
A Large Dataset to Train Convolutional Networks
for Disparity, Optical Flow, and Scene Flow Estimation

Nikolaus Mayer∗1, Eddy Ilg∗1, Philip Häusser∗2, Philipp Fischer∗1†
1University of Freiburg 2Technical University of Munich

1{mayern,ilg,fischer}@cs.uni-freiburg.de 2haeusser@cs.tum.edu

Daniel Cremers
Technical University of Munich

cremers@tum.de

Alexey Dosovitskiy, Thomas Brox
University of Freiburg

{dosovits,brox}@cs.uni-freiburg.de

Abstract

Recent work has shown that optical flow estimation can
be formulated as a supervised learning task and can be suc-
cessfully solved with convolutional networks. Training of
the so-called FlowNet was enabled by a large synthetically
generated dataset. The present paper extends the concept
of optical flow estimation via convolutional networks to dis-
parity and scene flow estimation. To this end, we propose
three synthetic stereo video datasets with sufficient realism,
variation, and size to successfully train large networks. Our
datasets are the first large-scale datasets to enable training
and evaluating scene flow methods. Besides the datasets,
we present a convolutional network for real-time disparity
estimation that provides state-of-the-art results. By combin-
ing a flow and disparity estimation network and training it
jointly, we demonstrate the first scene flow estimation with
a convolutional network.

1. Introduction
Estimating scene flow means providing the depth and 3D

motion vectors of all visible points in a stereo video. It is
the “royal league” task when it comes to reconstruction and
motion estimation and provides an important basis for nu-
merous higher-level challenges such as advanced driver as-
sistance and autonomous systems. Research over the last
decades has focused on its subtasks, namely disparity esti-
mation and optical flow estimation, with considerable suc-
cess. The full scene flow problem has not been explored
to the same extent. While partial scene flow can be simply
assembled from the subtask results, it is expected that the
joint estimation of all components would be advantageous,

∗These authors contributed equally
†Supported by the Deutsche Telekom Stiftung

Figure 1. Our datasets provide over 35 000 stereo frames with
dense ground truth for optical flow, disparity and disparity change,
as well as other data such as object segmentation.

with regard to both efficiency and accuracy. One reason for
scene flow being less explored than its subtasks seems to be
a shortage of fully annotated ground truth data.

The availability of such data has become even more im-
portant in the era of convolutional networks. Dosovitskiy
et al. [4] showed that optical flow estimation can be posed
as a supervised learning problem and can be solved with a
large network. For training their network, they created a
simple synthetic 2D dataset of flying chairs, which proved
to be sufficient to predict accurate optical flow in general
videos. These results suggest that also disparities and scene
flow can be estimated via a convolutional network, ideally
jointly, efficiently, and in real-time. What is missing to im-
plement this idea is a large dataset with sufficient realism
and variability to train such a network and to evaluate its
performance.

1

ar
X

iv
:1

51
2.

02
13

4v
1 

 [
cs

.C
V

] 
 7

 D
ec

 2
01

5



Dataset MPI Sintel [2] KITTI Benchmark Suite [17] SUN3D[27] NYU2[18] Ours
2012 2015 FlyingThings3D Monkaa Driving

#Training frames 1 064 194 800 2.5M 1 449 21 818 8 591 4 392
#Test frames 564 195 800 — — 4 248 — —
#Training scenes 25 194 200 415 464 2 247 8 1
Resolution 1024×436 1226×370 1242×375 640×480 640×480 960×540 960×540 960×540
Disparity/Depth 3 sparse sparse 3 3 3 3 3
Disparity change 7 7 7 7 7 3 3 3
Optical flow 3 (sparse) (sparse) 7 7 3 3 3

Segmentation 3 7 7 (3) 3 3 3 3
Motion boundaries 3 7 7 7 7 3 3 3
Naturalism (3) 3 3 3 3 7 7 (3)

Table 1. Comparison of available datasets: Our new collection offers more annotated data and greater data variety than any existing choice.
All our data has fully contiguous, dense, accurate ground truth.

In this paper, we present a collection of three such
datasets, made using a customized version of the open
source 3D creation suite Blender3. Our effort is similar
in spirit to the Sintel benchmark [2]. In contrast to Sintel,
our dataset is large enough to facilitate training of convolu-
tional networks, and it provides ground truth for scene flow.
In particular, it includes stereo color images and ground
truth for bidirectional disparity, bidirectional optical flow
and disparity change, motion boundaries, and object seg-
mentation. Moreover, the full camera calibration and 3D
point positions are available, i.e. our dataset also covers
RGBD data.

We cannot exploit the full potential of this dataset in a
single paper, but we already demonstrate various usage ex-
amples in conjunction with convolutional network training.
We train a network for disparity estimation, which yields
competitive performance also on previous benchmarks, es-
pecially among those methods that run in real-time. Finally,
we also present a network for scene flow estimation and
provide the first quantitative numbers on full scene flow on
a sufficiently sized test set.

