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ABSTRACT:

Three-dimensional reconstruction of dynamic scenes is an important prerequisite for applications like mobile robotics or autonomous
driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very chal-
lenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly
about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable
CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the ren-
dered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index
variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of
object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

1. INTRODUCTION

3D reconstruction of dynamic scenes is an important building
block of many applications in mobile robotics and autonomous
driving. In the context of highly dynamic environments, the ro-
bust identification and reconstruction of individually moving ob-
jects are fundamental tasks as they enable save autonomous navi-
gation of mobile platforms and precise interaction with surround-
ing objects. In image sequences, motion cues are amongst the
most powerful features for separating foreground objects from
the background. While approaches for monocular optical flow
estimation have matured since the seminal work of (Horn and
Schunck, 1980) 35 years ago, they still struggle with real world
conditions such as non-lambertian surfaces, variable illumination
conditions, untextured surfaces and large displacements. Apart
from more sophisticated regularizers, stereo information provides
a valuable source of information as it can be used to further con-
strain the problem. Furthermore, depth information allows for
a more meaningful parametrization of the problem in 3D object
space. Recent algorithms for scene flow estimation leverage this
fact (Vogel et al., 2013, Vogel et al., 2014) and provide promis-
ing segmentations of the images into individually moving objects
(Menze and Geiger, 2015).

In this paper, we build upon the method of (Menze and Geiger,
2015) but go one step further: Instead of simply decomposing
the scene into a set of individually moving regions which share
a common rigid motion, we decompose the scene into 3D ob-
jects and in addition to the rigid motion also model their pose and
shape in 3D. Towards this goal, we incorporate a deformable 3D
model of vehicles into the scene flow estimation process. More
specifically, we exploit the Eigenspace-based representation of
(Zia et al., 2011) which has previously been used in the context
of pose estimation from a single image. Given two stereo pairs as
input, our model jointly infers the number of vehicles, their shape
and pose parameters, as well as a dense 3D scene flow field. The
problem is formalized as energy minimization on a conditional
random field encouraging projected object hypotheses to agree
with the estimated motion and depth. A representative result is
shown in Fig. 1 which depicts scene flow estimates projected to
disparity and optical flow as well as the result of model-based
reconstruction.

Figure 1. Result of Model-based Reconstruction. The green
wire-frame representation is superimposed to the inferred dispar-
ity (top) and optical flow map (bottom).

The remainder of this paper is structured as follows. We first pro-
vide a brief summary of related work in Section 2. and a detailed
formal description of the proposed method in Section 3. In Sec-
tion 4. we present results for dynamic scenes on the novel KITTI
scene flow dataset proposed by (Menze and Geiger, 2015). We
conclude the paper in Section 5.

2. RELATED WORK

In this section, we provide a brief overview over the state-of-the-
art in scene flow estimation as well as related work on integrating
3D models into reconstruction.

Scene flow estimation has first been addressed by (Vedula et al.,
1999, Vedula et al., 2005) who define scene flow as a flow field
describing the 3D motion at every point in the scene. Like in
classical optical flow estimation (Horn and Schunck, 1980), the
problem is often formulated in a coarse-to-fine variational set-
ting (Basha et al., 2013, Huguet and Devernay, 2007, Pons et al.,
2007, Valgaerts et al., 2010, Wedel et al., 2011, Vogel et al., 2011)



and local regularizers are leveraged to encourage smoothness in
depth and motion. As in optical flow estimation, this approach
eventually fails to recover large displacements of small objects.
Following recent developments in optical flow (Yamaguchi et al.,
2013, Nir et al., 2008, Wulff and Black, 2014, Sun et al., 2013)
and stereo (Yamaguchi et al., 2014, Bleyer et al., 2011, Bleyer et
al., 2012), Vogel et al. (Vogel et al., 2013, Vogel et al., 2014) pro-
posed a slanted-plane model which assigns each pixel to an image
segment and each segment to one of several rigidly moving 3D
plane proposals, thus casting the task as a discrete optimization
problem. Fusion moves are leveraged for solving binary sub-
problems with quadratic pseudo-boolean optimization (QPBO)
(Rother et al., 2007). Their approach yields promising results on
challenging outdoor scenes as provided by the KITTI stereo and
optical flow benchmarks (Geiger et al., 2012). More recently,
(Menze and Geiger, 2015) noticed that many structures in the
visual world move rigidly and thus decompose the scene into
a small number of rigidly moving objects and the background.
They jointly estimate the segmentation as well as the motion of
the objects and the 3D geometry of the scene. In addition to
segmenting the objects according to their motion (which doesn’t
guarantee instances to be separated), in this paper, we propose
to also estimate their shape and pose parameters. Thus, we infer
a parametrized reconstruction of all moving vehicles in the 3D
scene jointly with the 3D scene flow itself.

