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Abstract

Scene parsing is an important and challenging prob-
lem in computer vision. It requires labeling each pixel
in an image with the category it belongs to. Tradition-
ally, it has been approached with hand-engineered features
from color information in images. Recently convolutional
neural networks (CNNs), which automatically learn hierar-
chies of features, have achieved record performance on the
task. These approaches typically include a post-processing
technique, such as superpixels, to produce the final label-
ing. In this paper, we propose a novel network architecture
that combines deep deconvolutional neural networks with
CNNs. Our experiments show that deconvolutional neu-
ral networks are capable of learning higher order image
structure beyond edge primitives in comparison to CNNs.
The new network architecture is employed for multi-patch
training, introduced as part of this work. Multi-patch train-
ing makes it possible to effectively learn spatial priors from
scenes. The proposed approach yields state-of-the-art per-
formance on four scene parsing datasets, namely Stanford
Background, SIFT Flow, CamVid, and KITTI. In addition,
our system has the added advantage of having a training
system that can be completely automated end-to-end with-
out requiring any post-processing.

1. Introduction
Scene parsing is one of the fundamental problems of

computer vision. Scene parsing aims at segmenting images
and detecting various object categories within them. Con-
cretely, a scene parser classifies each pixel of an image into
one of several predefined object classes. Like traditional
computer vision systems such as detectors, a scene parsing
model should ideally be robust to changes in illumination
and viewpoint, and have an understanding of the spatial de-
pendencies of the object classes in the images [36,37].

The parsing problem has been mainly addressed with
Conditional Random Fields (CRFs) [8,9,35]. CRFs lin-
early combine input features (describing patches surround-

ing each pixel) along with contextual features (describing
spatial interactions between labels) [8,9]. While these mod-
els have worked well on the scene parsing task [8], they
require hand-engineered features. CRFs by themselves are
also not able to capture large input contexts which is essen-
tial for detecting larger object classes such as road.

Recent work in this area has attempted to combine CNNs
with CRFs to achieve state of the art results on many
datasets [7]. The CNNs of LeCun et. al [24] are powerful
feature detectors in which input data is subject to multiple
layers of convolutions, non-linearities, and pooling (sub-
sampling). One potential drawback of these networks is
the use of spatial pooling in which mid-level cues such as
edge intersections, parralelism, and symmetry are lost [5].
Such cues are very important in tasks such as scene parsing,
especially when dealing with complex object classes, and
therefore motivate the use of deconvolutional networks. De-
convolutional networks [5] are top-down models that learn
features that capture such mid-level cues in image data. The
model is completely unsupervised and seeks to reconstruct
the input data using convolutional feature maps (instead of
the input itself) and a set of learned filters, along with a
sparsity constraint. Some of the interesting concepts that
are able to be learned by deconvolutional networks are edge
junctions, parallel lines, curves and basic geometric ele-
ments, such as rectangles [5].

The contributions of this paper are as follows: (1) The
system introduces the use of deconvolutional networks in
combination with traditional CNNs for feature learning and
scene parsing. (2) It illustrates how llustrates how decon-
volutional networks are able to learn more robust and inis-
ghtful representations of the data when compared to regular
CNNs. (3) A multi-patch training technique is introduced
in order to learn an effective spatial prior. Additionally,
the proposed system is automated and trained on raw pix-
els rather than using superpixels [38,39]. Section 2 details
the methods used in our proposed system including training
deconvolutional networks. Section 3 presents our experi-
ments, results. Finally, our analysis of the network is given
in Section 4.
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2. Methods
2.1. Training Deconvolutional Layers

Deconvolutional Networks provide a conceptually sim-
ple unsupervised framework for learning sparse, overcom-
plete feature hierarchies [5,6,34]. Applying this framework
to natural images produces a highly diverse set of filters that
capture high-order image structure beyond edge primitives.

As with other deep learning models [27,28], deconvolu-
tional networks look to learn hierarchies of features from
data. Deep Belief Networks (DBNs) [8,32,33] and hierar-
chies of sparse auto-encoders [28, 29, 30], like deconvolu-
tional networks, learn features in a greedy-layer wise unsu-
pervised fashion.

In these approaches, each layer consists of an encoder
and decoder [5,27,28,29,30]. The encoder maps the input
space to the feature space while the decoder maps the latent
features back to the input space, attempting to give a good
reconstruction of the input. The input however is the output
of the previous layer and not the original data.

