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Abstract—Many recent advances in multiple target tracking aim at finding a (nearly) optimal set of trajectories within a temporal
window. To handle the large space of possible trajectory hypotheses, it is typically reduced to a finite set by some form of data-driven
or regular discretization. In this work we propose an alternative formulation of multi-target tracking as minimization of a continuous
energy. Contrary to recent approaches, we focus on designing an energy that corresponds to a more complete representation of the
problem, rather than one that is amenable to global optimization. Besides the image evidence, the energy function takes into account
physical constraints, such as target dynamics, mutual exclusion, and track persistence. In addition, partial image evidence is handled
with explicit occlusion reasoning, and different targets are disambiguated with an appearance model. To nevertheless find strong local
minima of the proposed non-convex energy we construct a suitable optimization scheme that alternates between continuous conjugate
gradient descent and discrete trans-dimensional jump moves. These moves, which are executed such that they always reduce the
energy, allow the search to escape weak minima and explore a much larger portion of the search space of varying dimensionality. We
demonstrate the validity of our approach with an extensive quantitative evaluation on several public datasets.

Index Terms—Multi-object tracking, tracking-by-detection, visual surveillance, continuous optimization.
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1 INTRODUCTION

S IMULTANEOUSLY keeping track of multiple targets in
a video while preserving their identities remains a

challenging task of computer vision. Accurate tracking
is crucial for many applications, such as pedestrian
safety, motion and scene analysis, and video surveil-
lance. Despite enormous progress in recent years, the
tracking abilities of humans still easily exceed state-of-
the-art algorithms in real world scenarios, both in terms
of precision and accuracy – if given enough time to
process the data. Many recent approaches to tracking
pursue a tracking-by-detection strategy, where the targets
are detected in a pre-processing step, usually either
by background subtraction or using a discriminative
classifier, from which the trajectories are later estimated.
The benefit is an improved robustness against drifting
and the possibility of recovering from tracking failure.
In the comparatively simple single-target setting, where
only one object is present in the scene, tracking can be
approached by searching for the object of interest within
the expected area and forming a plausible trajectory
by connecting the object’s locations over time. When a
higher, often unknown number of targets is observed
simultaneously, the problem becomes much more com-
plicated, because it is no longer obvious which object
corresponds to which detection. This task of correctly
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identifying different objects over time is often referred
to as data association. Moreover, motion, appearance, and
visibility of objects are influenced by mutual depen-
dencies that have to be taken into account. From a
probabilistic point of view this entails inference – often
maximum a-posteriori (MAP) – in a posterior distribu-
tion over several variables that are not independent. The
resulting optimization problem is highly non-convex (in
case of a continuous domain) or non-submodular (in the
discrete case), and thus cannot be optimized globally
without major simplifying assumptions.

Yet, several recent multi-target tracking formulations
aim to obtain a (nearly) globally optimal set of trajecto-
ries within a temporal window [3], [7], [23], [24], [31],
[34], [43]. In order to make (near) global optimization
possible and efficient, the state space is reduced by
restricting the possible target locations to a finite set and
the energy function is simplified. While global optimality
undoubtedly has many benefits, we must also not lose
sight of the actual purpose of formulating multi-target
tracking as an energy minimization problem: the energy
should adequately reflect the task at hand so that low-
energy solutions are close to the true situation. Unfor-
tunately, in the realm of multi-target tracking typical
specifications of the desirable aspects do not lead to
models that can be globally optimized.

In this work we investigate the question whether it
is really beneficial for multi-object tracking to (overly)
restrict the energy function in order to guarantee global
optimality. In contrast to previous work, we attempt to
design the objective function such that it offers a more
complete representation of the various aspects of the
problem. Our energy is defined in continuous space.
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The energy depends on the locations and motions of
all targets in all frames, including cases where image
evidence is missing, and explicitly includes physical
constraints, such as smoothness of motion and mutual
exclusion. It is beneficial to model these terms in the
continuous domain, since they describe the true situation
more closely than ones that operate in a discrete setting.
The price to pay is having to forgo global optimality,
since such a complex model of multi-target tracking
is unlikely to be convex. Nevertheless, local optima of
our energy yield better results in practice, both visually
and in terms of quantitative evaluation with respect to
ground truth.

To make the optimization efficient, all energy terms are
formulated as functions that can be computed and differ-
entiated in closed form. Hence, computationally efficient
gradient-based optimization methods can be applied. To
find strong local minima and to reduce the influence of
the initialization, we run standard conjugate gradient
descent from several starting points. Additionally, this
purely continuous minimization is extended by a set of
trans-dimensional jump moves, which enable the search
to escape the initial basin of attraction and explore a
larger region of the energy landscape. To support our
hypothesis that accurate modeling might be more im-
portant than optimality guarantees for tracking perfor-
mance, we run extensive experiments on various public
datasets and show state-of-the-art results quantitatively
measured by standard multi-target tracking metrics.

The main contribution of this paper is an energy-based
model of multi-target tracking that
• is defined over all target locations (in continuous

space) and all video frames in a given time window;
• includes per-frame detection evidence, appearance,

dynamics, persistence, and collision avoidance;
• explicitly handles partial as well as full inter-object

occlusion; and
• can be computed and differentiated efficiently in

closed form.
Furthermore, we provide an empirical study on the
influence of all major parameters of the model, and an
analysis of various optimization strategies for model in-
ference, ranging from greedy search to more randomized
and sampling-based algorithms.

Parts of this work have appeared in [2], [4]. Here, we
for the first time describe the complete model, and in-
clude an additional appearance component, an extended
evaluation with more data sets, an empirical study of
the contributions of individual model parts, and an
evaluation of different optimization strategies.

2 RELATED WORK

Tracking has been an active research area for many years
and the amount of related literature is vast. Here, we
concentrate on prior work in visual multi-object tracking.

Especially early on, many tracking algorithms utilized
recursive methods, where the current state is estimated

only using information from previous frames. Kalman
filter approaches [9], [32] are a prominent example. Later,
particle filtering (also known as sequential Monte Carlo)
was introduced, where a set of weighted particles –
sampled from a proposal distribution – is maintained to
represent the current, hidden state [10], [30], [37]. This
allows handling non-linear multi-modal distributions.
However, as the number of targets grows, a reliable rep-
resentation of the posterior requires an ever increasing
amount of samples and is hard to handle in practice.
Data association is usually approached by probabilistic
filtering (JPDAF) [19] or by Markov chain Monte Carlo
sampling techniques (MCMCDA) [29].