3D Models have a long history in supporting 3D reconstruction
from images (Szeliski, 2011). Pioneering work, e.g. by (Debevec
et al., 1996) made use of shape primitives to support photogram-
metric modelling of buildings. While modelling generic objects,
like buildings, is a very challenging task, there are tractable ap-
proaches to formalizing the geometry of objects with moderate
intra-class variability, like faces and cars. A notable example is
the active shape model (ASM) proposed by (Cootes et al., 1995)
where principal component analysis of a set of annotated training
examples yields the most important deformations between simi-
lar shapes. (Bao et al., 2013) compute a mean shape of the ob-
served object class along with a set of discrete anchor points. Us-
ing HOG features, they adapt the mean shape to a newly observed
instance of the object by registering the anchor points. (Güney
and Geiger, 2015) leverage semantic information to sample CAD
shapes with an application to binocular stereo matching. (Dame
et al., 2013) use an object detector to infer the initial pose and
shape parameters for an object model which they then optimize
in a variational SLAM framework. Recently, (Prisacariu et al.,
2013) proposed an efficient way to compress prior information
from CAD models with complex shape variations using Gaus-
sian Process Latent Variable Models. (Zia et al., 2013a, Zia et al.,
2013b, Zia et al., 2015) revisited the idea of the ASM and applied
it to a set of manually annotated CAD models to derive detailed
3D geometric object class representations. While they tackle the
problem of object recognition and pose estimation from single
images, in this paper, we make use of such models in the context
of 3D scene flow estimation.

3. METHOD

Our aim is to jointly estimate optimal scene flow parameters for
each pixel in a reference image and a parametrized reconstruc-
tion of individually moving vehicles as shown in Fig. 2. The pro-
posed algorithm works on the classical scene flow input consist-
ing of two consecutive stereo image pairs of calibrated cameras.
We define the first image from the left camera as the reference
view. Following the state-of-the-art, we approximate 3D scene
geometry with a set of planar segments which are derived from
superpixels in the reference view (Yamaguchi et al., 2013). Like

Figure 2. Data and Shape Terms. Each superpixel si in the
reference view is matched to corresponding image patches in the
three remaining views. Its shape and motion are encouraged to
agree with the jointly estimated 3D object model.

(Menze and Geiger, 2015), we assume a finite number of rigidly
moving objects in the scene. It is important to note that using this
formulation, the background can be considered as yet another ob-
ject. The only difference is that we do not estimate a 3D model
for the background component.

In this section, we first give a formal definition of our model
and the constituting energy terms for data, shape and smooth-
ness. Then, the employed active shape model and the inference
algorithm are explained in detail.

3.1 Problem statement

Let S and O denote the set of superpixels and objects, respec-
tively. Each superpixel si ∈ S is associated with a region Ri
in the image and a random variable (ni, li)

T where ni ∈ R3

describes a plane in 3D (nTi x = 1 for points x ∈ R3 on the
plane) and li ∈ {1, . . . , |O|} is a label assigning the superpixel
to an object. Each object ok ∈ O is associated with a random
variable (ξk, γk,Rk, tk)T comprising its state. ξk ∈ R3 deter-
mines the pose, i.e. the position (2D coordinates in the ground
plane) and the orientation of the object in terms of its heading
angle. γk ∈ R2 contains the parameters determining the shape
of the 3D model. Rk ∈ SO(3) and tk ∈ R3 describe the rigid
body motion of object ok in 3D, i.e. the rotation and translation
relating the poses of the object at subsequent time steps. Each
superpixel si is associated with an object via li. Thus, the super-
pixel inherits the rigid motion parameters of the respective object
(Rli , tli) ∈ SE(3). In combination with the plane parameters
ni, this fully determines the 3D scene flow at each pixel inside
the superpixel.