Trying to extract a latent representation from the input
without the use of an encoder is a difficult problem since it
requires inference. There will be many parts in the latent
feature space which will compete to try to explain various
parts of the input. [5]

Deconvolutional networks do not use an encoder and
rather directly solve an inference problem by using efficient
optimization techniques described in [5]. The reason for
this is that by computing the features exactly, better repre-
sentations can possibly be learned. In addition, deconvolu-
tion networks attempt to reconstruct the input image rather
than use the greedy-layer wise scheme in DBNs and stacked
autoencoders.

We adopted the algorithm for training adaptive deconvo-
lutional networks, presented by [5].

The goal of a deconvolutional layer l is to find a feature
map zl that minimizes a cost function Cl(y) and best es-
timate a set of filters f . The cost function consists of the
following: (i) a likelihood term that keeps the reconstruc-
tion of the input ŷ close to the original input image y; (ii) a
regularization term that penalizes the l1 norm of the 2D fea-
ture maps zkl on which the reconstruction ŷl depends. The
relative weighting of the two terms is controlled by :

Cl(y) =
λl

2 ‖ŷl − y‖+
Kl∑

k=1

|zk,l|

First, the feature maps zl are convolved with a set of filters
f . Specifically, the feature maps zl are latent variables spe-
cific to each image, which the filters f are the parameters of
the model common to all images. Next, zl is pooled using
3D max pooling and the pooled locations are saved in loca-
tions called switches (which are therefore binary matrices).
The pooling operation can be defined as:

[pl, sl] = P (zl)

where pl contains the pooled feature maps, sl contains
the switches. Another type of pooling operation is done If
s is fixed, which take s as an input and determine which
elements of z are copied into p. This can be defined as
p = Psz, where Ps is a binary selection matrix set by the
switches. Immediately after this, an unpooling operation is
performed, which places the pooled values in the appropri-
ate places in the original feature map and sets the rest of the
elements to 0. The unpooled feature maps can be defined as
Us. A reconstruction operator Rl is then defined that simply
convolves (F ) and unpools (Us) them down to the input:

ŷl = F1Us,1....Flzl = Rlzl

We also define a projection operator RTl that takes a sig-
nal as input and projects it back up to the feature maps of
layer l, given previously determined switches sl...sl−1:

RTl = F1Ps,1....FlPs, l − 1

After these operators and variables are defined, inference
can be performed: a gradient step to update the feature maps
zl, a shrinkage steps that clamps small values in zl to 0 to in-
crease sparsity, and updating of the switches sl. The above
3 processes make up a single ISTA iteration.

Next, to estimate the filters f in the model, which contain
the parameters for the entire model, we take the derivatives
of the cost function with respect to fl and set it to zero, and
obtain the following linear system in fl:

N∑

i=1

(zi
T

l P isl−1
Ri

T

l−1)ŷ
i
l =

N∑

i=1

(zi
T

l P isl−1
Ri

T

l−1)y
i

where ŷil is the reconstruction of the input using the cur-
rent value of fl. We solve this linear system using linear
conjugate gradients (CG) to find the optimal set of filters.
The full training algorithm is described in [5,6].

2.2. Network Architecture

Figure 1. The architecture of our 7-layered deep network.

Our learning architecture combines feedforward layers
with feedback layers. The training network consists of

2



seven layers. The seven layers are made up of two con-
volutional layers in the beginning, followed by three de-
convolutional layers, with a fully connected layer and soft-
max/sigmoid classifier at the top. Figure 1 illustrates the
network architecture. We frame the scene parsing problem
in the following way: there are n input units and m output
units. Therefore, the softmax/sigmoid classifier works in
an elementwise fashion where each output unit has a sepa-
rate classifier. The convolutional layers and fully connected
layers all used rectified linear as the nonlinearity function.
Furthermore, we use dropout training [25] on each layer.
Each layer in the network has a dropout rate of 0.5, except
for the input layer which has a rate of 0.2 and the fully-
connected layer which has a rate of 0.6975. We lowered the
dropout rate on the input to avoid losing any information
and increased the rate at the fully-connected layer since it is
more susceptible to overfitting.