2. Related Work
Datasets. The first significant efforts to create standard

datasets were the Middlebury datasets for stereo dispar-
ity estimation [22] and optical flow estimation [1]. While
the stereo dataset consists of real scenes, the optical flow
dataset is a mixture of real scenes and rendered scenes.
Both datasets are very small in today’s terms. Especially
the small test sets have led to heavy manual overfitting. An
advantage of the stereo dataset is the availability of relevant
real scenes, especially in the latest high-resolution version
from 2014 [21].

MPI Sintel [2] is an entirely synthetic dataset derived
from a short open source animated 3D movie. It provides
dense ground truth for optical flow. Since very recently, a
beta testing version of disparities is available for training.

3https://www.blender.org/

With 1064 training frames, the Sintel dataset is the largest
dataset currently available. It contains sufficiently realis-
tic scenes including natural image degradations such as fog
and motion blur. The authors put much effort into the cor-
rectness of the ground truth for all frames and pixels. This
makes the dataset a very reliable test set for comparison of
methods. However, for training convolutional networks, the
dataset is still too small.

The KITTI dataset was produced in 2012 [8] and ex-
tended in 2015 [17]. It contains stereo videos of road scenes
from a calibrated pair of cameras mounted on a car. Ground
truth for optical flow and disparity is obtained from a 3D
laser scanner combined with the egomotion data of the car.
While the dataset contains real data, the acquisition method
restricts the ground truth to static parts of the scene. More-
over, the laser only provides sparse data up to a certain dis-
tance and height. For the most recent version, 3D models
of cars were fitted to the point clouds to obtain a denser la-
beling and to include also moving objects. However, the
ground truth in these areas is still an approximation.

Dosovitskiy et al. [4] trained convolutional networks for
optical flow estimation on a synthetic dataset of moving 2D
chair images superimposed on natural background images.
This dataset is large but limited to single-view optical flow.
It does not contain 3D motions and is not yet publicly avail-
able.

Both the latest Sintel dataset and the KITTI dataset can
be used to estimate scene flow with some restrictions. In
occluded areas (visible in one frame but not in the other),
ground truth for scene flow is not available. On KITTI, the
most interesting component of scene flow, namely the 3D
motion of points, is missing or approximated via fitted CAD
models of cars. A comprehensive overview of the most im-
portant comparable datasets and their features is given in
Table 1.

Convolutional networks. Convolutional networks [16]
have proven very successful for a variety of recognition
tasks, such as image classification [15]. Recent applica-
tions of convolutional networks include also depth estima-

https://www.blender.org/


tion from single images [6], stereo matching [28], and opti-
cal flow estimation [4].

The FlowNet of Dosovitskiy et al. [4] is most related to
our work. It uses an encoder-decoder architecture with ad-
ditional crosslinks between contracting and expanding net-
work parts, where the encoder computes abstract features
from receptive fields of increasing size, and the decoder
reestablishes the original resolution via an expanding up-
convolutional architecture [5]. We adapt this approach for
disparity estimation.

The disparity estimation method in Žbontar et al. [28]
uses a Siamese network for computing matching distances
between image patches. To actually estimate the disparity,
the authors then perform cross-based cost aggregation [29]
and semi-global matching (SGM) [11]. In contrast to our
work, Žbontar et al. have no end-to-end training of a convo-
lutional network on the disparity estimation task, with cor-
responding consequences for computational efficiency and
elegance.

Scene flow. While there are hundreds of papers on dis-
parity estimation and optical flow estimation, there are only
a few on scene flow. None of them uses a learning approach.

Scene flow estimation was popularized for the first time
by the work of Vedula et al. [23] who analyzed different
possible problem settings. Later works were dominated by
variational methods. Huguet and Devernay [12] formulated
scene flow estimation in a joint variational approach. Wedel
et al. [26] followed the variational framework but decoupled
the disparity estimation for larger efficiency and accuracy.
Vogel et al. [25] combined the task of scene flow estimation
with superpixel segmentation using a piecewise rigid model
for regularization. Quiroga et al. [19] extended the regular-
izer further to a smooth field of rigid motion. Like Wedel
et al. [26] they decoupled the disparity estimation and re-
placed it by the depth values of RGBD videos.

The fastest method in KITTI’s scene flow top 7 is from
Cech et al. [3] with a runtime of 2.4 seconds. The method
employs a seed growing algorithm for simultaneous dispar-
ity and optical flow estimation.

3. Definition of Scene Flow
Optical flow is a projection of the world’s 3D motion

onto the image plane. Commonly, scene flow is consid-
ered as the underlying 3D motion field that can be computed
from stereo videos or RGBD videos. Assume two succes-
sive time frames t and t+1 of a stereo pair, yielding four
images (ItL, ItR, It+1

L , It+1
R ). Scene flow provides for each

visible point in one of these four images the point’s 3D po-
sition and its 3D motion vector [24].