Given the left and right input images of two consecutive stereo
frames at t0 and t1, our goal is to infer the 3D geometry, i.e.
the plane parameters ni of each superpixel and its object label
li together with the rigid body motion, the pose and the shape
parameters of each object. We specify our model as a conditional
random field (CRF) in terms of the following energy function

E(s,o) =
∑
i∈S

[ϕi(si,o)︸ ︷︷ ︸
data

+κi(si,o)︸ ︷︷ ︸
shape

] +
∑
i∼j

ψij(si, sj)︸ ︷︷ ︸
smoothness

(1)

where s = {si|i ∈ S}, o = {ok|k ∈ O}, and i ∼ j denotes the
set of adjacent superpixels in S. We use the same data term ϕ(·)
and the same smoothness term ψ(·) as proposed in (Menze and
Geiger, 2015), and add an additional shape term κ(·) to model
the pose and shape of the objects in 3D. To make the paper self-
contained, we will briefly review the data term before we provide
the formal description of the novel shape term.



3.2 Data Term

Data fidelity of corresponding image points is enforced with re-
spect to all four input images in a combined data term depending
on shape and motion. Since both entities are encoded in different
random variables, the data term is defined as a pairwise potential
between superpixels and objects

ϕi(si,o) =
∑
k∈O

[li = k] ·Di(ni,ok) (2)

where li assigns superpixel i to a specific object and [·] denotes
the Iverson bracket, which returns 1 if the condition in square
brackets is satisfied and 0 otherwise. Thus, the actual data term
Di(n,o) is only evaluated with respect to the selected object.
It comprises three components: A stereo, an optical flow and a
cross term which relate the reference view (left image at t0) to
the three remaining images, as depicted in Fig. 2:

Di(n,o) = Dstereo
i (n,o) +Dflow

i (n,o) +Dcross
i (n,o)

Note that this term depends on the plane parameters n of the su-
perpixel and the rigid motion parameters of the object o. Each
sub-term sums matching costs C of all pixels p inside the re-
gion R of superpixel i. As we assume that the geometry within
a superpixel can be approximated by a local plane, we are able
to warp pixels from the reference view to the other images using
homographies computed from n and o:

Dx
i (n,o) =

∑
p∈Ri

Cx
(
p, K

(
Rx(o)− tx(o) · nT

)
K−1︸ ︷︷ ︸

3×3 homography

p
)

The superscript of D indicates which image is compared to the
reference view, with x ∈ {stereo, flow, cross}. Without loss of
generality, the camera calibration matrix K ∈ R3×3 is assumed
to be the same for both cameras. The matching cost Cx(p,q) is
a dissimilarity measure between a pixel at location p ∈ R2 in
the reference image and a pixel at location q ∈ R2 in the target
image.

In this work, we evaluate two types of features and defineCx(p,q)
as the weighted sum of matching costs based on dense Census
features (Zabih and Woodfill, 1994) and sparse disparity and op-
tical flow observations:

Cx(p,q) = θ1,x C
dense
x (p,q) + θ2,x C

sparse
x (p,q)

The dense matching cost is computed as the truncated Hamming
distance between Census features. Pixels leaving the target image
are penalized with a truncation value. As precomputed disparity
estimates (Hirschmüller, 2008) and optical flow features (Geiger
et al., 2011) are not available for every pixel, we calculate Csparse

x

only at locations for which observations exist. More specifically,
we define Csparse

x as the robust l2 distance between the warped
pixel πx(p) and the expected pixel q

Csparse
x (p,q) =

{
ρτ1
(
‖πx(p)− q‖2

)
if p ∈ Πx

0 otherwise

where ρτi(x) denotes the robust truncated penalty function
ρτi(x) = min(|x|, τi) with threshold τi and πx(p) denotes the
pixel p, warped according to the set of sparse feature correspon-
dences. Πx is the set of pixels in the reference image for which
correspondences have been established. For more details, we re-
fer the reader to (Menze and Geiger, 2015).