We apply convolution and max pooling on each of the
convolutional stages. This is followed by a regular decon-
volutional network on top, consisting of deconvolution and
unpooling. We perform the learning in a sequential fashion.
First, the two convolutional layers are trained to optimize
the pixel-wise cross entropy through Stochastic Gradient
Descent (SGD). Next, we switch the learning algorithm to
use the Iterative Shrinkage Thresholding Algorithm (ISTA)
[5,6] to train each of the deconvolutional layers. Finally, the
fully-connected layer and the final classification output use
SGD for updating their parameters.

The successive convolutions and max pooling operations
in the inital 2 stages of the network enable the learning
of useful initial hypothesis maps, thanks to added non-
linearities and a larger spatial context. This part of the
model itself is deep and produces complex representations
of the input. The deconvolutional network on top provides
feedback to these learned hypothesis maps and further im-
proves these representations. This provides a very theoreti-
cally interesting framework combining deep supervised and
unsupervised learning.

Furthermore, the deconvolutional layers could also be
viewed as a form of fine-tuning. Fine-tuning is a supervised
process to refine the weights of unsupervised models such
as RBMs and autoencoders. The deconvolutional network
in this architecture acts a type of unsupervised fine-tuning
technique to refine the weights learned from the supervised
2-layered CNN in the bottom. Interestingly, this unsuper-
vised fine-tuning technique is similar to the unsupervised
pre-training technique [26] used with deep network; an ex-
periment to demonstrate is presented in Section 4.

The small number of training examples and class imbal-
ance for the datasets we tested on presented a significant
risk of overfitting. This risk is increased by the large num-
ber of parameters used by our model. This problem was ad-
dressed in [1,3,7] by using class balancing techniques and

including distortions of the input data. We followed the ap-
proach used in [1] and resampled the training data using bal-
anced frequences such that an equal amount of each class is
shown to the network. Training with balanced frequencies
allows better discrimination of small objects and is more
proper from a recognition point of view, although it may
cause the pixel wise accuracy to reduce [7]. Finally, local
contrast normalization was performed on each of the input
datasets.

2.3. Multi-Patch Training

In scene parsing datasets, both the input image and out-
put label are multi-dimensional vectors. Specifically, the
input image is a three-dimensional vector with x and y co-
ordinates of the pixels in the first two dimensions and the
color channels in the third dimension. The output label is
a two-dimensional vector with labels for each of the pix-
els. In order to obtain a good spatial prior to help learn
even better features, we split the output images into multi-
ple patches. During learning, we loop over each patch and
train on the entire input image only to predict the pixels
in that specific patch. The multi-patch training can also be
thought of as having multiple networks which specialize at
predicting a different part of the output. This is an effective
way of breaking down the problem which is especially chal-
lenging given that we did not use superpixels to subsample
the data.

Figure 2. Example of multi-patch algorithm with m rows and n
columns. Overall, there are m × n networks which each take as
input x.

3. Experiments and Results
3.1. Datasets and Setup

We report our results on the following four datasets:
Stanford Background, SIFT Flow, CamVid, and KITTI.
The Stanford Background Dataset [11] contains 715 im-
ages of outdoor scenes and consists of 8 classes. The im-
ages were chosen from the publicly available datasets La-
belMe, MSRC, PASCAL VOC and Geometric Context. We
use the evaluation procedure described in [20,15] - five
fold cross validation. Our only preprocessing step on all
of the datasets was to normalize them to have zero mean
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and unit variance. The SIFT Flow dataset [12] is composed
of 2,688 images, that have been thoroughly labeled by La-
belMe users. Synonym correction was used by the authors
to achieve 33 semantic labels. We use the same training
and test split as [12]. The images are all 256 x 256 pixels.
The Cambridge-driving Labeled Video Database (CamVid)
dataset [13] contains ten minutes of video footage and cor-
responding semantically labeled groundtruth images at in-
tervals. There are 11 semantic classes and 701 segmenta-
tion images. The video footage was recorded from driving
around various urban settings and is particulary challenging
given various lighting settings (dusk, dawn). The KITTI
Vision Dataset [14], from the Honda Research Institute Eu-
rope GmbH, was created for drivable road detection. The
images were extracted from video footage of driving around
urban roads. The images were all manually annotated and
contains binary labels of whether each pixel is drivable road
or not. The website hosting the dataset does not provide the
test labels and instead requires you to upload your test pre-
dictions to their server, providing you with your results after
you have done so. The networks were trained on a com-
puting cluster using multiple NVIDIA GPUs. Key hyper-
parameters (number of patches, patch size, number of de-
convolutional filters, etc.) of the layers were tuned through
cross validation. The settings and parameters for the exper-
iments are all summarized in Tables 1, 2, and 3.

