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Abstract. In this paper, we investigate the second order statistics of
essential matrix elements. Using the Taylor expansion for a rotation
matrix up to second order terms and considering relatively high uncer-
tainties for the rotation angles and translation parameters, a covariance
matrix is obtained which includes the second order statistics of essen-
tial matrix elements. The covariance matrix is utilized along with the
coplanarity equations and acts as a regularization term. Using the reg-
ularization term brings considerable improvements in the recovery of
camera motion which will be proven based on simulation and different
real image sequences.
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1 Introduction

Relative monocular camera motion (ego-motion) estimation based on the copla-
narity constraint for calibrated cameras was initially addressed by Higgins with
the well-known 8-point method [12]. In this method, eight matched points
between two frames are used to obtain a 3×3 matrix known as essential matrix.
Consequently, based on an essential matrix, the rotation matrix and the transla-
tion vector which define the motion of the camera (up to a scale) can be obtained.
For uncalibrated cameras, in [8] an 8-point method is proposed to extract a 3×3
matrix known as fundamental matrix to recover camera motion and camera focal
length simultaneously, if the principal point of the camera is known and the hor-
izontal and vertical focal lengths are the same. Two main applications for the
ego-motion estimation can be named: visual odometry [16,19] and optical flow
calculation [18].

Although the 8-point methods proposed by Higgins and Hartley were simple,
they had poor performances in the presence of measurement noise, especially for
the uncalibrated cameras. Therefore, different nonlinear optimization methods
were proposed to estimate the essential and fundamental matrices iteratively [13].
Clearly, the iterative methods require good initial guesses to converge to correct
solutions; otherwise, they would get stuck in local minima. On the other hand,
Hartley in [9] claimed that if matched points are transformed such that their
centroids become zero and their average distances from the centroids become

√
2,

the performance of the 8-point method would improve noticeably. Nevertheless,
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by comparing the results presented in the mentioned work, we can see that this
method also performs poorly for measurement noise greater than 0.15 pixel.

One reason for the poor performance of the 8-point method is ignoring the
dependencies of essential matrix elements. Hartley et. al proposed a 7-point
method which used rank deficiency of fundamental matrices leading to enhance-
ment in the estimation of camera motions [10]. Considering the fact that ego-
motion is defined up to a scale, it can be defined with three rotation angles and
two translation parameters. Thus, an essential matrix can also be determined
with only five points. In this regard, David Nister in [15] introduced an algebraic
solution using five matched points. He used rank deficiency and trace equations
which hold for any essential matrix and obtained a polynomial equation of the
order of ten, of which real roots yielded different valid solutions for the essen-
tial matrix. In [11], the authors proposed a more direct solution to reach the
polynomial of the order of ten, which is the determinant of a 10 × 10 matrix
of a variable. Obviously, implementations of both algorithms require symbolic
processing, which makes their implementations inconvenient. Additionally, they
would be very slow. Both 5-point methods are ad-hoc as there are 3 unknowns (x,
y and z) but 10 equations; thus, none of them can guarantee that the solutions
minimize all 10 equations. In Nister’s method four equations are ignored and in
the second method, we may confront contradictory elementary equations for an
unknown in the forms of first, second or third order equations. In [14], the authors
assumed large uncertainties for the motion parameters and obtained a variance
for each coplanarity equation depending on the coordinates of the matching
point. Consequently, the 8-point method was modified and solved based on a
Mahalanobis criterion and the variance of each coplanarity equation to come up
with a method which is more robust against the measurement noise.

In this paper, we demonstrate that in addition to the variance for each copla-
narity equation, a covariance matrix for the nine elements of an essential matrix
can be found, which encodes the second order statistics and dependencies of
the elements. Then, in the essential matrix recovery, the covariance matrix will
be augmented as a regularization term to direct the final solution in a feasible
region defined by the physical constraints of cameras.