These 3D quantities can be computed only in the case
of known camera intrinsics and extrinsics. A camera-
independent definition of scene flow is obtained by the sep-
arate components optical flow, the disparity, and the dispar-

Left:

Right:

t-1 t t+1
Forward

Flow

Backward

Flow

D
isp

.

D
isp

.Disp. Ch.Disp. Ch.

Figure 2. Given stereo images at times t−1, t and t+1, the arrows
indicate disparity and flow relations between them. The red com-
ponents are commonly used to estimate scene flow. In our datasets
we provide all relations including the blue arrows.

ity change [12], cf. Fig. 2. This representation is complete
in the sense that the visible 3D points and their 3D motion
vectors can be computed from the components if the camera
parameters are known.

Given the disparities at t and t+1, the disparity change
is almost redundant. Thus, in the KITTI 2015 scene flow
benchmark [17], only optical flow and disparities are evalu-
ated. In this case, scene flow can be reconstructed only for
surface points that are visible in both the left and the right
frame. Especially in the context of convolutional networks,
it is particularly interesting to estimate also depth and mo-
tion in partially occluded areas. Moreover, reconstruction
of the 3D motions from flow and disparities is more sensi-
tive to noise, because a small error in the optical flow can
lead to a large error in the 3D motion vector.

4. Three Rendered Datasets

We created a synthetic dataset suite that consists of three
subsets and provides the complete ground truth scene flow
(incl. disparity change) in forward and backward direc-
tion. To this end, we used the open source 3D creation suite
Blender to animate a large number of objects with complex
motions and to render the results into tens of thousands of
frames. We modified the pipeline of Blender’s internal ren-
der engine to produce – besides stereo RGB images – three
additional data passes per frame and view. These provide
3D positions of all visible surface points, as well as their
future and past 3D positions. The pixelwise difference be-
tween two such data passes for a given camera view results
in an ”image” of 3D motion vectors – the complete scene
flow ground truth as seen by this camera. Note that the in-
formation is complete even in occluded regions since the
render engine always has full knowledge about all (visible
and invisible) scene points. All non-opaque materials – no-
tably, most car windows – were rendered as fully transpar-
ent to avoid consistency problems in the 3D data.

Given the intrinsic camera parameters (focal length,
principal point) and the render settings (image size, virtual
sensor size and format), we project the 3D motion vector



of each pixel into a 2D pixel motion vector coplanar to the
imaging plane: the optical flow. Depth is directly retrieved
from a pixel’s 3D position and converted to disparity using
the known configuration of the virtual stereo rig. We com-
pute the disparity change from the depth component of the
3D motion vector. An example of the results is shown in
Fig. 1.

In addition, we rendered object segmentation masks in
which each pixel’s value corresponds to the unique index
of its object. Objects can consist of multiple subparts, of
which each can have a separate material (with own appear-
ance properties such as textures). We make use of this and
render additional segmentation masks, where each pixel en-
codes its material’s index. The recently available beta ver-
sion of Sintel also includes this data.

Similar to the Sintel dataset, we also provide motion
boundaries which highlight pixels between at least two
moving objects, if the following holds: The difference in
motion between the two frames is at least 1.5 pixels, and
the boundary segment covers an area of at least 10 pixels.
The thresholds were chosen to match the results of Sintel’s
segmentation.

For all frames and views, we provide the full camera
intrinsics and extrinsics matrices. Those can be used for
structure from motion or other tasks that require camera
tracking. We rendered all image data using a virtual focal
length of 35mm on a 32mm wide simulated sensor. For the
Driving dataset we added a wide-angle version using a fo-
cal length of 15mm which is visually closer to the existing
KITTI datasets.

Like the Sintel dataset, our datasets also include two dis-
tinct versions of every image: the clean pass shows col-
ors, textures and scene lighting but no image degradations,
while the final pass additionally includes postprocessing ef-
fects such as simulated depth-of-field blur, motion blur, sun-
light glare, and gamma curve manipulation.

To handle the massive amount of data (2.5 TB), we com-
pressed all RGB image data to the lossy but high-quality
WebP4 format. Non-RGB data was compressed losslessly
using LZO5.

4.1. FlyingThings3D

The main part of the new data collection consists of
everyday objects flying along randomized 3D trajectories.
We generated about 25 000 stereo frames with ground truth
data. Instead of focusing on a particular task (like KITTI) or
enforcing strict naturalism (like Sintel), we rely on random-
ness and a large pool of rendering assets to generate orders
of magnitude more data than any existing option, without
running a risk of repetition or saturation. Data generation is
fast, fully automatic, and yields dense accurate ground truth

4https://developers.google.com/speed/webp/
5http://www.oberhumer.com/opensource/lzo/

Figure 3. Example scenes from our FlyingThings3D dataset.
3rd row: Optical flow images, 4th row: Disparity images,
5th row: Disparity change images. Best viewed on a color screen
in high resolution (images normalized for display).

for the complete scene flow task. The motivation for creat-
ing this dataset is to facilitate training of large convolutional
networks, which should benefit from the large variety.