Table 1. Parameters and settings for experimental datasets.

Dataset Num. Train Num. Test Input Im. Size
Stanford 572 143 320 x 240

SIFT Flow 2,488 200 256 x 256
CamVid 468 233 320 x 240
KITTI 289 290 500 x 500

Table 2. Parameters and settings for experimental datasets.

Dataset Label Im. Size Train Time Patch Num.
Stanford 320 x 240 4 hrs 24 min 16

SIFT Flow 256 x 256 6 hrs 8 min 16
CamVid 320 x 240 3 hrs 52 min 16
KITTI 375 x 1242 1 hr 43 min 18

Table 3. Parameters and settings for experimental datasets. ’Pa-
rameters’ and ’Ouput Units’ are per-patch.

Dataset Patch Size Parameters Output Units
Stanford 60 x 80 45 mil. 4800

SIFT Flow 64 x 64 40 mil. 4096
CamVid 60 x 80 45 mil. 4800
KITTI 125 x 207 250 mil. 25875

3.2. Overall Results

In this section, we present the results of our method on
the four datasets mentioned in Section 3.1, in Tables 2 and
3. These results are from using the methods and architecture
described in Section 2 and are therefore a good estimate of
its generalizablity.

Table 4. Performance on the Stanford Background, SIFT Flow, and
CamVid Datasets. For each of the datasets, we report per-pixel and
average per-class accuracy, as in [7]. Our approaches and the best
performing methods are bolded.

Dataset Approach Pixel Acc. Class Acc.
Stanford Background Munoz et al. 2010 [15] 76.9% 66.2%

Socher et al. 2011 [2] 78.1% —
Pinheiro et a. 2014 [16] 80.2% 69.9%
Farabet et al. 2013 [7] 81.4% 76.0%
Multi-Patch DeconvNet-8 Patches 83.92% 77.86%
Multi-Patch DeconvNet-16 Patches 84.2% 78.37%

SIFT Flow Tighe and Lazebnik 2010 [3] 77.0% 30.1%
Pinheiro et a. 2014 [16] 77.7% 30.0%
Farabet et al. 2013 [7] 78.5% 29.6%
Tighe and Lazebnik 2013 [17] 78.6% 39.2
Multi-Patch DeconvNet-8 Patches 80.98% 39.56%
Multi-Patch DeconvNet-16 Patches 81.67% 41.05%

CamVid Sturgess et al. [18] 83.8% 59.2
Floros et al. [19] 83.2% 59.6%
Ladicky et al. [20] 83.8% 62.5%
Tighe and Lazebnik [17] 83.9% 62.5
Multi-Patch DeconvNet-8 Patches 84.53% 63.83%
Multi-Patch DeconvNet-16 Patches 84.82% 64.1%

Table 5. Performance of our system on the KITTI Dataset. We re-
port Maximum F1-measure (MaxF), Average Precision (AP), Pre-
cision (PRE), Recall (REC), False Positive Rate (FPR), False Neg-
ative Rate (FNR).

Approach MaxF AP PRE REC FPR FNR
ProbBoost [21] 87.21 % 77.79 % 86.96 % 87.47 % 7.55 % 12.53 %

SPRAY [22] 86.33 % 90.91 % 86.78 % 85.89 % 7.53 % 14.11
RES3D-Velo [23] 85.49 % 79.03 % 79.93 % 91.88 % 13.28 % 8.12

GRES3D-V 83.97 % 78.46 % 79.91 % 88.46 % 12.81 % 11.54 %
CB 83.83 % 88.44 % 83.01 % 84.67 % 9.98 % 15.33 %

Multi-Patch DeconvNet-8 Patches 92.08 % 89.14 % 93.53 % 90.19 % 3.74 % 10.24 %
Multi-Patch DeconvNet-16 Patches 92.51 % 89.36 % 94.64 % 90.46 % 2.95 % 9.54 %

Figure 3. Drivable road predictions on the KITTI Dataset com-
pared with 3 next best approaches. Top Left: Our Approach, Top
Right: SPRAY [21], Bottom Left: ProbBoost [22], Bottom Right:
RES3D-Velo [23]. In the images, green signifies true positives.
Blue denotes false positives while red denotes false negatives. As
shown, our predictions are more consistent and clean.
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Figure 4. The heatmap for the tree and bus class on an image from
the SIFT Flow dataset. Specifically, the probability of those par-
ticular classes at each pixel in the image is shown.