Over the past few years, non-recursive tracking meth-
ods have grown more and more popular [3]–[7], [11],
[24], [27], [28], [41], [43]. The commonality of these
methods is that all trajectories are estimated jointly
within a given time window. However, to keep the
computation tractable, the solution space is restricted
to a finite number of states, which is usually done
by only allowing trajectories to pass exactly through
either non-maxima suppressed object detections [24],
[27], [43], or through locations on a regular discrete
grid [3], [7]. Leibe et al. [27] couple the tasks of object
detection and trajectory estimation through a quadratic
binary program, which is then solved to local optimality
by custom heuristics. Jiang et al. [24] cast the task of
tracking multiple targets as an integer linear program
(ILP) with linear constraints to enforce that the layout
between targets does not change in adjacent frames. The
solution is then obtained by LP-relaxation, which cannot
guarantee global optimality in general, but achieves it in
most cases nonetheless. To allow objects to pass through
occlusions, a special “occluded”-node is introduced. A
drawback of this approach is that the number of tar-
gets needs to be known a priori, which is a serious
limitation for many applications. Furthermore, due to
the undefined locations of occluded targets, there is no
chance to avoid collisions between them. To achieve high
tracking accuracy and to obtain a plausible solution, a
precise localization of occluded targets is crucial [21].
Berclaz et al. [7] divide the tracking area into a grid
of disjoint cells and introduce a virtual location, which
can spawn new trajectories and absorb existing ones
at certain locations (e.g., doors or image borders). The
solution of the resulting integer linear program can again
be obtained by LP-relaxation, or using the K-shortest
paths algorithm [8], which significantly speeds up com-
putation. The framework can be further extended to
include the object appearance [34], thereby reducing the
number of identity switches between targets. While this
approach achieves high-quality results, the recovered
trajectories suffer from aliasing due to the discretization
of the location space and appear unnatural, even when
enriched with a dynamic model [3]. A network flow
approach for global multi-target tracking was introduced
by Zhang et al. [43]. Observation and transition edges
between individual detections form a graph where their
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capacity represents the likelihood of target presence and
motion. An optimal set of trajectories without occlusion
handling is found by a min-cost flow algorithm. Bren-
del et al. [11] divide the data association problem into
disjoint subgraphs and solve each one independently.
Using soft and hard constraints, the algorithm is guaran-
teed to converge. Henriques et al. [23] pursue a similar
approach, but introduce merge and split events to go
beyond one-to-one matches between graph nodes. The
recent work of Benfold and Reid [5] presents highly
accurate results computed in real time. Similar to [20],
short tracklets are generated by robust feature point
tracking. The final trajectories are then found by Monte
Carlo sampling. Occlusions are avoided by choosing an
elevated viewpoint and detecting the heads of pedestri-
ans instead of full bodies. Head-based tracking in dense
crowds is also employed by Rodriguez et al. [33], where
the solution is obtained by minimizing a binary energy
function with a constraining term to enforce the correct
number of targets. While a high camera viewpoint can be
assumed in many surveillance scenarios, this is generally
not feasible in other applications (e.g., driver assistance
or entertainment).

Occlusion reasoning plays an important role in many
areas of computer vision, including pose estimation [14],
[35], and object detection [15], [39], [40]. The reason why
occlusion modeling improves results is consistent in all
cases: the knowledge that the observed object is only
partially (or not at all) visible predicts that less evidence
will be found in the image, and the appraisal of the
evidence can be adapted accordingly.

In the realm of multi-target tracking the inter-object
occlusion problem has either been ignored [4], [7], [28],
or handled iteratively [42], [43]. Xing et al. [42] generate
short tracklets without occlusion reasoning and then
connect tracklets to longer trajectories such that the
connections can bridge gaps due to occlusions. Zhang et
al. [43] address data association with a network flow ap-
proach, where an optimal subset of trajectories is greed-
ily extended into occluded regions in a post-processing
step. Wojek et al. [39] extend a full-body detector with six
part detectors to enrich the space of target hypotheses.
Each detection is then weighted by its expected visibility
computed from a 3D scene model. Somewhat similar to
our approach, Breitenstein et al. [10] increase the target
likelihood if another target exists nearby. However, our
occlusion reasoning provides an accurate approximation
to the actual fraction of the target visibility.

Seriously crowded environments, where large num-
bers of dynamic targets and frequent occlusions make
tracking difficult even for a human observer, are rarely
processed at the level of individual targets. Notable
exceptions include the work of Kratz and Nishino [25],
which relies on spatio-temporal motion patterns of the
crowd. Li et al. [28] also address crowded environments
and learn tracklet associations online. Both approaches
do not include any dedicated occlusion reasoning.

The proposed global occlusion model (cf . Sec. 3.3) is

Symbol Description
X world coordinates of all targets in all frames
Xt

i (X,Y) world coordinates of target i in frame t
xt
i (x,y) image coordinates of target i in frame t

F,N total number of frames and targets, respectively
F (i) number of frames where target i is present
si, ei first, respectively last frame of trajectory i

N(t), D(t) number of targets, respectively detections in frame t
Dt

g (X,Y) world coordinates of detection g in frame t

TABLE 1. Notation.

closely integrated into our continuous tracking frame-
work, and can easily handle a large number of targets.
Moreover, it is able to accurately estimate pairwise visi-
bility dependencies between all targets.

3 MULTI-TARGET TRACKING

3.1 Preliminaries and notation
To ease understanding, we first introduce the general
structure and notation used throughout the paper. The
state vector X consists of the (X,Y ) world coordinates of
all N targets in a sequence of F frames. We assume that
all targets move on a common ground plane, i.e. Z = 0.
Note that the continuous location Xt

i ∈ R2 of target i
at time t is exactly defined for all frames t ∈ {si, . . . , ei}
within the temporal life span of the trajectory, even if the
target is not associated with any detection or is entirely
occluded. The temporal length of trajectory i is denoted
F (i) := ei − si + 1, where si and ei, respectively, are the
first and final frames. Our formulation does not assume
the number of targets to be known a priori; this number
may in fact vary from frame to frame. We thus denote
the number of targets in frame t as N(t). Similarly,
D(t) indicates the number of detections in frame t. The
location of detection g in frame t itself is denoted as Dt

g .
Lower case letters x, x, y describe image coordinates. The
notation is summarized in Table 1.

3.2 Continuous energy
Energy minimization methods have – in one form or
another – become quite popular for multi-target track-
ing [7], [27], [43]. Their common objective is to set up
a function that assigns every possible solution a cost
(the “energy”) and then (approximately) find the state
with the lowest cost. An energy function for a certain
application can be defined in many ways. In computer
vision one often faces two major problems: (1) The input
data is noisy and requires robust models; (2) an accurate
representation that captures all relevant nuances of the
real situation quickly becomes very complex. Together
these two issues tend to produce complicated and highly
non-convex objective functions (cf . Sec. 4). One is thus
faced with a dilemma: Should the energy function be
simplified until it is easily optimizable, or should it
rather have the power to capture the complex situation,
at the cost of less graceful mathematical properties? In
the present work, we investigate the latter alternative for
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Fig. 1. The effects of different components of the energy function. The top row shows a configuration with a higher, the bottom
row with a lower value for each individual term. The dark, smooth blobs denote detection locations. Different colors of the target
locations (marked with circles) suggest distinguishable appearance between targets.

the case of tracking multiple objects in video. The energy
we propose has been developed with an emphasis on
precisely describing multi-object tracking. Algorithmic
considerations were limited to keeping the function dif-
ferentiable in closed form and thus efficient for gradient-
based optimization. It turns out that for the case of multi-
target tracking such an approach is rather successful.

Our energy function is a linear combination of six
individual terms:

E = Edet + αEapp + βEdyn + γEexc + δEper + εEreg. (1)

The data term Edet keeps the solution close to the
observations; the term Eapp captures the appearance
of different objects to disambiguate data association;
the three priors Edyn, Eexc and Eper promote plausible
motion and enforce physical constraints; the regularizer
Ereg keeps the solution simple and prevents over-fitting.
The aim is then to find the state X∗ that minimizes the
high dimensional continuous energy from Eq. (1):

X∗ = arg min
X∈Rd

E(X). (2)

Depending on the length of the sequence and the num-
ber of targets, the dimension of the search space d
normally takes on values between 103 and 104. In the
remainder of this section we explain each individual
term and its functionality in more depth. Fig. 1 illustrates
the first five components. The influence of the individual
terms is examined in Sec. 6.1 by adjusting their respec-
tive weights or discarding them entirely.