This paper is structured as follows: in Sect. 2, the 8-point, 7-point and 5-
point methods are briefly introduced. The derivation of our proposed method is
discussed in Sect. 3. Through the simulation in Sect. 4 the proposed method will
be evaluated in two different cases. The evaluation of the proposed method in
comparison with the 8-point, 7-point and 5-point methods based on the KITTI
benchmark sequences is done in Sect. 5. Section 6 concludes this paper.

2 Essential Matrix Estimation

It is known that for a calibrated camera for each pair of matched points between
two frames such as (x1, y1) and (x2, y2), the following equation (coplanarity
constraint) is valid:

pT
2 Ep1 = 0 (1)
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where p1 = [x1 y1 1]T , p2 = [x2 y2 1]T and E is an essential matrix. An essential
matrix is a 3 × 3 matrix with nine elements:

E =

⎡
⎣

e1 e2 e3
e4 e5 e6
e7 e8 e9

⎤
⎦ (2)

If an essential matrix can be determined using a set of matched points between
two frames, the relative camera motion can be estimated up to a scale factor.
In the 8-point method, given eight matched points, a homogeneous equation sys-
tem of nine unknown elements, consisting of eight equations, is formed. Thus,
the essential matrix elements will be the null space of the matrix containing the
coefficients of the equation system. Since the dependencies of essential matrix
elements are ignored in this method, the solution could be sensitive to the mea-
surement noise. Based on [4,17], the dependencies of essential matrix elements
can be formulated with the following equations:

det(E) = 0 (3)

(EET )E − 1
2
trace(EET )E = 0 (4)

Using Eq. 3, the 7-point method is obtained. To utilize Eq. 3, a homogeneous
equation system including seven coplanarity equations is formed and the coef-
ficients of the equation system are stacked in a matrix. The matrix has a null
space spanned by two vectors such as y and z. Thus, we have:

e = yy + z (5)

where e = [e1 . . . e9]T . Plugging Eq. 5 in Eq. 3 results in a third order polynomial
equation of y, which may have up to three real roots. It means that three valid
essential matrices could explain the camera motion. However, if Eq. 4 is used,
the solution which minimizes Eq. 4 can be selected as the best essential matrix.
For the 5-point method, five coplanarity equations are used and therefore, we
have e = w + xx+ yy + zz. Using the 10 equations obtained from Eqs. 3 and 4,
a polynomial equation of the order of ten of the variable z is obtained. The real
roots of the equation lead to different valid essential matrices. Generally, the
true solution can be found based on the multiple observations of the matched
points in multiple frames.

3 Second Order Statistics of an Essential Matrix

In this section, we find the mean and the covariance matrix for essential matrix
elements and use them as regularization terms in different original N-point meth-
ods. In this regard, we first find the means and variances of motion parameters
based on physical or equation constraints, and then the mean and covariance
matrix of essential matrix elements will be calculated.



550 M.H. Mirabdollah and B. Mertsching

Concerning the translation vector, it can be verified that, if we find the null
space vectors under the condition: e21 + . . . + e29 = 1 (for instance using singular
value decomposition (SVD)), the following equation will hold:

t2x + t2y + t2z =
1
2

(6)

It means that t = [tx, ty, tz]T has a uniform distribution over a sphere with
the radius

√
2
2 . To obtain means, variances and correlations of the translation

elements, we may need to marginalize out one and two variables from their joint
probability distribution function: p([tx, ty, tz]T ). However, due to the symmetry
of the distribution, it can be simply proven that mean values are zero: μt =
E(t) = [0 0 0]T (E is expectation operator) and also covariance between each
two translation elements are zero: σtxty = σtxtz = σtytz = 0. Consequently, Eq. 6
results in σ2

tx = σ2
ty = σ2

tz = 1
6 .