4. Analysis
Our model achieved state-of-the-art performance in both

per-pixel and average per-class accuracy, on the Stanford
Background, SIFT Flow, and CamVid datasets. Further-
more, the model achieved the best-recorded result on the
KITTI dataset to date, as it obtained a state-of-the-art maxi-
mum F-score by over 5%. Overall, the model’s consistency
and effectivness over a variety of datasets led us to inves-
tigate why it works so well. In this section, we present
various different experiments and observations and try to
pinpoint the biggest factors leading to the model’s perfor-
mance.

4.0.1 Performance and Generalization of our Network

We conducted several experiments to test the effect of the
deconvolutional stage in our architecture. Our first exper-
iment was to remove each deconvolutional layer one-by-
one and re-measure the generalization accuracy on each of
the datasets. This allows us to measure the importance of
depth along with amount of contribution from the decon-
volutional layers. In this experiment, the network where
all of the deconvolutional layers are removed results in a
two-layered CNN. In order to avoid bias while comparing
the plain CNNs to the deconvolutional networks, we did the
following: (1) Made sure the number of total parameters of
the CNN was equal to that of the corresponding deconvo-
lutional network. (2) Used the same settings for the CNNs
(i.e rectified linear hidden layers, hyperparameter optimiza-
tion through cross validation, same number of patches and
dropout amount).

As shown in Figure 5, a deep hierarchy of deconvolu-
tional layers greatly increases the performance of the net-
work. Specifically, the average difference in per-pixel ac-
curacy of the network with all 3 deconvolutional layers
(Deconv-5) and the network with no deconvolutional layers
(CNN-2) is 5.46%, on all of the datasets besides KITTI. On
KITTI, the difference between those two network’s Max F-
Scores is 7.3%. In fact, if all of the deconvolutional layers
are removed, the resulting accuracies and Max F-Score falls
below the previous best for each of the datasets. Further-
more, each addtional deconvolution layer adds on average

1.16% to the per-pixel accuracy, on all of the datasets be-
sides KITTI. On KITTI, each addtional deconvolution layer
adds on average 1.86% to the Max F-Score.

Figure 5. Results of our first experiment in which we removed de-
convolutional layers one-by-one. ’Deconv-5’ refers to the original
network with 3 deconvolutional layers (the third one being the 5th
layer of the network) and so forth. ’CNN-2’ refers to all the de-
convolutional layers being removed.

Figure 6. Results of our second experiment in which we replaced
the deconvolutional layers with plain convolutional layers. ’CNN-
5’ refers to the original network with 5 convolutional layers (in-
stead of 2 convolutional layers and 3 deconvolutional layers) and
so forth. ’CNN-2’ is the same as in Figure 4.

In order to verify that the deconvolutional layers were
truly effective, we conducted a second experiment where re-
placed the deconvolution layers with regular convolutional
layers. Therefore, instead of a network with two convo-
lutional layers and three deconvolutional layers, we use a
network with five convolutional layers. We also experiment
with shallower pure convolutional architectures to directly
compare with the experiments in Section 3.2.1. Figure 6
shows the results for four different convolutional networks
we tested. The two-layered network (CNN-2) is equivalent
to the network shown in Figure 5 where all of the deconvo-
lutional layers were removed.

The CNN-5 shown in Figure 6 is not able to achieve
state-of-the-art accuracy on any of the datasets. Further-
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Figure 7. Results of our experiment with multi-patch training
which is compared with multi-scale learning and no special train-
ing method at all. We extract 4 scales for the multi-scale learning
using a Laplacian pyramid [7].

more, the difference between the CNN-5 and CNN-2 in
per-pixel accuracy is on average 0.78%. Furthermore,
the difference between CNN-5 and CNN-2 on KITTI is
only 0.52% in Max F-Score. Additionally, each additional
convolutional layer adds on average only about 0.41% to
the per-pixel accuracy, and 0.22% to the Max F-Score on
KITTI. All of these numbers are far less than those obtained
with Deconv-5, which are mentioned above.