3.2.1 Observation model
In this work we concentrate on people as track-
ing targets, and follow the well established tracking-
by-detection approach. Likely pedestrian locations are
found with a sliding-window linear SVM detector. The
features employed in the detector include histograms of
oriented gradients (HOG) [13] and histograms of relative
optic flow (HOF) [38]. Detection peaks are found by
non-maxima suppression (NMS) and projected onto the
ground plane of the world coordinate system, where

they form the image evidence for tracking. We limit
ourselves to using non-maxima suppressed detections
to reduce the computational cost, but note that this is
not a major limitation of our approach; it could easily
be extended to use a per-pixel target likelihood instead
(cf . [10]). The intrinsic and extrinsic camera parameters
required for the projection are constant for static cameras
and can be inferred by structure-from-motion for moving
cameras (as done, e.g., in [16] for multi-target tracking).
Hence, the requirement of a calibrated camera does
not pose a major limitation and enables more accurate
modeling of target dynamics and interaction.

The main purpose of the data term is to keep the
trajectories close to the observations. In other words,
the energy should be minimal when the location of
each target precisely matches a detection. To capture
the localization uncertainty of the object detector, the
energy smoothly increases with the distance between the
estimated object location Xt

i and a detection location Dt
g .

This behavior is modeled by an isotropic (inverse) bell-
shaped function centered at the detector output,

E∗det(X) =

N∑
i=1

ei∑
t=si

[
λ−

D(t)∑
g=1

ωt
g

s2

‖Xt
i−Dt

g‖2+s2

]
. (3)

Each detection is weighted by its confidence ω and the
scalar s accounts for the object size, i.e. the area on the
ground plane occupied by that object. It is set to 35cm
for pedestrian tracking. The offset λ is added uniformly
to all existing targets to penalize all those with no image
evidence. This penalty, however, must not be applied if
a target is occluded and consequently cannot possibly
be “seen” by the detector. It is therefore scaled by the
fraction of the visibility vti of that target:

Edet(X) =

N∑
i=1

ei∑
t=si

[
vti · λ−

D(t)∑
g=1

ωt
g

s2g
‖Xt

i−Dt
g‖2+s2g

]
. (4)

The global occlusion reasoning including the computa-
tion of v is explained in detail in Sec. 3.3. We also defer
the discussion of the appearance term to Sec. 3.4, as it
relies on the visibility fraction of individual targets.
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3.2.2 Dynamic model
A defining property of tracking (as opposed to indepen-
dent object detection per frame) is that objects move
slowly relative to the frame rate, and in most cases
also smoothly. This gives rise to constraints on the
target motion, captured by a dynamic model. A simple
constant velocity model that minimizes the distance
between consecutive velocity vectors is powerful enough
to capture the motion of objects in many real scenarios:

Edyn(X) =

N∑
i=1

ei−2∑
t=si

∥∥∥Xt
i − 2Xt+1

i + Xt+2
i

∥∥∥2. (5)

On one hand, the dynamic model helps reduce identity
switches by favoring straight paths. On the other hand,
the detections are often misaligned and do not form
smooth curves. Naive smoothing might yield visually
pleasing results, but is not appropriate to achieve high
data fidelity and thus high tracking precision. The dy-
namic model as part of a global energy function can
be seen as a form of “intelligent smoothing”, yielding
trajectories that are natural and smooth, while at the
same time avoiding collisions and not drifting too far
away from the actual observations.

3.2.3 Mutual exclusion
Collision avoidance is a crucial aspect when tracking
multiple targets (cf . Sec. 6.1 and Fig. 9). In our model a
continuous penalty is applied to configurations in which
two targets come too close to each other:

Eexc(X) =

F∑
t=1

N(t)∑
i,j 6=i

s

‖Xt
i −Xt

j‖2
. (6)

Note that the penalty is closely related to the intersection
of the target volumes, which is also used by some
authors [16], but our variant goes to infinity in the
impossible case when both objects occupy the same 3D
space. Besides enforcing the obvious physical constraint,
a mutual exclusion term also ensures that one piece of
image evidence can be explained by at most one target.
This is especially important when dealing with soft
observation models that exhibit a smooth falloff around
the detection (i.e., target locations are not clamped to the
exact location of the detector output), since otherwise the
same peak could give rise to multiple trajectories.

Our formulation of the exclusion model can handle
two notoriously difficult problems: On one hand, the
pairwise distance between all targets is taken into ac-
count at all frames. Hence, two targets cannot occupy
the same space, even if both are occluded. On the other
hand, if one detection of two neighboring targets is
missing, the targets will be pushed apart just as much
as needed to avoid a physically impossible situation.
Tracking on a discrete grid does not allow intermediate
steps and the entire trajectory may be discarded.

Note that our approach does not perform an ex-
plicit assignment between target hypotheses and mea-
surements (detections). Data association is indirectly

achieved, mainly by two continuous terms – observation
and mutual exclusion. Such soft assignments not only
produce visually more pleasing and physically more
plausible trajectories, but also offer a more flexible inter-
pretation of the data due to the continuous state space.

3.2.4 Trajectory persistence
Missing evidence can lead to track fragmentation or
abrupt track termination in the middle of the tracking
area. To encourage trajectories to start and end along
image borders or along a predefined perimeter, tracks
that do not obey this requirement are penalized. To keep
the term both robust and smooth, we use a sigmoid
centered on the border of the tracking area:

Eper(X) =
∑

i=1,...,N
t∈{si,ei}

1

1 + exp
(
− q · b(Xt

i) + 1
) , (7)

where b(Xsi
i ) and b(Xei

i ) measure the distance of the
first, respectively last known location of target i to the
closest border of the tracking area and the parameter q
represents the soft entry margin and is set to q = 1/s,
where s = 35cm is the target size as before.

3.2.5 Regularizer
Finally, a regularizer is needed to prevent the number of
targets from growing arbitrarily large so as to better fit
the data. To that end, we simply penalize the number of
existing targets. It turns out that including the trajectory
length into the regularization term leads to better per-
formance, because solutions with many short tracks are
less likely. These two terms are combined to form

Ereg(X) = N +

N∑
i=1

1

F (i)
. (8)

Note that the second term can be weighted individually
to adjust the importance of the lengths of the trajecto-
ries. Although empirically this leads to slightly better
performance on some test sequences, we prefer to set
it uniformly to 1 in all our experiments. Having fewer
parameters facilitates the search for a good parameter
set and avoids over-fitting.

3.3 Global occlusion reasoning

Having introduced our basic tracking framework, we
now turn to our explicit occlusion reasoning scheme.
In typical real-world scenarios three different types of
occlusion take place: (1) in crowded scenes, targets fre-
quently occlude each other causing inter-object occlusion;
(2) a target may move behind static objects like trees,
pillars, or road signs, which are all examples of common
scene occluders; (3) depending on the object type, exten-
sive articulations, deformations, or orientation changes
may cause self-occlusion. All three types of occlusion
reduce – or completely suppress – the image evidence
for a target’s presence, and consequently incur penalties
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Fig. 2. A typical example of inter-object occlusion. In our pro-
posed occlusion model targets are represented as anisotropic
Gaussians in image space (red, green, blue), whereas pairwise
occlusions between all targets (cyan, yellow) are approximated
by products of Gaussians.

in the observation model. Specifically, in our tracking-
by-detection setting they cause the object detector to
fail and thereby increase Edet. However, simply treating
occlusion as missing data, i.e. ignoring the fact that the
observed occluder actually predicts the lack of evidence, can
seriously impair tracking performance.