3.3 Shape and Pose Consistency Term

Our novel shape consistency term enforces consistency between
the 3D plane of superpixel si and the pose and shape of the refer-
enced object. Similarly to the data term, we can take advantage of
the fact that this term decomposes into computationally tractable
pairwise potentials between superpixels and objects:

κi(si,o) =
∑
k∈O

([li = k] · Si(ni,ok)

+ [li 6= k ∧ k > 1] ·Oik(ok))

(3)

Here, Si(ni,ok) enforces consistency between the shape of ob-
ject ok and the 3D plane described by ni. In analogy with the
data term, shape consistency is evaluated with respect to the ob-
ject associated with the superpixel via li. We define the penalty
function Si as

Si(n,o) =

{
Cbg if o is background
Cobj
i (n,o) otherwise

where Cbg denotes a constant penalty for superpixels associated
with the background, and Cobj

i (n,o) denotes the sum of the trun-
cated absolute differences between the 3D model of object ok
projected to a disparity map (see Section 3.5) and the disparities
induced by the 3D plane ni. Differences are computed for all
pixels inside Ri which coincide with the projection of ok. Re-
maining, uncovered pixels are penalized with a multiple of Cbg.
Note that in contrast to the data term Di this term evaluates the
consistency between the deformed shape model and the recon-
structed superpixels.

The second part of Eq. 3 is the occlusion penalty Oik. It penal-
izes a possible overlap between parts of a foreground model and
superpixels that are assigned to a different object via the argu-
ments of the leading Iverson bracket. The overlap penalty itself
is chosen to be proportional to the overlap of the projected model
of object ok with the superpixel si. This term is crucial to avoid
object models from exceeding the true object boundaries.

3.4 Smoothness Term

To encourage smooth surface shape and orientation as well as
compact objects, the following smoothness potential is defined
on the CRF:

ψij(si, sj) = θ3 ψ
depth
ij (ni,nj) + (4)

θ4 ψ
orient
ij (ni,nj) + θ5 ψ

motion
ij (si, sj)

The weights θ control the influence of the three constituting terms.
First, regularization of depth is achieved by penalizing different
disparity values d at shared boundary pixels Bij :

ψdepth
ij (ni,nj) =

∑
p∈Bij

ρτ2 (d(ni,p)− d(nj ,p))

Second, the orientation of neighboring planes is encouraged to be
similar by evaluating the difference of plane normals n

ψorient
ij (ni,nj) = ρτ3

(
1− |nTi nj |/(‖ni‖‖nj‖)

)
Finally, coherence of the assigned object indices is enforced by
an orientation-sensitive Potts model:

ψmotion
ij (si, sj) = w(ni,nj) · [li 6= lj ]



Figure 3. 3D Object Model. Mean shape (center, γ = (0, 0)) and two instances illustrating the range of possible deformations with
shape parameters γleft = (−1.0,−0.8) and γright = (1.0, 0.8).

The weight w(·, ·) in the coherence term is defined as

w(ni,nj) = exp

− λ

|Bij |
∑

p∈Bij

(d(ni,p)− d(nj ,p))2


× |nTi nj |/(‖ni‖‖nj‖)

and prefers motion boundaries that coincide with folds in 3D.
Here, λ is the shape parameter of the penalty function which is
normalized by the number of shared boundary pixels |Bij |.

3.5 3D Object Model

For encoding prior knowledge about the objects {ok|k ∈ O} and
in order to restrict the high-dimensional space of possible shapes,
we follow (Zia et al., 2013b) and use their 3D active shape model.
In particular, we apply principal component analysis to a set of
characteristic keypoints on manually annotated 3D CAD models.
This results in a mean model over vertices as well as the direc-
tions of the most dominant deformations between the samples in
the training set. In our CRF, the shape parameters γk of object
ok are optimized for consistency with the jointly estimated su-
perpixels. The deformed vertex positions v are specified by a
linear sub-space model

v(γk) = m +
∑

i={1,2}

γ
(i)
k ei (5)

where m is the vertex mean and ei denotes the i’th eigenvector
weighted by the standard deviation of the corresponding eigen-
value. We define a triangular mesh for the vertices v(γk), trans-
form it according to the object pose ξk and render a virtual dispar-
ity map1 for the reference image in order to calculate the shape
consistency term in Section 3.3.