The base of each scene is a large textured ground plane.
We generated 200 static background objects with shapes
that were randomly chosen from cuboids and cylinders.
Each object was randomly scaled, rotated, textured and then
placed on the ground plane.

To populate the scene, we downloaded 35 927 detailed
3D models from Stanford’s ShapeNet [20]6 database. From
these we assembled a training set of 32 872 models and a
testing set of size 3 055. Also the model categories were
split disjointly.

We sampled between 5 and 20 random objects from this
object collection and randomly textured every material of
every object. Each ShapeNet object was translated and ro-
tated along a smooth 3D trajectory modeled such that the
camera can see the object, but with randomized displace-
ments. The camera was animated, too.

The texture collection was a combination of procedu-
ral images created using ImageMagick7, landscape and
cityscape photographs from Flickr8, and texture-style pho-

6http://shapenet.cs.stanford.edu/
7http://www.imagemagick.org/script/index.php
8https://www.flickr.com/ Non-commercial public license.

We used the code framework by Hays and Efros [10]

https://developers.google.com/speed/webp/
http://www.oberhumer.com/opensource/lzo/
http://shapenet.cs.stanford.edu/
http://www.imagemagick.org/script/index.php
https://www.flickr.com/


KITTI 2015 Driving (ours)

Figure 4. Example frames from the 2015 version of the KITTI
benchmark suite [17] and our new Driving dataset. Both show
many static and moving cars from various realistic viewpoints, thin
objects, complex shadows, textured ground, and challenging spec-
ular reflections.

tographs from Image*After9. Like the 3D models, also the
textures were split into disjoint training and testing parts.

For the final pass images, the scenes vary in presence and
intensity of motion blur and defocus blur.

4.2. Monkaa

The second part of our dataset is made from the open
source Blender assets of the animated short film Monkaa10.
In this regard, it resembles the MPI Sintel dataset. Monkaa
contains nonrigid and softly articulated motion as well as
visually challenging fur. Beyond that, there are few visual
similarities to Sintel; the Monkaa movie does not strive for
the same amount of naturalism.

We selected a number of suitable movie scenes and addi-
tionally created entirely new scenes using parts and pieces
from Monkaa. To increase the amount of data, we rendered
our selfmade scenes in multiple versions, each with random
incremental changes to the camera’s translation and rotation
keyframes.

4.3. Driving

The Driving scene is a mostly naturalistic, dynamic
street scene from the viewpoint of a driving car, made to
resemble the KITTI datasets. It uses car models from the
same pool as the FlyingThings3D dataset and additionally
employs highly detailed tree models from 3D Warehouse11

and simple street lights. In Fig. 4 we show selected frames
from Driving and lookalike frames from KITTI 2015.

Our stereo baseline is set to 1 Blender unit, which to-
gether with a typical car model width of roughly 2 units is
comparable to KITTI’s setting (54cm baseline, 186cm car
width [8]).

9http://www.imageafter.com/textures.php
10https://cloud.blender.org/bi/monkaa/
11https://3dwarehouse.sketchup.com/

5. Networks
To prove the applicability of our new synthetic datasets

to scene flow estimation, we use it to train convolu-
tional networks. In general, we follow the architecture of
FlowNet [4]. That is, each network consists of a contrac-
tive part and an expanding part with long-range links be-
tween them. The contracting part contains convolutional
layers with occasional strides of 2, resulting in a total down-
sampling factor of 64. This allows the network to estimate
large displacements. The expanding part of the network
then gradually and nonlinearly upsamples the feature maps,
taking into account also the features from the contractive
part. This is done by a series of up-convolutional and con-
volutional layers. Note that there is no data bottleneck in
the network, as information can also pass through the long-
range connections between contracting and expanding lay-
ers. For an illustration of the overall architecture we refer
to the figures in Dosovitskiy et al. [4].

For disparity estimation we propose the basic architec-
ture DispNet described in Table 2. We found that additional
convolutions in the expanding part yield smoother disparity
maps than the FlowNet architecture; see Figure 6.

We also tested an architecture that makes use of an ex-
plicit correlation layer [4], which we call DispNetCorr. In
this network, the two images are processed separately up
to layer conv2 and the resulting features are then correlated
horizontally. We consider a maximum displacement of 40
pixels, which corresponds to 160 pixels in the input image.
Compared to the 2D correlation in Dosovitskiy et al. [4],
1D correlation is computationally much cheaper and allows
us to cover larger displacements with finer sampling than in
the FlowNet, which used a stride of 2 for the correlation.