Consequently, explicit occlusion handling is impor-
tant for successful multi-target tracking. Unfortunately,
principled modeling of occlusion dependencies is rather
tricky as the following example illustrates (see Fig. 2):

If target A is at location XA, then target B at XB is
occluded; but if A is a bit further to the left and B
slightly further to the right, then B is partially visible;
however then it would partially occlude target C; etc.

In order to deal with situations where dynamic targets
occlude each other, the main task is to overcome the diffi-
culties that arise from the complex dependence between
a target’s visibility and the trajectories of several other
targets, which could potentially block the line of sight.
An explicit occlusion model thus leads to complicated
objective functions, which tend to be difficult and ineffi-
cient to optimize. Therefore, most previous approaches
either ignore the issue altogether, or resort to some form
of greedy heuristic, usually separating target localization
from occlusion reasoning.

We present a method that tightly couples both trajec-
tory estimation and explicit inter-object occlusion reason-
ing. Note that it can be trivially extended to handle scene
occluders. Not surprisingly, taking into account occlu-
sions directly during trajectory estimation significantly
reduces the number of missed targets and lost tracks –
especially in highly crowded environments.

3.3.1 Analytical global occlusion model
Our approach handles mutual occlusion between all
targets with a closed-form, continuously differentiable
formulation. Since this procedure is identical for each
frame, the superscript t is omitted for better readability.

Relative overlap. Let us for now assume that each
target i is associated with a binary indicator function

oi(x) =

{
1, x ∈ B(Xi)

0, otherwise,
(9)

N
i N

j

zij

(b)

B
i

B
j

oij

(a)

Fig. 3. Schematic illustration (in 1D) of targets’ overlap as a
function of the occluder’s position. In case of bounding boxes
(a), the overlap oij is non-differentiable on the borders. In
contrast, our occlusion term zij is a Gaussian.

which is 1 on the bounding box B(Xi) of target i. The
total image area of target i is thus given as

∫
oi(x) dx.

To compute the relative area of target i that is occluded
by target j, we simply have to calculate the (normalized)
integral of the product of both indicator functions:

1∫
oi(x) dx

∫
oi(x)oj(x) dx (10)

Note that we assume here that target j is in front of
target i; we will address the more general case below. If
we define the target visibility using the relative area as
given in Eq. (10), then the visibility is not differentiable
w.r.t. the object positions of Xi or Xj , which precludes
gradient-based optimization methods (cf . Fig. 3(a)).

To address this issue we here propose to use a Gaus-
sian “indicator” function Ni(x) := N (x; ci,Ci). Besides
achieving differentiability, this is motivated by the fact
that a Gaussian blob is a crude, but reasonable approxi-
mation for the shapes of many objects (see Fig. 2 for an
illustration). In our case, each person in image space is
represented by an anisotropic Gaussian with ci = xi and

Ci =

(
1
2

(
si
2

)2
0

0
(
si
2

)2
)

with si being the target’s height on the image plane. As
before, we compute the area of overlap by integrating
the product of the two “indicator” functions, here Gaus-
sians:

zij =

∫
Ni(x) · Nj(x) dx (11)

Besides differentiability, the choice of Gaussians allows
this integral to be computed in closed form. Conve-
niently, the integral is another Gaussian [12]: zij =
N (ci; cj ,Cij) with Cij = Ci + Cj (see Fig. 3 for a
schematic illustration). Since we are interested in the
relative overlap that corresponds to the fraction of oc-
clusion between two targets, we compute it using the
unnormalized Gaussian

Vij = exp
(
− 1

2 [ci − cj ]
>C−1ij [ci − cj ]

)
, (12)

which is differentiable w.r.t. ci and cj and has the desired
property that Vij = 1 when ci = cj . Moreover, due to the
symmetry of Gaussians we have Vij = Vji.

Depth ordering. To also take into account the depth
ordering of potentially overlapping targets, we could
make use of a binary indicator variable, which once
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Fig. 4. Target i has a non-zero overlap with j and with k.
However, it is only occluded by j. Hence, the overlap is weighted
with a sigmoid σ (dotted line) centered on yi.

again has the issue of making the energy function non-
differentiable. We again replace it with a continuous,
differentiable version and use a sigmoid along the ver-
tical image dimension centered on yi (cf . Fig. 4): σij =
(1 + exp(yi − yj))−1 . Note that this definition assumes a
common ground plane as well as a camera at a rather
low viewpoint and in standard landscape or portrait
orientation, such that the depth order corresponds to the
order of the targets’ y-coordinates (it is however straight-
forward to extend the idea to more general setups). Also
note that if we assume small variation in target size, then
the occluder will always appear larger than the occluded
object on the image plane and hence will entirely cover
the farther target if their center points coincide.

Visibility. To define the overall visibility of each target,
we first define an occlusion matrix O = (Oij)i,j with
Oij = σij · Vij , i 6= j and Oii = 0. The entry in row i
and column j of O thus corresponds to (a differentiable
approximation of) the fraction of i that is occluded by
j. Disregarding cases where multiple occluders cover
the same limited fraction of a target, we can now ap-
proximate the total occlusion of i as

∑
j Oij . A straight-

forward definition of the visible fraction of i would
thus be max(0, 1−

∑
j Oij). However, to avoid the non-

differentiable max function, we prefer an exponential
function and define the visibility for target i as

vi(X) = exp

(
−
∑
j

Oij

)
. (13)

This definition allows us to efficiently approximate the
visible area by taking into account mutual occlusion for
each pair of targets. Furthermore, by consistently using
appropriate differentiable functions the entire energy has
a closed form and remains continuously differentiable.

Limitations. The main limitation of this approach is
that targets are represented with a simple oval shape.
However, our experiments show that the actual fraction
of occlusion can be estimated quite reliably even for
pedestrians, despite their non-rigid, articulated motion.

3.4 Appearance model

The appearance of an object may provide important cues
for disambiguating it from the background and from
other objects. This aspect has previously either been

Fig. 5. Instead of extracting and comparing full bounding boxes
(b), we propose to weigh the area using anisotropic Gaussians
(c). The energy remains differentiable, and the influence of
undesired background pixels is reduced.

ignored [2], [4], [7], or addressed only in the discrete
setting [26], [34], [43]. Here, we present a novel appear-
ance term that is continuously differentiable in closed
form, thus admitting gradient-based optimization.

Assuming that an object’s color remains constant over
time and that lighting changes slowly, our appearance
model imposes a higher penalty in cases of abrupt
changes. To maintain the benefits of the continuous
formulation, it is desirable to describe the appearance of
an object analytically. To ensure that the energy remains
smooth without costly interpolation, we propose to use
Gaussian weighted regions (cf . Fig. 5). This not only
ensures differentiability, but a closed-form gradient. This
is also motivated by the fact that the object of interest
typically occupies the central area inside the bounding
box. The background pixels along the borders and in the
corners are therefore naturally downweighted, while the
pixels closer to the center receive higher weights.