On the other hand, by encoding a rotation matrix using the three elementary
rotations about the X, Y and Z axis: R = RZ(ψ)RY (−θ)RX(φ) and using the
Taylor expansion for the sin(.) and cos(.) up to desired orders, the rotation
matrix can be written in the form of polynomials of φ, θ and ψ which makes
the expectation operations much simpler. It should be mentioned that physical
constraints of cameras and limitation of feature tracking methods force the angles
to hardly exceed 30◦. As a result, the terms with more than second order can
be ignored. Thus, the following approximation for the rotation matrix holds:

R =

⎡
⎢⎣

1 − θ2

2 − ψ2

2 −ψ − φθ −θ + φψ

ψ 1 − φ2

2 − ψ2

2 −φ − θψ

θ φ 1 − φ2

2 − θ2

2

⎤
⎥⎦ (7)

Obviously, for larger rotation angles higher order terms should be included, but
the rest of the algorithm will be similar. Now, by considering maximum possible
deviations from zero for the angles such as σφ, σθ and σψ, we can model the angles
as Gaussian random variables as: φ ∼ N (0, σ2

φ), θ ∼ N (0, σ2
θ) and ψ ∼ N (0, σ2

ψ).
Additionally, we know that:

E = RT ; T =

⎡
⎣

0 −tz ty
tz 0 −tx

−ty tx 0

⎤
⎦ (8)

Using Eqs. 7 and 8, we can obtain the vector of essential matrix elements
e = [e1, e2, . . . , e9]T as nonlinear functions of the motion parameters:

e1 = −tz(ψ + φθ) + ty(θ − φψ), e2 = tx(φψ − θ) + tz(ψ2+θ2

2 − 1),
e3 = ty(1 − ψ2+θ2

2 ) + tx(ψ + φθ), e4 = −tz(φ2+ψ2

2 − 1) + ty(φ + ψθ),
e5 = −tzψ − tx(φ + ψθ), e6 = ψty + tx(φ2+ψ2

2 − 1), e7 = tzφ + ty(φ2+θ2

2 − 1),
e8 = −θtz − tx(φ2+θ2

2 − 1) and e9 = −φtx + θty.

Using the predefined Gaussian distributions for the motion parameters, we
can now calculate the first and second order statistics of e. For the first order
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statistics (mean vector), we can simply verify that all the nine elements include
first order terms of the motion parameter and therefore we have:

μe = E(e) = 0 (9)

Since μe = 0, the second order statistics can be calculated as follows:

Pe = E(eeT ) (10)

The calculation of the above covariance matrix is tedious and should be done by
using a symbolic math package once. The covariance matrix looks as follows:

Pe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
e1

0 0 0 σe1,e5 0 0 0 σe1,e9

0 σ2
e2

0 σe2,e4 0 0 0 0 0
0 0 σ2

e3
0 0 0 σe3,e7 0 0

0 σe2,e4 0 σ2
e4

0 0 0 0 0
σe1,e5 0 0 0 σ2

e5
0 0 0 σe5,e9

0 0 0 0 0 σ2
e6

0 σe6,e8 0
0 0 σe3e7 0 0 0 σ2

e7
0 0

0 0 0 0 0 σe6e8 0 σ2
e8

0
σe1e9 0 0 0 σe5,e9 0 0 0 σ2

e9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where
σ2

e1
= σ2

φσ2
ψσ2

ty + σ2
φσ2

θσ2
tz + σ2

ψσ2
tz + σ2

θσ2
ty ,

σe1e5 = σ2
ψσ2

tz , σe1e9 = σ2
θσ2

ty ,

σ2
e2

= σ2
φσ2

ψσ2
tx + 3

4σ4
ψσ2

tz + 1
2σ2

ψσ2
θσ2

tz − σ2
ψσ2

tz + 3
4σ4

θσ2
tz + σ2

θσ2
tx − σ2

θσ2
tz + σ2

tz ,

σe2e4 = − 1
4σ2

φσ2
ψσ2

tz − 1
4σ2

φσ2
θσ2

tz + 1
2σ2

φσ2
tz − 3

4σ4
ψσ2

tz − 1
4σ2

ψσ2
θσ2

tz+
σ2

ψσ2
tz + 1

2σ2
θσ2

tz − σ2
tz ,

σ2
e3

= σ2
φσ2

θσ2
tx + 3

4σ4
ψσ2

ty + 1
2σ2

ψσ2
θσ2

ty + σ2
ψσ2

tx − σ2
ψσ2

ty + 3
4σ4

θσ2
ty − σ2

θσ2
ty + σ2

ty ,

σe3e7 = − 1
4σ2

φσ2
ψσ2

ty − 1
4σ2

φσ2
θσ2

ty + 1
2σ2

φσ2
ty − 1

4σ2
ψσ2

θσ2
ty + 1

2σ2
ψσ2

ty − 3
4σ4

θσ2
ty+

σ2
θσ2

ty − σ2
ty ,

σ2
e4

= 3
4σ4

φσ2
tz + 1

2σ2
φσ2

ψσ2
tz + σ2

φσ2
ty − σ2

φσ2
tz + 3

4σ4
ψσ2

tz + σ2
ψσ2

θσ2
ty − σ2

ψσ2
tz + σ2

tz ,

σ2
e5

= σ2
φσ2

tx + σ2
ψσ2

θσ2
tx + σ2

ψσ2
tz , σe5e9 = σ2

φσ2
tx ,

σ2
e6

= 3
4σ4

φσ2
tx + 1

2σ2
φσ2

ψσ2
tx − σ2

φσ2
tx + 3

4σ4
ψσ2

tx − σ2
ψσ2

tx + σ2
ψσ2

ty + σ2
tx ,

σe6,e8 = − 3
4σ4

φσ2
tx − 1

4σ2
φσ2

ψσ2
tx − 1

4σ2
φσ2

θσ2
tx + σ2

φσ2
tx − 1

4σ2
ψσ2

θσ2
tx + 1

2σ2
ψσ2

tx+
1
2σ2

θσ2
tx − σ2

tx ,
σ2

e7
= 3

4σ4
φσ2

ty + 1
2σ2

φσ2
θσ2

ty − σ2
φσ2

ty + σ2
φσ2

tz + 3
4σ4

θσ2
ty − σ2

θσ2
ty + σ2

ty ,

σ2
e8

= 3
4σ4

φσ2
tx + 1

2σ2
φσ2

θσ2
tx − σ2

φσ2
tx + 3

4σ4
θσ2

tx − σ2
θσ2

tx + σ2
θσ2

tz + σ2
tx and

σ2
e9

= σ2
φσ2

tx + σ2
θσ2

ty .

Interestingly, the dependencies of the essential elements appeared as non-zero off-
diagonal elements. Inspired by the work of [3], we applied a smoothing method
for the essential matrix estimation by minimizing a cost function consisting of the
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coplanarity equations as data terms and the covariance matrix as a smoothness
term. The cost function will be:

C =
N∑

i=0

1
σci

(Aie)T (Aie) + eT P−1
e e (11)

where N is the number of matched points, Ai is a row vector of ith coplanarity
coefficients and σci is the standard deviation for the ith coplanarity equation.

In the cost function, σci s play important roles. Assuming that the true
motion of a camera and consequently the essential matrix is given, we can see
in the presence of the measurement noise, the coplanarity equations will not
hold exactly. In this case, each coplanarity equation has an almost zero mean
Gaussian distribution if the measurement noises are also Gaussian. The variance
of the distributions can be calculated as a function of the matched points and
measurement noise variances. However, since the essential matrix is not known
initially, considering large uncertainties for the motion parameters, we can obtain
a relative measure which shows how much each coplanarity equation is allowed
to deviate from zero. For the calculation of this measure, we assume matched
points (x1, y1) and (x2, y2) have Gaussian distributions as:

x1 = N (x̄1, σ
2
p), y1 = N (ȳ1, σ2

p), x2 = N (x̄2, σ
2
p), y2 = N (ȳ2, σ2

p) (12)

where x̄1, ȳ1, x̄2, ȳ2 are the measured values and σp is the standard deviation
for the measurement noise. Using a similar procedure proposed in [14], and since
we can always say σ2

tx = σ2
ty = σ2

tz = 1
6 (as already discussed), we have:

σ2
c =

σ2
p

6
(
4 + σ2

φ + σ2
θ + 2σ2

ψ + (1 + σ2
φ + σ2

θ + σ2
ψ)(x̄2

1 + ȳ2
1 + x̄2

2 + ȳ2
2)

)
(13)

The inverse of σp weights the importance of the data term: the larger σp, the
more estimations of essential matrix elements are affected by the regularization
term. Therefore, σp should be selected to achieve a balance between the data
and regularization terms such that the method can work well for a wide range
of measurement noise. Based on simulation and experimental results, we found
σp = 0.5 pixel a proper selection.

For the minimization of the cost function Eq. 11, we reform it as follows:

C = (Be)T P−1(Be) (14)

where

B =

⎡
⎢⎢⎢⎣

A1

...
AN

I9×9

⎤
⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎣

σ2
c,1 0 0 0
...

. . . . . . 0
0 0 σ2

c,N 0
0 0 0 Pe

⎤
⎥⎥⎥⎦ (15)

Now we should find the vectors which minimize the cost function. It can be done
using the SVD. We only need to calculate the SVD of the matrix P−1/2B =
UΣV T . Then the columns of V T which are associated to the smallest eigenvalues
can form the basis for different N-point methods.
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4 Simulation

We have simulated a camera with the resolution 2000×2000 [pixels2] and a focal
length of 1000 pixels. The camera was moved based on random translation and
rotation parameters (φ, θ and ψ had the means 0.3 rad and standard deviations
0.1 rad) for two different types of motions: dominant forward and dominant
side translations. During the motion, the camera could observe spatial points
randomly distributed at depths from 10 to 20 m. The projection of the spatial
points on the camera screen were added by zero mean Gaussian noises with
varying standard deviation as measurement noise. The original 8-, 7- and 5-
point methods were compared with the smoothed versions (named as 8-, 7- and
5- point-S). The standard deviations of the rotation angles (σφ, σθ and σψ) for
the regularization constraint were set to 0.5 rad. For the evaluation, two different
measures were used: the mean of magnitudes of errors between the estimated
translation and true translation vectors (MMEt) and the mean of magnitudes
of errors between the estimated rotation angles and the true angles (MMEa).
Assuming the estimated translation vector at time k is t̂k and the ground truth
is tk, the error between two vectors will be εt,k = t̂k − tk. Then, we have:

MMEt = 1
K

∑K
k=1

√
εT
t,kεt,k, where K is the number of frames. If the estimated

rotation matrix at time k is R̂k and the ground truth is Rk the rotation matrix
error will be Re,k = RT

k R̂k. Consequently, using Eq. 8, we can calculate the error
angles as : εa,k = 180

π

√
3 − trace(Re,k). The mean square error for angles will be:

MMEa = 1
K

∑K
k=1 εa,k. It is good to mention that since the regularization term

is centered on the origin; not surprisingly, the proposed method could perform
well if the rotation parameters were also distributed about the origin. Therefore,
we selected random rotation angles with non-zero means to evaluate the method
in a more challenging case.

The results can be seen in Tables 1 and 2. We can see that the regularization
constraint improved the translation estimation slightly; however, it resulted in
noticeable improvements for the rotation estimation in case of forward transla-
tion and good improvements for side translation. Surprisingly, we see that the
5-point method had a poor performance in rotation estimation (possibly due to

Table 1. Mean of magnitudes of errors for dominant forward translations.

σp[pixel] 0.1 0.5 1.0 1.5 2.0 0.1 0.5 1.0 1.5 2.0

MMEt[m/frame] MMEa[deg/frame]

5-point-S 0.03 0.11 0.14 0.17 0.18 0.13 0.62 0.92 1.23 1.39

5-point 0.03 0.13 0.16 0.19 0.20 0.15 0.80 1.42 1.53 1.57

7-point-S 0.03 0.14 0.15 0.17 0.17 0.11 0.66 0.98 1.28 1.40

7-point 0.03 0.2 0.22 0.22 0.23 0.14 0.99 1.49 2.03 2.48

8-point-S 0.03 0.14 0.17 0.22 0.26 0.12 0.67 0.99 1.32 1.74

8-point[14] 0.03 0.20 0.26 0.32 0.38 0.14 1.10 1.48 2.04 2.38

8-point[9] 0.03 0.20 0.26 0.33 0.40 0.15 1.10 1.62 2.38 3.10
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Table 2. Mean of magnitudes of errors for dominant side translations.