We train a joint network for scene flow estimation by
combining and fine-tuning pretrained networks for dispar-
ity and flow. This is illustrated in Figure 5. We use our
implementation of FlowNet to predict flow between the left
and right image and two DispNets to predict the disparities
at t and t+1. We then fine-tune the large combined net-
work to estimate flow, disparity, and additionally disparity
change.

Training. All networks are trained end-to-end, given the
images as input and the ground truth (optical flow, disparity,
or scene flow) as output. We employ a custom version of
Caffe [13] and make use of the Adam optimizer [14]. We
set β1 = 0.9 and β2 = 0.999 as in Kingma et al. [14]. As
learning rate we used λ = 1e− 4 and divided it by 2 every
200 000 iterations starting from iteration 400 000.

Due to the depth of the networks and the direct con-
nections between contracting and expanding layers (see Ta-
ble 2), lower layers get mixed gradients if all six losses are
active. We found that using a loss weight schedule can be
beneficial: we start training with a loss weight of 1 assigned
to the lowest resolution loss loss6 and a weight of 0 for

http://www.imageafter.com/textures.php
https://cloud.blender.org/bi/monkaa/
https://3dwarehouse.sketchup.com/


Method KITTI 2012 KITTI 2015 Driving FlyingThings3D Monkaa Sintel Clean Time
train test train test (D1) test train

DispNet 2.38 — 2.19 — 15.62 2.02 5.99 5.38 0.06s
DispNetCorr1D 1.75 — 1.59 — 16.12 1.68 5.78 5.66 0.06s
DispNet-K 1.77 — (0.77) — 19.67 7.14 14.09 21.29 0.06s
DispNetCorr1D-K 1.48 1.0† (0.68) 4.34% 20.40 7.46 14.93 21.88 0.06s
SGM 10.06 — 7.21 10.86% 40.19 8.70 20.16 19.62 1.1s
MC-CNN-fst — — — 4.62% 19.58 4.09 6.71 11.94 0.8s
MC-CNN-acrt — 0.9 — 3.89% — — — — 67s

Table 3. Disparity errors. All measures are endpoint errors, except for the D1-all measure (see the text for explanation) for KITTI-2015
test. † This result is from a network fine-tuned on KITTI 2012 train.

Name Kernel Str. Ch I/O InpRes OutRes Input
conv1 7×7 2 6/64 768×384 384×192 Images
conv2 5×5 2 64/128 384×192 192×96 conv1
conv3a 5×5 2 128/256 192×96 96×48 conv2
conv3b 3×3 1 256/256 96×48 96×48 conv3a
conv4a 3×3 2 256/512 96×48 48×24 conv3b
conv4b 3×3 1 512/512 48×24 48×24 conv4a
conv5a 3×3 2 512/512 48×24 24×12 conv4b
conv5b 3×3 1 512/512 24×12 24×12 conv5a
conv6a 3×3 2 512/1024 24×12 12×6 conv5b
conv6b 3×3 1 1024/1024 12×6 12×6 conv6a
pr6+loss6 3×3 1 1024/1 12×6 12×6 conv6b
upconv5 4×4 2 1024/512 12×6 24×12 conv6b
iconv5 3×3 1 1025/512 24×12 24×12 upconv5+pr6+conv5b
pr5+loss5 3×3 1 512/1 24×12 24×12 iconv5
upconv4 4×4 2 512/256 24×12 48×24 iconv5
iconv4 3×3 1 769/256 48×24 48×24 upconv4+pr5+conv4b
pr4+loss4 3×3 1 256/1 48×24 48×24 iconv4
upconv3 4×4 2 256/128 48×24 96×48 iconv4
iconv3 3×3 1 385/128 96×48 96×48 upconv3+pr4+conv3b
pr3+loss3 3×3 1 128/1 96×48 96×48 iconv3
upconv2 4×4 2 128/64 96×48 192×96 iconv3
iconv2 3×3 1 193/64 192×96 192×96 upconv2+pr3+conv2
pr2+loss2 3×3 1 64/1 192×96 192×96 iconv2
upconv1 4×4 2 64/32 192×96 384×192 iconv2
iconv1 3×3 1 97/32 384×192 384×192 upconv1+pr2+conv1
pr1+loss1 3×3 1 32/1 384×192 384×192 iconv1

Table 2. Specification of DispNet architecture. The contracting
part consists of convolutions conv1 to conv6b. In the expanding
part, upconvolutions (upconvN), convolutions (iconvN, prN) and
loss layers are alternating. Features from earlier layers are con-
catenated with higher layer features. The predicted disparity im-
age is output by pr1.

all other losses (that is, all other losses are switched off).
During training, we progressively increase the weights of
losses with higher resolution and deactivate the low resolu-
tion losses. This enables the network to first learn a coarse
representation and then proceed with finer resolutions with-
out losses constraining intermediate features.