Fig. 3 depicts the mean shape in the center and deformed versions
of the model on the left and right, illustrating the range of differ-
ent layouts covered by the first two principal components. While
the first principal component accounts mostly for the size of the
object, the second component determines its general shape. We
limit our model to the first two principal components as we found
this to be an appropriate tradeoff between model complexity and
the quality of the approximation.

3.6 Inference

Due to the inherent combinatorial complexity and the mixed
discrete-continuous variables, optimizing the CRF specified in
Eq. 1 with respect to all superpixels and objects is an NP-hard
problem. To minimize the energy, we iteratively and adaptively
discretize the domains of the continuous variables in the outer

1http://www.cvlibs.net/software/librender/

loop of a max-product particle belief propagation (MP-PBP)
framework (Trinh and McAllester, 2009, Pacheco et al., 2014).
In the inner loop, we employ sequential tree-reweighted message
passing (TRW-S) (Kolmogorov, 2006) to infer an approximate
solution given the current set of particles.

To keep the computational burden tractable, we perform informed
sampling of pose and shape parameters. In each iteration of the
outer loop, we draw 50 particles, jointly sampling pose and shape
from normal distributions centered at the preceding MAP solu-
tion. The respective standard deviations are iteratively reduced.
To prune the proposals, the shape consistency term, Eq. 3, is eval-
uated for each particle with respect to the superpixels’ MAP so-
lution of the previous iteration. Only the best particle is kept and
introduced into the optimization of Eq. 1.

In our implementation, we further use 10 shape particles for each
superpixel, 5 particles for object motion, and 10 iterations of MP-
PBP. All motion particles and half of the superpixel plane parti-
cles are drawn from a normal distribution centered at the MAP
solution of the last iteration. The remaining plane particles are
proposed using the plane parameters from spatially neighboring
superpixels.

4. EXPERIMENTAL RESULTS

To demonstrate the value of our approach, we process challeng-
ing scenes from the scene flow dataset proposed by (Menze and
Geiger, 2015). As we evaluate additional metrics regarding the
quality of the estimated objects we use a set of representative
training images for which ground truth information is publicly
available. The observations evaluated in the data term comprise
densely computed differences of Census features and additional
sparse features. We use optical flow from feature point corre-
spondences (Geiger et al., 2011) and precomputed disparity maps
using semiglobal matching (SGM) (Hirschmüller, 2008). Sparse
cross features, connecting the reference view with the right image
at t1, are computed by combining the optical flow matches with
valid disparities from the SGM maps. We initialize all superpixel
boundaries and their shape parameters using the StereoSLIC al-
gorithm (Yamaguchi et al., 2013) with a parameter setting that
yields approximately 1000 superpixels for the used input images.
One typical oversegmentation of a car is depicted in Fig. 4. While
most of the outline is faithfully recovered, shadows can lead to
bleeding artifacts.

Figure 4. Superpixels. Typical oversegmentation of a car.

http://www.cvlibs.net/software/librender/


D1 D2 Fl SF
bg fg bg&fg bg fg bg&fg bg fg bg&fg bg fg bg&fg

(Menze and Geiger, 2015) 4.71 4.79 4.72 5.44 10.69 6.14 5.95 24.16 8.37 7.39 24.68 9.68
Ours 4.94 4.24 4.84 5.68 9.32 6.16 6.21 19.70 8.00 7.53 19.99 9.18

Table 1. Scene Flow Error. This table shows the benefits of integrating the proposed object model, evaluated for all results shown in
the paper. We specify the percentage of outliers with respect to disparity estimates in the subsequent stereo pairs (D1,D2), optical flow
in the reference frame (Fl) and the complete scene flow vectors (SF). See text for details.