Formally, the Gaussian weighted histogram count of
the image region occupied by target i in frame t is
defined as

hn(x̄t
i) =

∑
x

[
N (x; x̄t

i,Σ
t
i) ·Hn(x)

]
, (14)

where Hn is a binning function

Hn(x) =

{
1, if I(x) falls into bin n

0, otherwise,
(15)

and x̄ is the center of the target’s bounding box. We
employ the widely used Bhattacharrya coefficient

BC(Xt
i) :=

# bins∑
n

√
hn(x̄t

i) ∗ hn(x̄t+1
i ). (16)

for histogram comparison. In our experiments a standard
RGB color histogram with 16 bins per channel yields
the best results. Obviously, the appearance of a target
will change if it becomes occluded and thus should not
be taken into account. We therefore reduce the influence
of the appearance term in such cases by weighting the
histogram deviation with the geometric mean of the
visibilities (cf . Sec. 3.3) of the two bounding boxes:

AC(Xt
i) = v̄ti(X) · (1−BC(Xt

i)) (17)
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E(X)

X

(a) (b)

(c) (d)

E(X)

X

Fig. 6. Illustration of the non-convexity of the continuous track-
ing formulation. To get from the light blue solution (weaker
optimum) to the dark blue one (stronger optimum) in a contin-
uous state space one has to overcome a ridge of high energy.
(a,b) Keeping Edyn low incurs high penalties in Eobs as one
moves away from the observations. (c,d) Keeping Eobs low
incurs high penalties in Edyn as the paths gets distorted to fit
the observations. With a peaked likelihood intermediate cases
are even worse.

with
v̄ti(X) :=

√(
vti(X) · vt+1

i (X)
)
. (18)

Instead of simply adding this penalty to the energy, we
found it to be beneficial in practice to use a soft threshold
to better discriminate between true matches with a high
similarity, i.e. low energy value, and identity switches.
To that end, the final appearance term uses a sigmoid:

Eapp(X) =

N∑
i=1

ei−1∑
t=si

1

1 + exp(a1 − a2 ∗AC(Xt
i))
. (19)

The parameters a1 ≈ 7.2, a2 ≈ 33.7 are determined by a
least squares fit to a subset of the available data.

Our appearance model is designed to fit gradient
based optimization methods. As we show in Sec. 6, in-
cluding appearance significantly reduces the number of
identity switches and track fragmentations, though not
increasing the average accuracy on the chosen datasets.
Moreover, it forces the tracker to follow the targets more
closely thereby increasing the tracking precision. We
believe that appearance will be even more helpful in
high resolution videos – where targets usually provide
more color information – or in situations with stronger
appearance variation than in existing benchmarks.

4 OPTIMIZATION

The energy in Eq. (1) described in Sec. 3.2 is clearly not
convex. In fact, it is not unlikely that a realistic model
of multi-target tracking cannot be convex: It is easy to
construct examples that have two virtually equal minima
separated by a ridge of high energy (cf . Fig. 6). The main
reason for this behavior is the high-order dependence
between variables caused by physical constraints.
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Fig. 7. Four optimization runs started from four different initial-
izations on the sequence S2L1. The proposed energy (solid)
correlates well with tracking performance w.r.t. ground truth
(dashed). Energy values have been scaled uniformly for ease
of visualization.

To minimize the energy function in Eq. (1) locally,
we use the standard conjugate gradient method. Upon
convergence, a jump move is executed (unless it would
increase the energy), which may change the dimension-
ality of the model. The jumps give the optimization a
high degree of flexibility – the initial solution need not
even have the correct number of targets. To speed up the
optimization process, all trajectories are given the chance
to execute a certain jump at the same time. Based on our
experience, the order in which the jumps are executed
is not crucial, because the optimization may choose to
perform an inverse move to find the way towards a
lower energy. Please refer to Sec. 6.2 for an empirical
study on various optimization strategies.

Our data-driven strategy for changing the dimension
of the state vector is reminiscent of reversible jump
Markov Chain Monte Carlo methods [22], which has
been applied to multi-target tracking in various ways [5],
[20], [41]. A crucial difference to traditional Monte Carlo
sampling is that our method is deterministic: It exploits
the advantages of gradient descent over sampling within
one mode, and performs jumps according to a prescribed
schedule, only if they decrease the energy. The energy
minimization algorithm is summarized in Alg. 1.

4.1 Transdimensional jumps
To escape weak local minima we introduce six types
of jump moves, which change the configuration of the
current solution, thereby altering the dimension of the
current state Xcurr. By jumping to different regions of
the search space while always lowering the energy, the
optimization is able to find much stronger local minima.
An example of an optimization run with jumps is shown
in Fig. 8. Here, a weak trajectory (black) is removed
entirely while a new one (green) is initialized. Note that
each jump leads to a configuration with a lower energy.

Growing and shrinking. The time span during which
a target is visible in the target area can be changed
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by growing or shrinking its trajectory. To extend the
trajectory’s length, it is simply linearly extrapolated in
space-time (both forward and backward).

Let Xi = Xsi:ei
i denote the current state of the ith

trajectory defined between frames si and ei. To evaluate
the energy Enew = E(Xnew), the trajectory is extrapolated
backwards for t frames resulting in

X̃i = (Xsi−t:si−1
i ,Xi) (20)

leading to the new state

Xnew =
( ⋃

j=1...N
j 6=i

Xj

)
∪ X̃i. (21)

The procedure for forward extrapolation is analogous
with X̃i = (Xi,X

ei+1:ei+t
i ). Shortening is achieved by

simply discarding t past or future positions of a target:
X̃i = Xsi+t:ei

i , respectively X̃i = Xsi:ei−t
i . Such growing

and shrinking steps help to pick up lost tracks and weed
out spurious trajectories.

Merging and splitting of trajectories can effectively
improve data association, i.e. eliminate identity switches
and track fragmentations. Splitting at time t is imple-
mented by breaking a path Xk in two:

X̃i = Xsk:t
k , X̃j = Xt+1:ek

k (22)

if the split yields lower energy. Merging is executed
if two paths can be smoothly connected into one with
lower energy, preserving physically plausible motion:

X̃k = (Xi,X
ei+1:sj−1
con ,Xj), (23)

where Xcon smoothly connects Xei
i and X

sj
j . Especially

merging is a powerful tool to overcome temporary
tracker failure due to weak evidence or occlusion.

Adding and removing. New trajectories can be gen-
erated at locations with strong detections, which are
not yet assigned to any trajectory. The newly inserted
tracks are started conservatively with three consecutive
frames, X̃t−1:t+1

i = (Dt
g,D

t
g,D

t
g), but can grow or merge

with existing ones at a later stage. An entire trajectory is
removed if its total contribution to the energy is above
a certain threshold, meaning that it reduces the overall
likelihood of the current state, rather than increasing it.
Adding helps to find missing trajectories not picked by
the original tracking solution, whereas removal discards
trajectories which have been pushed to a state with little
evidence, unreasonable dynamics, and/or overlap with
other trajectories.

We repeatedly iterate through the six different move
types in a fixed, prescribed order (see Alg. 1). For each
move type, the move parameters – e.g. the number of
frames a trajectory is grown or the time step at which a
trajectory is split – are optimized independently for each
trajectory in a greedy fashion. It is important to note,
however, that the optimization is not entirely greedy,
since the move type order is fixed; thus it is not guaran-
teed that every step leads to the largest energy decrease.
Please see Sec. 6.2 for a study on various optimization
techniques.

Algorithm 1 Energy Minimization
Input: S initial solutions, detections D
Output: Best of ≤ S solutions

for s = 1→ S do
while ¬ converged do

for m ∈ {grow, shrink, add, remove, merge, split}
do

for i ∈ 1, . . . , N do
try jump move m on trajectory i
(greedy parameter selection)
if Enew(Xs) < Eold(Xs) then
perform jump move m

end if
end for
perform conjugate gradient descent

end for
end while

end for
Return: arg minXs

E(Xs)

4.2 Initialization

Like any non-convex optimization, the result depends on
the initial value from which the iteration is started. How-
ever, the described exploration strategy greatly weakens
this dependency compared to a pure gradient method.
By allowing jumps to low-energy regions of the search
space, even if they are far away from the current state,
the attraction to local minima is reduced: the weaker a
minimum is, the more likely it gets to find a jump out
of its basin of attraction that lowers the energy.