σp[pixel] 0.1 0.5 1.0 1.5 2.0 0.1 0.5 1.0 1.5 2.0

MMEt[m/frame] MMEa[deg/frame]

5-point-S 0.05 0.16 0.24 0.29 0.32 1.86 5.89 9.73 10.92 14.19

5-point 0.06 0.17 0.25 0.29 0.33 2.06 6.09 10.28 11.86 14.54

7-point-S 0.10 0.35 0.55 0.63 0.68 0.70 2.15 3.38 4.44 5.10

7-point 0.11 0.36 0.59 0.67 0.72 0.75 2.81 4.51 5.92 6.77

8-point-S 0.11 0.33 0.53 0.66 0.74 0.71 2.19 3.93 5.76 6.88

8-point[14] 0.11 0.35 0.58 0.71 0.79 0.76 2.84 4.82 6.32 7.23

8-point[9] 0.11 0.35 0.57 0.71 0.79 0.76 2.84 5.04 6.34 7.27

numerical errors) in case of side motion. As a result, we can conclude that the
7-point-S method provides more reliable estimations if the camera experiences
different types of motions.

5 Experimental Results

We used the KITTI dataset for visual odometry [6] to evaluate the performance
of the proposed method. We applied the proposed regularization constraint for
the 8-point, 7-point and 5-point methods and compared them with the original
methods. The methods were implemented using C++ and ran on a computer
with an Intel(R) Core(TM)2 Duo 3.33GHz CPU. All the methods were run in
the context of a random sample consensus algorithm (RANSAC) [5], in which
several essential matrices based on randomly selected N-matched points were
calculated and then the best essential matrix which defined the flow of all points
in the best way was selected.

As monocular ego-motion can generally be calculated only up to a scale
factor, and the scale drift detection is not within the scope of this work, we
removed the scale factor from the provided ground truths of the first eleven
sequences. For the submitted data (for 7-point-S [1]), we have only used a fixed
scale factor and obviously the submitted results were not meant for the ranking
evaluations due to the large scale drifts in some of the sequences (for instance
sequence 13) and also most of the other methods have used stereo or laser data
which make the comparison unfair. What could be compared is the mean error
angle. It can be seen that the proposed method (named as RMCPE) outperforms
even some of the stereo based algorithms and also obviously has an error 2.7
times less than the 8-point based method (VISO2-M [7]). In this benchmark,
the errors are calculated only based on a few frames, while in case of all frames,
the differences will be much more as shown in Tables 3 and 4.

Since apparently instantaneous motion parameters of ground truth had drifts,
we used two types of accumulating errors as evaluation measures: first, the mean
of magnitudes of errors between all estimated and ground truth camera poses:
MMEp, and second, the mean of magnitudes of errors between the estimated
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Table 3. Mean of magnitudes of errors for estimated camera poses.

sequence 00 01 02 03 04 05 06 07 08 09 10

MMEp[m/frame]

7-point-S 23.4 25.0 12.8 2.4 0.9 22.9 5.5 12.2 58.7 11.2 8.3

7-point 32.3 139.3 30.0 4.7 1.5 27.4 10.5 14.9 61.5 25.6 12.0

5-point-S 9.2 53.5 24.0 3.0 1.1 30.1 8.3 10.5 58.0 12.0 9.2

5-point 9.4 78.7 36.3 3.6 1.3 30.1 8.8 10.8 67.3 16.6 9.4

8-point-S 25.3 40.7 47.3 6.2 1.6 28.6 13.00 13.8 67.6 16.2 14.8

8-point [14] 70.3 126.2 93.3 11.2 1.6 67.3 10.2 22.8 82.9 44.0 24.3

8-point[9] 70.0 443.5 97.4 23.6 5.3 66.5 27.3 22.7 124.9 42.0 38.6

Table 4. Mean of magnitudes of errors for estimated camera angles.