The results of these experiments demonstrates the ef-
fectiveness of deconvolutional networks and shows that
they are capable of learning more informative features than
CNN’s themselves, when stacked with CNNs in a deep hi-
erarchy. The depth of the deconvolutional stage in our net-
work is also far more important when compared with regu-
lar CNNs. To investigate this further, we visualized the fil-
ters of each layer from the deconvolutional network. Figure
8 shows the visualization of the filters from the last convolu-
tional layer and all 3 deconvolutional layers in the network.
As expected, the filters are more complicated and represent
higher level features as the depth increases. The filters in
the deconvolutional layers also go beyond edge primitives.

Figure 8. Filters from the last convolutional layer and all of the
deconvolutional layers. As shown, the filters get significantly more
complicated by layer in the deconvolutional layers.

We were also able to prove that our network architec-
ture is more stable than CNNs and significantly reduces
the problem of getting stuck in poor apparent local min-
ima. Specifically, we show how increasing the depth of
CNNs increases the probability of finding poor local min-
ima when starting from random initialization seeds, while

Figure 9. 500 random runs with Deconv-5 and CNN-5.

Figure 10. 500 random runs with Deconv-3 and CNN-3. While
the variance of CNN-5 is much higher than CNN-3, Deconv-5 and
Deconv-3 are very consistent.

our network generally is robust and avoids such local min-
ima even when it’s architecture is very deep. We use the
SIFT Flow dataset for this experiment as it is the most chal-
lenging out of the four used. We run Deconv-5 and CNN-5
along with Deconv-3 and CNN-3 500 different times (with
500 different random initialization seeds) each and record
the pixel-wise accuracy during each run.

As shown in Figure 9 and 10, our network is robust with
respect to the random initialization seed as well as depth.
The variance and the number of bad outliers is higher with
CNN-5 when compared to CNN-3, representing a common
problem when training very deep architectures on small
datasets. On the other hand, Deconv-5 and Deconv-3 both
have similar variances that are much lower than those ob-
tained by the CNNs suggesting the network is arriving at
better optima on a much more consistent basis. Interest-
ingly, Erhan. et al [26] pointed out that unsupervised pre-
training is also robust with respect to the random initializa-
tion seed. Since deconvolutional networks can be thought
of as a form of unsupervised fine-tuning, there are similari-
ties between the two methods.

Our network is a step forward in optimizing large deep
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networks better, especially on the small datasets such as
those used in this paper.

4.0.2 Effect of Multi-Patch Training

Next, we assesed the importance of our multi-patch training
technique. To do so, we compared it multi-scale learning
and no special training procedure at all. Multi-scale learn-
ing, in the context of raw scene parsing, involves taking var-
ious scales or crops centered around pixels and learning fea-
tures seperately on them [1]. The features are all then con-
catenated and fed to a classifer (e.g. softmax).Multi-scale
learning has achieved great success on scene parsing [1].
Figure 7 summarizes the results for each of the datasets.
Overall, our multi-patch training technique outperformed
multi-scale learning and no special training methods, on ev-
ery dataset. Specifically, on average the multi-patch training
adds on 0.67% more than multi-scale training to the per-
pixel accuracy, on each dataset besides KITTI. On KITTI,
the multi-patch training adds on 1.62% more than multi-
scale training to the Max F-Score. Furthermore, when com-
pared with no special training method, multi-patch training
adds on average 1.02% more to per-pixel accuracy on the
first three datasets and 3.28% to the Max F-Score on the
KITTI dataset. Overall, while the multi-patch training did
help slightly, we can conclude that the deconvolutional lay-
ers had the largest impact in the network.

5. Conclusion

This paper presents a new network architecture for scene
parsing that combines deep deconvolutional and convolu-
tional neural networks. It also introduces a multi-patch
training technique that is capable of learning an effective
spatial prior. We demonstrate how our network combined
with multi-patch training produces state of the art results on
multiple scene parsing datasets by a significant margin. The
model is also completely automated as it takes in raw pix-
els and does not use any pixel-subsampling techniques such
as superpixels. Our work shows the promise of using this
network architecture to improve performance on other com-
puter vision tasks and learn better hierarchies of features.
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