Empirically, even a trivial initialization with no targets
works reasonably well, however takes many iterations
to converge. We propose instead to use the output of
an arbitrary simpler tracker as a more qualified initial
value. In our experiments we used per-target extended
Kalman filters (EKFs) where the data association is per-
formed in a greedy manner using a maximum overlap
criterion. Note that the EKF trackers are not intended
to achieve the best possible performance, but rather to
quickly generate a variety of starting values. This is
accomplished by running the trackers several times with
different parameters. Usually, different starting values
converge to similar, albeit not identical solutions (see
Fig. 7).

5 IMPLEMENTATION

Before presenting the experiments we would like to
point out some implementation details.

Tracking area. In order to compute the distance to
valid entry and exit points to enforce persistent trajecto-
ries (cf . Eq. 7), the boundary of the tracking area needs to
be known. For our purposes we define a rectangular area
on the ground so as to facilitate the computation of the
distances. Targets outside its limits are excluded from the
solution. This is, however, not a major limitation because
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Fig. 8. The proposed jump moves make continuous optimization more flexible, allowing a variable number of targets. Even a poor
initial configuration can be used to recover the true trajectories. The ground truth is rendered in gray.

the quadrilateral formed by the forward-projected image
borders can easily be used instead as tracking area.

Run time. Given the detections, our current
MATLAB/MEX implementation takes approximately
1s/frame to obtain one solution using explicit
occlusion reasoning. Without the expensive occlusion
computation, the optimization runs an order of
magnitude faster, achieving near real-time performance.
Unfortunately, computing color information and its
derivatives for all pixels significantly slows down the
optimization. While this can still be improved, the use
of the appearance term is thus only recommended if
computation time does not play a crucial role.

Convergence. As stated in Alg. 1, the energy is mini-
mized until there is no jump that leads to a lower energy.
Convergence is usually reached quickly (after 5 to 10
iterations). We set a maximum of 15 iterations because
of timing constraints. Note that in some cases the results
may still improve with more computational resources.

Parameters. Although the precise parameter values
are highly dependent on the implementation at hand,
we state them here for completeness. The weights α
through ε are set to {.1, .02, .5, .7, .7} and λ=.1 in all our
experiments including the appearance term. Turning it
off (i.e. setting α = 0) also requires both δ and ε to be
decreased slightly to a value of .6 to achieve best results.
Finally, the setting for the basic energy without occlusion
handling works robustly with parameters β = .03, γ =
δ = ε = .6, λ = .075. Note that these parameter settings
have been chosen conservatively and are not necessarily
optimal for any particular dataset (cf . Fig. 9).

Our complete implementation together with all the
necessary additional data, including detector output and
ground truth, is available from the authors’ website.

6 EXPERIMENTS
In Sec. 3 we introduced an energy function that has been
conceived with the primary goal of accurately reflecting
the actual behavior of multiple interacting targets (cf .
Fig. 7). As a consequence, the energy minimization can
only be solved to local optimality, and there are no
theoretical guarantees about the goodness of the solu-
tion. Our claim is that minimizing this function will

nevertheless on average yield higher tracking accuracy.
To empirically support this claim we performed an
extensive experimental evaluation on various datasets.

Before presenting detailed quantitative results, we first
analyze our approach in two regards: First, we examine
the influence of the individual energy terms on the
tracking performance and the robustness of the chosen
parameters to variations of their respective values. Next,
we compare different optimization strategies and their
influence on the convergence rate and the final result.

6.1 Parameter study
Ideally, model parameters should be learned from ex-
ample data, however that would require a large amount
of annotated ground truth. We thus had to resort to
determining the model parameters manually, which is
not only tedious, but carries the danger of over-fitting. To
mitigate this, we use only one parameter set per method
for all test sequences, even though they exhibit strong
variations both visually and in terms of target behavior.

To examine the influence of each individual weight
of the energy in Eq. (1), we run our tracking algorithm
and modify the corresponding parameter while keeping
all the other ones fixed. In Fig. 9, for each term, the
relative change in performance, as measured by MOTA,
is plotted against the parameter value. For illustration,
the average mean-normalized value is shown along with
error bars, depicting the variation between various se-
quences. Note that even a relatively drastic scaling of
the weights (e.g., by a factor of 1/2 or 2) hardly affects
the overall performance. The strongest decline can be
observed when γ – the weight for target exclusion – is
set too low. This once again demonstrates the importance
of explicitly modeling the spatial dependencies to avoid
situations with overlapping targets. Moreover, we can
conclude that the results are stable over a range of set-
tings and tracking performance is only slightly affected
by parameter changes within a reasonable range.

6.2 Optimization strategies
There are many possible ways of integrating discon-
tinuous jump moves into an optimization scheme. To



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, MONTH 201? 11

Fig. 9. Influence of individual parameters on tracking performance. Each plot shows the relative change in performance (measured
by MOTA) by changing the weight of a single energy component while keeping the other ones fixed. The results shown here
are averaged over all datasets and normalized for better readability. The error bars indicate the standard deviation around the
mean. The parameter value used in our experiments is marked with a circle. As can be seen our choice of parameters is rather
conservative and does not correspond to the best set. This is an indication that the model has not been over-tuned on the given
test data.
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Fig. 10. Energy minimization with different optimization techniques on four exemplar sequences (see text for a detailed explanation
of the individual strategies). Our proposed optimization scheme described in section 4 corresponds to O4. The final tracking
accuracy w.r.t. ground truth is reported in parentheses for each case.

understand this choice, we conduct a set of experiments
that vary in the way the jumps are selected and applied.
They show that the exact choice is not critical, and
that the optimization scheme described in Sec. 4 is a
reasonable compromise between fast convergence and
low energy. To this end, we compare our results to
those obtained with five modified energy minimization
algorithms ranging from greedy to random (cf . Fig. 10).

To better understand their differences, let us first recall
our originally proposed scheme (Sec. 4). We alternate
between two distinct algorithms: (1) Purely continuous
conjugate gradient descent, which runs until conver-
gence or to a maximal number of iterations (here set to
30, which suffices to get close to a local minimum), and
(2) discontinuous jump moves that are executed for all
trajectories at once. We now examine the influence of five
alternative jump move strategies; the gradient descent is
left unchanged. Fig. 10 shows the results.

1) Out of all possible move types and trajectories, the
most greedy strategy O1 always chooses the best
possible modification of the current configuration,
i.e. the one that yields the largest decrease of the
energy value. Note that only one trajectory is mod-
ified between two continuous optimization runs,
which generally leads to slower convergence.

2) The less greedy O2 chooses the move type that
maximally reduces the energy as applied to all tra-
jectories simultaneously, rather than only one as for
O1. This often leads to a fast energy drop within the
first few iterations. However, the reached minimum
is usually not as strong as the one found with a

more random strategy, such as O4.
3) To evaluate the effect of greedily choosing tra-

jectories, O3 uses a predefined move order. The
difference to our method (O4) is that instead of
modifying all trajectories at once, the best one
is picked greedily. This severely limits the possi-
ble state space changes. Consequently, the search
largely stays within one region of the energy and
continuous optimization is not able to descend
much further. As a result, this optimization leads
to extremely slow convergence.

4) O4a also uses a prescribed move order, but modi-
fies all trajectories at each iteration, which signif-
icantly speeds up the optimization process. The
only difference between our proposed scheme (O4)
and O4a is that a different prescribed order of
the jump moves is used. As expected, these two
strategies are very close in terms of convergence
rate and the achieved results. This shows that the
move order does not play a crucial role on average.

