization and
to reduce the memory footprint, we split up each data set into overlapping tiles
of 1500x 1500 pixels. Computations are done on the full tiles to avoid bound-
ary artifacts, while the evaluation is done only for the non-overlapping part of
1000x 1000 pixels to avoid double counting. The data sets depict rather different
road networks. GRAZ covers the city center of a major city with big building
blocks, inner court yards and parks. There are 67 tiles overall (30 training, 12
validation, 25 testing). Color channels are standard RGB. VAIHINGEN is a small
historic town in hilly countryside, with small buildings, irregular layout, and
narrow, winding roads. There are 16 tiles (4 training, 4 validation, 8 testing).
Color channels are near infrared, red, and green.

4 GRraz was kindly provided by Microsoft Photogrammetry. VAIHINGEN is part of the
ISPRS benchmark http://www.itc.nl/ISPRS WGIIL}/tests_datasets.html
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4.1 Evaluation metrics

As quality measures we report both conventional pixel-based classification scores
and topological correctness. Classification accuracy is measured in the standard
way with pixel-wise precision, recall, and F'1-score. In aerial imaging, variants of
the measures called correctness, completeness and quality are popular (e.g. [19,
24,12, 27]) which allow for a few pixels of slack orthogonal to the road centerline
to account for geometric uncertainty [37]. We found no significant difference to
the standard measures, but nevertheless report both sets. Furthermore, we give
the k-value to assess pixel-wise segmentation accuracy. For a confusion matrix C

computed from N pixels, k = N%i“i %:Z(zczjci%)c”) It quantifies how much
i 5 Cid j Cii

the predicted labels differ from a random image with the same label counts.®

All these measures are based on pixel area and do not capture the topological
correctness of the extracted network. A tiny gap in a road can lead to lengthy
detours, but has little impact on recall, and vice versa only few false positive pix-
els are necessary to produce an inexistent shortcut. We thus additionally report
the topological metrics of [36]. These measure what fraction of connecting paths
between road points have the correct length within 5% tolerance, respectively
are too short (2short), too long (2long), or completely infeasible (noC'). The
metrics are computed by randomly sampling paths and counting the occurrence
of the four cases until the numbers converge.

4.2 Results

Tab. 1 shows the results for GRAZ and VAIHINGEN. We report both results of
raw classification with the context-aware unaries (Context) and results after
adding the long-range prior (CRF), in order to separate their contributions.
Additionally, we add standard baselines for each of the two steps.

As baseline classification we extract per-pixel features with the filter bank of
Winn et al. [38] and classify them with a random forest (Winn). These features
consist of multi-scale intensity and derivative responses. They capture the tex-
ture properties immediately around the pixel and in our experience work as well
as other texture filter banks, but do not capture context in the sense of object-
scale shape and co-occurrence patterns. Moreover, as a baseline for a complete
system built on top of the features of Winn we use our earlier work [36]. That
method (Winn+) starts from raw road likelihoods obtained by classifying Winn
features (averaged over superpixels). Straight line segments serve as cliques in a
CRF, which is designed to bridge gaps in the road network.

As baseline for the influence of the long-range prior we start from the more
powerful Context classifier, run the candidate generator in the same way as
for CRF, and discard all candidates whose average unary score is below 0.7 (the
threshold which empirically maximizes the F'1-score). All pixels of the remaining
paths and blobs are labeled as road (RawPath).