sequence 00 01 02 03 04 05 06 07 08 09 10

MMEa[deg/frame]

7-point-S 0.53 0.59 0.42 0.22 0.03 0.18 0.27 0.17 0.40 0.34 0.22

7-point 1.50 4.28 1.37 0.20 0.14 0.86 1.08 1.05 0.64 0.93 1.26

5-point-S 0.31 1.19 0.80 0.23 0.07 0.94 0.53 0.60 0.31 0.43 0.30

5-point 0.33 1.75 1.37 0.24 0.1 1.03 0.54 0.72 0.30 0.47 0.30

8-point-S 1.51 1.63 1.69 0.37 0.07 0.64 1.10 0.86 0.73 0.71 1.09

8-point [14] 1.72 4.12 2.86 0.57 0.07 2.77 0.89 1.65 1.31 2.00 0.74

8-point [9] 2.09 10.92 2.98 0.59 1.23 2.58 1.14 1.63 2.12 1.90 1.61

and ground truth angles at all poses: MMEa. For corner feature tracking, we
used pyramid Lucas-Kanade optical flow (implemented in opencv) [2], which
worked very well in real-time. Nevertheless, the percentage of outliers and the
amount of measurement noise were relatively high. The comparison results can
be seen in Table 3 (MMEp), Table 4 (MMEa) and Table 5 (elapsed time). The
regularization constraint brings noticeable improvement to the original 8- and
7- point methods and in some sequences sound improvement for the 5-point
method. In average, the 7-point-S method gave the best result. To understand
the results better, it should be mentioned that in the estimation of essential
matrices the most challenging case is when the base line is small and the rota-
tions are high. In this case, measurement noise can destructively affect the recov-
ery of camera motion, especially the rotation matrix. This situation occurs very
often in the KITTI dataset when the car is driven trough sharp bends. Con-
sequently, the 8-point methods had very poor performance almost in all of the
sequences. On the contrary, applying the regularization constraint made the 8-
point-S method have almost the same performance as the 7-point method at
a much lower elapsed time which shows that it could be a proper option for
real-time applications. The 5-point(-S) method, as expected, had a better per-
formance than the 7-point method and even for the sequence 0, it outperformed
7-point-S (Fig. 1-top) but for the other sequences, it performed either similar
to or worse than the 7-point-S (for instance Fig. 1-bottom). We analyzed the
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Table 5. Average elapsed time (E. T.) per frame for different methods.

Method 5-point-S 5-point 7-point-S 7-point 8-point-S 8-point [14] 8-point [9]

E. T. [s/frame] 4.82 4.12 0.39 0.32 0.21 0.12 0.13

Fig. 1. The estimated and ground truth paths for Seq. 0 (top) and Seq. 1 (bottom).
To avoid visual confusion for the Seq. 0, the path was plotted by the frame 3650.

sequences more precisely and noticed that in the sequences in which the out-
lier ratio is high, the 5-point method works more robust than other methods.
The reason lies in RANSAC part, in which N-matched points are selected ran-
domly. Clearly, the less N matched points are selected, the more it is possible
that the matched points do not contain any outliers. On the other hand, based
on simulation results, the 5-point(-S) method does not perform well to estimate
rotation matrices in case of dominant side motions (occurred in sharp bends)
which explains why it cannot outperform the 7-point-S method.

6 Conclusion

A new method was developed to include prior knowledge about the ranges of
the motion parameter in the form of a covariance matrix for the estimation
of essential matrices. By applying the method for the original 8- and 7-point
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method, great improvements were obtained which have been proven based on
simulated and real datasets. Future work could be applying the same analysis
to the case of uncalibrated cameras.
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