5) Finally, O5 represents the most random strategy.
First, the move type is picked randomly each time.
Moreover, a ‘bad’ jump that increases the energy
is accepted with probability p, which is in turn
decreased with time: p = e−0.05·iter. This strategy
is reminiscent of simulated annealing methods. We
find that allowing jumps towards higher energy
regions delays the search and does not lead to
stronger minima. A more conservative strategy,
such as O4, finds its way towards regions of a lower
energy more quickly and more reliably.
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Method MOTA MOTP MT ML FM ID Rcl Prc

full 61.4 67.8 11 11 17 24 65.7 95.1
JM only 52.2 62.4 9 11 34 42 62.2 89.3
GD only 41.4 68.2 3 17 14 15 44.7 94.5
EKF 39.8 66.3 3 18 16 13 43.1 94.5

TABLE 2. Average optimization results with disabled gradient
descent (JM only) vs. disabled jump moves (GD only).

From our results (Fig. 10) we can thus conclude that
different optimization schedules lead to minima with a
comparable energy. The crucial aspect is to include jump
moves to escape weak local minima, since a purely con-
tinuous optimization is only able to search within a small
local neighborhood of the state space in case of non-
convex energies. However, the exact order, frequency,
and selection of jumps is of minor importance.

Finally, Tab. 2 shows two further experiments where
we either turn off the gradient descent-based optimiza-
tion and only perform the proposed discontinuous jump
moves (JM only) or vice versa (GD only). As expected, a
purely gradient descent-based optimization only slightly
improves the accuracy over the EKF initialization and
quickly terminates in a nearby local minimum. On the
other hand, the discontinuous jump moves do a good
job by sampling varying configurations of the solution
space, but are at the same time rather constrained to the
present shape of trajectories. Only by combining the two
schemes (full) is it possible to reach good optima of the
proposed energy.

6.3 Datasets
We validate our method on seven challenging, publicly
available video sequences. Six of them are part of the
PETS 2009/2010 benchmark [17], [18]. We only use the
first view of each sequence in all our experiments.
They are recorded outdoors from an elevated viewpoint,
corresponding to a typical surveillance setup. Note that
targets exhibit strong variation in appearance due to
shadows and lighting changes. The sequence S2L1 is
the most widely used in multi-target tracking literature.
Although it includes non-linear motion of targets, targets
in close proximity and a scene occluder, the results
seem to saturate on that sequence (tracking accuracy
> 90%). We therefore extend our test data with two
more difficult video sequences with high crowd density
(S2L2 and S2L3). To push our tracker to its limits, we
additionally use two even more difficult scenarios (S1L1-
2 and S1L2-1), which were originally intended for person
counting and density estimation, rather than for tracking
individuals. In these videos, pedestrians permanently
become occluded, providing only little image evidence
for our full-body person detector.

Finally, the TUD-Stadtmitte sequence [1] is a real-world
video filmed in a busy pedestrian street. Here, the size of
the pedestrians on the image plane varies significantly.
Moreover, the camera is positioned quite low, leading to
more complex occlusion patterns and rather inaccurate
ground plane locations (due to weak 3D geometry).

The annotated ground truth, the detector responses,
and the boundaries of the tracking area for all datasets
used here are publicly available on the authors’ website.

6.4 Metrics

Conducting an objective comparison of different tracking
methods is challenging for various reasons. First, the
importance of individual tracking failures is usually
application specific and should be weighted accordingly.
Second, the definition of a correct or incorrect tracker
output may itself be ambiguous, and usually requires
an additional parameter (e.g., a threshold) to assess both
the correctness and the precision of a tracker.

We follow the currently most widely accepted proto-
col, the CLEAR MOT [36] metrics, for quantitative evalu-
ation. Since all targets are tracked in 3D space, we com-
pute their distance to the manually annotated ground
truth on the ground plane and set the hit/miss thresh-
old to 1m. The Multi-Object Tracking Accuracy (MOTA)
combines three types of errors – false positives (FP),
missed targets (FN), and identity switches (ID) – and
is normalized such that the score of 100% corresponds
to no errors. All three error types are weighted equally.
We also report individual values for all errors, as well
as the number of fragmentations (FM) of ground truth
trajectories according to [28]. The Multi-Object Tracking
Precision (MOTP) measures the alignment of the tracker
output w.r.t. the ground truth. It reflects the average
distance between the output and the ground truth nor-
malized to the hit/miss threshold value. Mostly Lost
(ML) and Mostly Tracked (MT) scores are computed on
entire trajectories and measure how many ground truth
trajectories are lost (tracked for less than 20% of their life
span) or tracked successfully (tracked for at least 80%).

6.5 Quantitative evaluation

Table 3 gives the quantitative results for all metrics,
computed on all seven sequences individually. We report
the results of five methods: The full model including
occlusion reasoning and the appearance model, denoted
as OM+APP (see also Fig. 11 for a visual illustration).
For comparison, we also report results of our method
without appearance term, both without (no OM, [4]) and
with occlusion modeling (OM, [2]). Note that the results
for these two previous methods improve upon those
presented in the respective previous publication. The
results are compared to those of a state-of-the-art discrete
tracker [8], based on the k-shortest Paths (KSP) algorithm
on a regular grid as well as to a well-known boosted
particle filter (BPF) method [30]. Finally, we report the
tracking results of an extended Kalman filter (EKF)
(as described in Sec. 4.2) that we use as initialization.
Furthermore, we report the average performance across
several video sequences. Since the data exhibits a strong
variability in person count, we compute the average
performance for two separate groups of sequences: An
easier set (G1), containing less than 10 individuals per
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Sequence Method MOTA MOTP GT MT ML FP FN ID FM Rcll Prcsn Fa/F
PETS-S2L1 OM+APP 90.6 80.2 23 21 1 59 302 11 6 92.4 98.4 0.07
(795 frames) OM 88.6 76.9 23 21 0 259 171 19 12 95.7 93.6 0.33
(up to 8 targets) no OM 91.6 79.3 23 21 0 53 262 16 11 93.4 98.6 0.07

KSP [8] 80.3 72.0 23 17 2 126 641 13 22 83.8 96.3 0.16
EKF 68.0 76.5 23 9 1 65 1173 25 30 70.3 97.7 0.08

TUD-Stadtmitte OM+APP 71.1 65.5 9 7 0 92 108 4 3 84.7 86.7 0.51
(179 frames) OM 73.4 65.0 9 7 0 83 102 3 3 85.6 87.9 0.46
(up to 5 targets) no OM 68.0 67.1 9 5 1 49 172 5 4 75.7 91.6 0.27

KSP [8] 45.8 56.7 9 1 1 117 261 5 15 63.1 79.2 0.65
EKF 58.2 58.3 9 3 0 115 172 2 6 75.1 81.9 0.65

PETS-S3-MF1 OM+APP 96.7 82.7 7 7 0 5 12 0 0 97.7 99.0 0.05
(107 frames) OM 94.7 82.6 7 7 0 12 12 3 1 97.7 97.7 0.11
(up to 7 targets) no OM 97.1 83.4 7 7 0 3 12 0 0 97.7 99.4 0.03

KSP [8] 83.7 77.8 7 6 1 22 62 0 0 87.9 95.4 0.21
EKF 66.7 81.9 7 2 0 0 169 0 1 66.7 100.0 0.00

PETS-S2L2 OM+APP 56.9 59.4 74 28 12 622 2881 99 73 65.5 89.8 1.43
(436 frames) OM 57.2 59.7 74 31 8 772 2684 120 87 67.9 88.0 1.77
(up to 33 targets) no OM 51.9 60.1 74 18 11 434 3473 115 86 58.4 91.8 1.00