% k avoids biases due to uneven class distribution. E.g., for an image with 10% road
pixels a result without a single road pixel has 90% overall accuracy, but k=0%.
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Method |Qual. Compl. Corr.| K F1 Rec. Prec.||Corr.|2long 2short NoC.
Winn 42.8 55.1 65.7 [|46.9(/58.9 54.9 65.8 || 26.0 | 10.3 0.6 63.1
Winn+ | 67.0 84.7 77.1|72.9|/80.1 84.8 774 748 | 43 12.0 8.9
Graz|Contexst | 74.8 88.5 83.1(80.3(/85.6 88.5 83.3|77.1| 9.1 34 104
RawPath| 68.2 85.3 78.2(74.0(/80.9 85.3 784 78.6 | 3.2 164 1.8
CRF 78.0 88.5 86.9|83.1(|87.6 88.6 87.1|/82.8| 5.8 8.4 3.0
Winn 56.9 68.2 77.2|62.2(/724 68.2 77.3|/41.3|226 3.4 327
Winn+ | 68.7 85.6 78.6(73.5|/81.4 85.6 78.7| 62.1| 5.3 228 9.8
Van |Contert | 73.0 89.6 79.8|77.6(/84.4 89.6 79.9| 726 | 8.0 12.1 7.3
RawPath| 61.0 91.2 64.9 [63.8(/75.8 91.3 649 67.7| 1.8 30.0 0.5
CRF 73.3 88.4 81.1|78.0(|84.6 88.4 81.2||77.7| 6.2 128 3.3

Table 1. Performance of road extraction methods. All numbers are percentages.

For both datasets the local context in the unaries drastically improves the
pixel-wise performance — see Tab. 1. The largest contribution comes from in-
creased recall, as the context repairs errors in areas where shadows, trees, un-
usual surface colour etc. perturb the local appearance — see Fig. 2. Moreover,
there is also a significant gain in precision as false positives on concrete roofs,
asphalted courtyards etc. are suppressed if they are not supported by the con-
text. Naturally, the greatly improved labeling accuracy is also reflected in much
higher topological correctness. Winn-+ does greatly improve the result over the
raw labeling of Winn, but is still dominated by raw Context unaries, which con-
firms the intuition that one should already include context at the feature level
to get stronger unaries.

The proposed CRF model further increases per-pixel performance over Con-
text, but as expected the effect is comparatively small. Many gaps and false
positive patches are cleaned up, but their pixel area is relatively small. Still,
these changes significantly increase the topological correctness, mainly by re-
pairing gaps in the network and reducing the number of too long or impossible
connections: i.e. the model does what it is designed for, and fills in missing links.
The price to pay is that the fraction of too short connections also increases a
bit, since some correct gaps are bridged.

On the contrary, heuristically fixing the network (RawPath) does not achieve
the desired effect. Neither the pixel-wise nor the topological performance of
the Context unaries is increased, mostly because of false positives. The results
suggest that the proposed probabilistic model successfully balances the image
evidence against the network prior. It manages to drag concealed roads to the
foreground, while at the same time also suppressing false alarms (contrary to
RawPath, which increases them).

5 Conclusions and Future Work

We have proposed methods to exploit context for the semantic segmentation of
roads, both at the local and global level. At the local level, expressive features



10 J. A. Montoya-Zegarra, J. D. Wegner, L.Ladicky, K. Schindler

Winn Context RawPath CRF

Fig. 2. Road networks extracted in two patches of the orthophoto mosaic of GRAZ
(two top rows) and one patch of VAIHINGEN (bottom row). True positives are displayed
green, false positives blue, and false negatives red. White boxes highlight improvements
by the long-range prior.

extracted over large neighborhoods implicitly capture the shape and layout of
roads and surrounding objects, and lead to much improved classification scores.
At the global level the combination of optimal path search and a higher-order
CRF models makes it possible to construct an an explicit prior about the shape
of (pieces of) roads, while still optimizing for pixel-accurate labeling,.

Nevertheless, important properties of the road network are still not used.
For example, T-junctions and crossings are characteristic network parts that
could help to obtain a complete and plausible road network [36,4], and also
aspects like a preference for grid layouts and orthogonal intersections are still
missing. Moreover, labeling ground truth for training data is time-consuming
and costly, and in our scheme must be repeated not only for different sensors or
imaging conditions, but also for different building styles, because of the changing
context. Since map data is publicly available for many cities (e.g., Open Street
Map) it seems natural to use these as ground truth. This would allow one to
directly learn road appearance, shape parameters (e.g., width, straightness), and
network topology (e.g., intersection angles at junctions) from big data.
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