Rigid body motions are initialized by greedily extracting motion
estimates from sparse scene flow vectors (Geiger et al., 2011) as
follows: We iteratively estimate rigid body motions using the 3-
point RANSAC algorithm on clusters of similar motion vectors
and chose promising subsets with a large number of inliers using
non-maxima suppression. The mean positions and the moving
direction of the best hypotheses are used as initial values for the
object pose parameters ξ. This leads to spurious object hypothe-
ses, as evidenced by Fig. 5, which are pruned during inference be-
cause no superpixels are assigned to them. In our experiments, γ
comprises two shape parameters controlling the two most signifi-
cant principal components of the ASM. We initialize each object
with the mean shape of the model by setting its shape parameters
γ to zero. To compute the shape consistency term in Eq. 3, we
use OpenGL to render all object proposals and compare the re-
sulting disparity maps to those induced by the shape particles of
each superpixel. In our non-optimized implementation, inference
takes more than one minute on a single core, thus the method is
not yet applicable to scenarios with real-time constraints.

Qualitative Results: Fig. 5 and Fig. 6 illustrate resulting dis-
parity, optical flow and wire-frame renderings of the object mo-
dels superimposed to the respective reference views of eight rep-
resentative scenes. The top part of each sub-figure depicts the
layout after initialization as described above. In most cases, the
shapes do not match the observed cars and there are some sig-
nificant positional offsets. In addition, there are spurious objects
initialized due to wrong object hypotheses. The lower part shows
our reconstruction results after optimizing Eq. 1. Objects which
are not referred to by any of the superpixels are considered absent
and thus not drawn. For all examples shown in Fig. 5, the model
position is successfully aligned with the observed object and the
shape of the model is faithfully adapted to the depicted cars. Spu-
rious hypotheses are removed, demonstrating the intrinsic model
selection capabilities of our approach. Sub-figures (b,c) of Fig. 6
contain successfully reconstructed cars in the foreground. Some
of the spurious objects are removed while others remain in the
final result. This is due to strong erroneous motion cues in the
respective image patches contradicting the estimated background
motion. Note that for visualization we only render fully visible
faces of the CAD models. The last sub-figure (d) of Fig. 6 shows
a failure case of the approach: Here, object hypotheses with many
inliers occur in the very challenging regions next to the road. The
numbers in the sub-captions specify the intersection-over-union
(IOU) of the estimated object shape with respect to ground truth
at initialization and after optimization as explained in the next
paragraph.

Shape Adaption: To quantify the improvement gained by opti-
mizing the model parameters, we evaluate the intersection-over-
union criterion which is frequently used for evaluating segmen-
tation and object detection in the literature. In particular, we
compare the ground truth mask of the annotated objects to the
mask of the projected 3D model as inferred by our method. We
discard objects without successful initialization and report the
intersection-over-union averaged over all detected cars. Table 2
compares the results after initialization to our final results. Al-
though one car which has been correctly initialized is removed

during optimization (cf. Fig. 5(b)), the averaged result is signifi-
cantly improved.

Initialization 0.54
After optimization 0.67

Table 2. Model Coverage. Intersection-over-union (IOU), aver-
aged over all foreground objects before and after optimization.

Scene Flow Error: The quantitative effect of incorporating the
3D object model is shown in Table 1 which specifies the mean
percentage of outliers for all eight examples shown in Fig. 5
and Fig. 6 using the evaluation metrics proposed in (Menze and
Geiger, 2015), i.e., a pixel is considered as outlier if the estimated
disparity (D1,D2) or optical flow (Fl) exceeds 3 pixels as well as
5% of its true value. As a baseline, we optimize Eq. 1 without
the shape consistency term κ and sample only motion particles
for the objects instead, corresponding to the method of (Menze
and Geiger, 2015). In contrast, our full model (“Ours”) also opti-
mizes shape and pose parameters of the 3D model as described in
Section 3. Table 1 shows that the performance for background re-
gions (bg) slightly decreases in all categories while there is a sig-
nificant improvement of 5 percentage points for the foreground
objects (fg) and moderately improved results for the combined
scene flow metric (bg&fg).

5. CONCLUSIONS

We extended the scene flow algorithm of (Menze and Geiger,
2015) by a deformable 3D object model to jointly recover the 3D
scene flow as well as the 3D geometry of all vehicles in the scene.
Our results show that the estimation of only 5 model parameters
yields accurate parametric reconstructions for a range of different
cars. In the future, we plan to incorporate additional observations
of a class-specific object detector as well as to estimate motion
over multiple frames in order to improve completeness of the re-
tained objects and to further increase robustness against spurious
outliers.
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