KSP [8] 24.2 60.9 74 7 40 193 6117 22 38 26.8 92.1 0.44
EKF 28.6 60.3 74 2 32 280 5565 74 116 32.9 90.7 0.64

PETS-S2L3 OM+APP 45.4 64.6 44 9 18 169 1572 38 27 51.8 90.9 0.70
(240 frames) OM 43.9 61.4 44 11 20 214 1586 28 22 51.3 88.7 0.89
(up to 42 targets) no OM 44.1 65.8 44 9 22 89 1694 38 22 48.0 94.6 0.37

KSP [8] 28.8 61.8 44 5 31 45 2269 7 12 30.4 95.7 0.19
EKF 20.4 63.3 44 1 35 13 2543 8 33 21.1 98.1 0.05

PETS-S1L1-2 OM+APP 57.9 59.7 36 19 11 148 918 21 13 64.5 91.8 0.61
(241 frames) OM 57.8 61.9 36 18 8 188 875 27 20 66.2 90.1 0.78
(up to 20 targets) no OM 59.0 59.2 36 16 4 118 921 22 16 64.4 93.4 0.49

KSP [8] 51.5 64.8 36 16 14 98 1151 4 8 55.5 93.6 0.41
EKF 34.6 63.2 36 3 17 10 1664 6 18 35.2 98.9 0.04

PETS-S1L2-1 OM+APP 30.8 49.0 43 7 20 227 2308 61 35 38.5 86.4 1.13
(201 frames) OM 31.4 53.2 43 7 19 177 2347 51 45 37.4 88.8 0.88
(up to 42 targets) no OM 26.3 53.5 43 7 23 171 2530 64 36 32.6 87.7 0.85

KSP [8] 19.5 60.6 43 4 29 64 2950 7 11 21.4 92.6 0.32
EKF 9.5 53.1 43 0 34 38 3326 28 46 11.3 91.8 0.19

mean (G1) Det (HOG+HOF) - - - - - 900.7 158.0 - - 89.1 60.6 2.7
(low density) OM+APP 86.1 76.1 13.0 11.7 0.3 52.0 140.7 5.0 3.0 91.6 94.7 0.2

OM 85.6 74.8 13.0 11.7 0.0 118.0 95.0 8.3 5.3 93.0 93.1 0.3
no OM 85.6 76.6 13.0 11.0 0.3 35.0 148.7 7.0 5.0 88.9 96.5 0.1
KSP [8] 69.9 68.8 13.0 8.0 1.3 88.3 321.3 6.0 12.3 78.3 90.3 0.3

BPF [30] 45.4 68.2 13.0 8.7 0.3 566.7 317.0 34.0 43.7 81.1 70.6 1.5
EKF 64.3 72.2 13.0 4.7 0.3 60.0 504.7 9.0 12.3 70.7 93.2 0.2

mean (G2) Det (HOG+HOF) - - - - - 1331.8 1919.5 - - 56.5 66.4 4.4
(high density) OM+APP 47.8 58.2 49.2 15.8 15.2 291.5 1919.8 54.8 37.0 55.1 89.7 1.0

OM 47.6 59.1 49.2 16.8 13.8 337.8 1873.0 56.5 43.5 55.7 88.9 1.1
no OM 45.3 59.7 49.2 12.5 15.0 203.0 2154.5 59.8 40.0 50.8 91.9 0.7
KSP [8] 31.0 62.0 49.2 8.0 28.5 100.0 3121.8 10.0 17.2 33.5 93.5 0.3

BPF [30] 30.1 62.7 49.2 6.2 21.5 257.0 2773.8 91.8 143.5 36.9 88.4 0.8
EKF 23.3 60.0 49.2 1.5 29.5 85.2 3274.5 29.0 53.2 25.1 94.9 0.2

TABLE 3. Quantitative results on all datasets. Due to the large variability in the number of targets (see annotation), we report
averages over the easier (G1, first three datasets) and the four more challenging sequences (G2) separately. We additionally report
the average performance of the underlying people detector.

frame, and a more challenging group (G2), where up to
42 pedestrians are present simultaneously.

As expected, explicitly taking occlusion into account
increases the overall tracking accuracy (MOTA). How-
ever, in less dense tracking scenarios occlusion compu-
tation cannot show its benefits, because pedestrians are
fully visible most of the time. On the other hand, in
crowded environments the accuracy increases by over
2 percentage points on average, and over 5 percent-
age points in the most difficult case (PETS-S2L2). The
number of mostly tracked targets rises by 35%, while
having almost 10% fewer trajectories that are mostly lost
without modeling occlusions.

Compared to our full tracking system including occlu-

sion reasoning (OM), the appearance model forces some
parts of the tracks to be removed, thereby raising the
amount of missed targets by ≈ 5% on average. At the
same time, the number of ID swaps is almost halved
for the low density group and still reduced by ≈ 3% in
the difficult cases. More prominent is the effect on false
alarms. The use of the appearance model weeds out 56%
of all false positive detections in less dense scenarios,
yielding a false alarm rate of only .2 targets per frame.
Even though including the appearance model does not
lead to higher combined accuracy score in every single
case, it turns out to improve the performance on average
and must not be ignored when the correct identification
of targets is crucial.
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For a comparison to tracking on a discrete grid [8],
the detections are projected onto the ground plane and
the target evidence is distributed to all neighboring cells
according to a normal distribution. The corresponding
parameters have been manually determined to yield the
best possible results. Discrete global optimization clearly
outperforms the recursive tracker (EKF) in terms of accu-
racy, by recovering more trajectories while better keeping
track of the target identities. However, the proposed
continuous scheme outperforms the discrete tracker on
all sequences. Moreover, the spatial discretization limits
the achievable precision. This becomes most apparent
in the low density setting (G1) where targets can be
localized more precisely by the detector. Here, the MOTP
score is 3.4% lower than that of a Kalman filter and 6.5%
lower than our best result (OM+APP).

To compare our method to another baseline we use a
recent implementation of the boosted particle filter (BPF)
[30] where we tuned the parameters to achieve the best
possible results. We only report the average performance
on both sets of sequences. While this method recovers
substantially more tracks than the Kalman filter, it strug-
gles to suppress persistent false detections which in turn
leads to a low precision value.

7 CONCLUSION

We have presented a continuous energy minimization
framework for multi-target tracking, which included
explicit occlusion reasoning and appearance modeling.
Contrary to many previous non-recursive tracking meth-
ods, our aim was to forgo (near) global optimizabil-
ity and instead model (most of) the crucial aspects
of tracking multiple targets as closely as possible. All
components are modeled by closed-form, continuously
differentiable functions, which allowed for an efficient
evaluation of the gradient in closed form. The resulting
non-convex energy is minimized by both, a local gra-
dient descent search and a set of discontinuous jump
moves. Although the energy can only be minimized
locally, an extensive experimental evaluation on several
challenging datasets showed that our approach leads to
very competitive results, both visually and in terms of
quantitative evaluation w.r.t. to ground truth. Although
the novel, differentiable appearance model does not
lead to a consistent accuracy improvement across all
sequences, it significantly reduces the number of false
positives and identity switches, which are an important
factor in various applications.

In future work we plan to integrate part-based de-
tections into our framework to achieve a higher recall,
thereby raising the tracking performance further. More-
over, it is desirable to go beyond hand-crafted energies
and turn to machine learning techniques to facilitate and
automate the process of finding an appropriate set of
parameters, or even the functional form of the energy
components from training data. To facilitate that, more
extensive annotated data sets need to be created.
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