Data Augmentation. Despite the large training set, we
chose to perform data augmentation to introduce more di-
versity into the training data at almost no extra cost12. We
perform spatial transformations (rotation, translation, crop-
ping, scaling) and chromatic transformations (color, con-
trast, brightness), and we use the same transformation for
all 2 or 4 input images.

12The computational bottleneck is in reading the training samples from
disk, whereas data augmentation is performed on the fly.

}
FlowNet

DispNet

DispNet

Figure 5. Interleaving the weights of a FlowNet (green) and two
DispNets (red and blue) to a SceneFlowNet. For every layer, the
filter masks are created by taking the weights of one network (left)
and setting the weights of the other networks to zero, respectively
(middle). The outputs from each network are then concatenated to
yield one big network with three times the number of inputs and
outputs (right).

For disparity, introducing any rotation or vertical shift
would break the epipolar constraint. Horizontal shifts
would lead to negative disparities or shifting infinity to-
wards the camera.

6. Experiments

Evaluation of existing methods. We evaluated several
existing disparity and optical flow estimation methods on
our new dataset. Namely, for disparity we evaluate the
state-of-the-art method of Žbontar and LeCun [28] and
the popular Semi-Global Matching [11] approach with a
block matching implementation from OpenCV13. Results
are shown together with those of our DispNets in Table 3.
We use the endpoint error (EPE) as error measure in most
cases, with the only exception of KITTI 2015 test set where
only the D1-all error measure is reported by the KITTI eval-
uation server. It is the percentage of pixels for which the
estimation error is larger than 3px and larger than 5% of the
ground truth disparity at this pixel.

13http://docs.opencv.org/2.4/modules/calib3d/
doc/camera_calibration_and_3d_reconstruction.
html#stereosgbm

http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm
http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm


Figure 6. Close-up of a predicted disparity map without (left) and
with (right) convolutions between up-convolutions. Note how the
prediction on the right is much smoother.

DispNet. We train DispNets on the FlyingThings3D
dataset and then optionally fine-tune it on KITTI. The fine-
tuned networks are denoted by ’-K’ suffix in the table. Disp-
NetCorr fine-tuned on KITTI 2015 is currently second best
in the KITTI 2015 top results table, slightly behind MC-
CNN-acrt [28], while being roughly 1000 times faster. On
KITTI resolution it runs at 15 frames per second on an
Nvidia GTX TitanX GPU. For foreground pixels (belong-
ing to car models) it reaches an error that is roughly half the
error of [28]. The network achieves about 30% lower error
than the best real-time method reported in the table, Multi-
Block-Matching [7]. Also on the other datasets DispNet
performs well and outperforms both SGM and MC-CNN.

While fine-tuning on KITTI improves the results on this
dataset, it increases errors on other datasets. We explain this
significant performance drop by the fact that KITTI 2015
only contains relatively small disparities, up to roughly 150
pixels, while the other datasets contain some disparities of
500 pixels and more. When fine-tuned on KITTI, the net-
work seems to lose its ability to predict large displacements,
hence making huge errors on these.

We introduced several modifications to the network ar-
chitecture compared to the FlowNet [4]. First, we added
convolutional layers between up-convolutional layers in the
expanding part of the network. As expected, this allows the
network to better regularize the disparity map and predict
smoother results, as illustrated in Figure 6. Quantitatively,
this results in roughly 15% relative EPE decrease on KITTI-
2015.

Second, we trained a version of our network with a 1D
correlation layer. In contrast to Dosovitskiy et al. [4], we
find that networks with correlation are systematically bet-
ter (see Table 3). A likely plausible explanation is that the
1D nature of the disparity estimation problem allows us to
compute correlations at a finer grid than the FlowNet.

SceneFlowNet. We present early results on full scene
flow estimation with a convolutional network. Figure 8
shows the results of the network for one FlyingThings
scene. The network is able to predict disparity change well,
even in the regions which get occluded. Due to the large

SceneFlowNet Driving FlyingThings3D Monkaa
Flow 22.01 13.45 7.68
Disparity 17.56 2.37 6.16
Disp. change 16.89 0.91 0.81

Table 4. Endpoint errors for the evaluation of our SceneFlowNet
on the presented datasets. The Driving dataset contains the largest
disparities, flows and disparity changes, resulting in large errors.
The FlyingThings3D dataset contains large flows, while Monkaa
contains smaller flows and larger disparities.

amount of data that has to be processed when training for
scene flow, the network training is relatively slow (a for-
ward pass of the network takes 0.28s, 5 times longer than
on a DispNet) and has not converged yet. We expect the
results to further improve as we allow the network to train
longer. A quantitative evaluation on our datasets is shown
in Table 4.

7. Conclusion
We have introduced a synthetic dataset containing over

35 000 stereo image pairs with ground truth disparity, opti-
cal flow, and scene flow. While our motivation was to create
a sufficiently large dataset that is suitable to train convolu-
tional networks to estimate these quantities, the dataset can
also serve for evaluation of other methods. This is particu-
larly interesting for scene flow, where there has been a lack
of datasets with ground truth.

We have demonstrated that the dataset can indeed be
used to successfully train large convolutional networks: the
network we trained for disparity estimation is on par with
the state of the art and runs 1000 times faster. A first ap-
proach of training the network for scene flow estimation us-
ing a standard network architecture also shows promising
results. We are convinced that our dataset will help to boost
deep learning research for such challenging vision tasks as
stereo, flow and scene flow estimation.

8. Acknowledgements
The work was partially funded by the ERC Start-

ing Grant VideoLearn, the ERC Consolidator Grant 3D
Reloaded, and by the DFG Grants BR 3815/7-1 and
CR 250/13-1.

References
[1] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and

R. Szeliski. A database and evaluation methodology for op-
tical flow. Technical Report MSR-TR-2009-179, December
2009. 2

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In ECCV, Part IV, LNCS 7577, pages 611–625, Oct. 2012. 2



RGB image (L) DispNetCorr1D-K MC-CNN prediction SGM prediction

RGB image (L) Disparity GT DispNetCorr1D MC-CNN prediction SGM prediction

Figure 7. Disparity Results. Rows from top to bottom: KITTI 2012, KITTI 2015, FlyingThings3D, Monkaa, Sintel. Note how the DispNet
prediction is basically noise-free.

RGB image 0/1 (L) RGB image 0/1 (R) flow GT / prediction disp GT / prediction ∆disp GT / prediction

Figure 8. Results of our SceneFlowNet created from pretrained FlowNet and DispNets. The disparity change was added and the network
was fine-tuned on FlyingThings3D for 80 000 iterations. The disparity change predictions are already quite good after these few training
iterations.

[3] J. Cech, J. Sanchez-Riera, and R. P. Horaud. Scene flow es-
timation by growing correspondence seeds. In CVPR, 2011.
3

[4] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazırbaş,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
FlowNet: Learning optical flow with convolutional net-
works. In ICCV, 2015. 1, 2, 3, 5, 7, 12

[5] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning
to generate chairs with convolutional neural networks. In
CVPR, 2015. 3

[6] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. NIPS,
2014. 3

[7] N. Einecke and J. Eggert. A multi-block-matching approach
for stereo. In Intelligent Vehicles Symposium, pages 585–
592, 2015. 7

[8] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision
meets robotics: The KITTI dataset. International Journal
of Robotics Research (IJRR), 2013. 2, 5

[9] R. Hartley and A. Zisserman. Multiple view geometry in
computer vision. Cambridge university press, 2003. 12

[10] J. Hays and A. A. Efros. im2gps: estimating geographic
information from a single image. In CVPR, 2008. 4

[11] H. Hirschmüller. Stereo processing by semiglobal matching
and mutual information. PAMI, 30(2):328–341, 2008. 3, 6



[12] F. Huguet and F. Deverney. A variational method for scene
flow estimation from stereo sequences. In ICCV, 2007. 3

[13] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 5

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015. 5

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, pages 1106–1114, 2012. 2

[16] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Backpropagation
applied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989. 2

[17] M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 2, 3, 5

[18] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012. 2

[19] J. Quiroga, F. Devernay, and J. Crowley. Scene flow by
tracking in intensity and depth data. In Computer Vision and
Pattern Recognition Workshops (CVPRW), 2012 IEEE Com-
puter Society Conference on, pages 50–57. IEEE, 2012. 3

[20] M. Savva, A. X. Chang, and P. Hanrahan. Semantically-
Enriched 3D Models for Common-sense Knowledge. CVPR
2015 Workshop on Functionality, Physics, Intentionality and
Causality, 2015. 4

[21] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,
N. Nešić, X. Wang, and P. Westling. High-resolution stereo
datasets with subpixel-accurate ground truth. In Pattern
Recognition, pages 31–42. Springer, 2014. 2

[22] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. In-
ternational journal of computer vision, 47(1-3):7–42, 2002.
2

[23] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.
Three-dimensional scene flow. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 27(3):475–480,
2005. 3

[24] S. Vedula, S. Baker, P. Rander, R. T. Collins, and T. Kanade.
Three-dimensional scene flow. In ICCV, pages 722–729,
1999. 3

[25] C. Vogel, K. Schindler, and S. Roth. Piecewise rigid scene
flow. In ICCV, 2013. 3

[26] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and
D. Cremers. Efficient dense scene flow from sparse or dense
stereo data. Springer, 2008. 3

[27] J. Xiao, A. Owens, and A. Torralba. Sun3d: A database
of big spaces reconstructed using sfm and object labels. In
Computer Vision (ICCV), 2013 IEEE International Confer-
ence on, pages 1625–1632, Dec 2013. 2

[28] J. Žbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. arXiv
preprint arXiv:1510.05970, 2015. 3, 6, 7

[29] K. Zhang, J. Lu, and G. Lafruit. Cross-based local stereo
matching using orthogonal integral images. IEEE Trans. Cir-
cuits Syst. Video Techn., 19(7):1073–1079, 2009. 3



A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation: Supplementary Material

Figure 1. Bird’s eye view of the Driving scene. The camera fol-
lows a convoluted path on street level and encounters many turns,
crossings, other cars and varying lighting conditions.

1. Introduction
Due to space limitations in the paper, this supplemental

material contains a more detailed description of the dataset
generation process (Section 2) as well as more details and
more qualitative results of DispNet (Section 3).

2. Dataset creation details
We modified the pipeline of Blender’s1 internal render

engine to produce – besides stereo RGB images – three ad-
ditional data passes per frame and stereo view. Fig. 2 gives
a visual breakdown of this data:

• In the base pass (3DPost), each pixel stores the true
3D position of the scene point which projects into that
pixel (the 3D position is given within the camera coor-
dinate system).

• For the second pass (3DPost−1), we revert time to the
previous frame t−1 and save all vertices’ 3D positions
at that time. We then return to the current frame t and
use the vertex 3D positions at time t to project the 3D
vertices of time t − 1 into image space. Hence, we
again store 3D positions for each pixel, but this time
the 3D positions from time t−1 using the projection at
time t.

• The third pass (3DPost+1) is analogous to the sec-
ond pass, except that this time we use the subsequent
frame t+1 instead of the previous frame t−1.

1Our modifications branch off of version 2.75b of the Blender source
code. Starting with version 2.75, Blender supports multiview rendering.

Frame t−1 Frame t Frame t+1

︷ ︸︸ ︷
3DPost−1 3DPost 3DPost+1

X

Y

Z

Past Now Future

Figure 2. Our intermediate render data for frame t: The X/Y/Z
channels encode the 3D positions (relative to the camera) of all
visible points at frame t (center column) and what their respective
3D positions were/will be in the previous/next frame (left/right
columns). The 3D positions of the previous and next frame are
stored at the same image locations as in frame t. Hence, analyzing
a location from frame t gives information about the past, current
and future 3D position of the corresponding 3D point. All scene
flow data can then be derived from this information. E.g.: The car
moving to the right changes its X values (note, that the perspective
projection compresses the intensity gradient of the distant sky into
an apparent step at X = 0). Nothing is moving vertically, so all Y
values are constant over time. The camera is moving forward and
all Z values change uniformly (note, how objects on the right side
become visible).

These three data structures contain all information about
the 3D structure and 3D motion of the scene as seen from
the current viewpoint. From the 3DPos data we generate the
scene flow data. Fig. 3 describes the data conversion steps
from the blender output to the resulting dataset. Note that
color images and segmentation masks are directly produced
by Blender and do not need any post-processing. Together
with the camera intrinsics and extrinsics, various data can
be generated, including calibrated RGBD images.

Fig. 4 shows example segmentation masks for a frame
from one of our datasets. Materials can be shared across
objects, but the combination of object indices and material



Blender Final pass

Object segmentation

Material segmentation

Clean pass (raw)

Clean passRGB to sRGB

3DPost−1 3DPost 3DPost+1

Pixt−1 Pixt Pixt+1

Project to pixel space:
Pixi := K · 3DPosi

Pixelwise
Pixt−1 − Pixt

Pixelwise
Pixt+1 − Pixt

Optical �ow into future

Optical �ow into past

Deptht−1 Deptht Deptht+1

Extract
Z channel

Dispt−1 Dispt Dispt+1

Depth to disparity:
Dispi := (Depthi · b) · f−1

Disparity

Pixelwise
Dispt−1−Dispt

Pixelwise
Dispt+1−Dispt

Disp. change into future

Disp. change into past

OUTPUTS

Figure 3. Data generation overview for a single view at frame time t: Blender directly outputs the Final pass and Clean pass images, as
well as the object-level and material-level segmentation masks. Disparity is directly obtained from depth, which is given by the Z channel
of the current 3DPos map as described in Fig. 2 (b is the stereo baseline, f denotes the focal length). Subtracting the current disparity map
from the future/past disparity map results in the disparity change in future/past direction. The original 3DPos images are projected from
camera space into pixel space using the camera intrinsics matrix K. Subtracting the current pixel position image from the future/past pixel
position images yields the optical flow into the future/past.

indices yields a unique oversegmentation of a scene (consis-
tent across all frames of the scene). While our experiments
do not make use of these data, for other applications we also
include the object and material IDs in our dataset.

With this supplemental material, we also provide a video
that demonstrates the datasets we created and the final out-
come of the pipeline, i.e. optical flow, disparity, disparity

change and object and material index ground truth.

3. DispNetCorr

Intuitively, the simple DispNet disparity estimation ar-
chitecture (as described in the main paper) has to learn the
concept of matching parts of different images in rectified
stereo images from scratch. Since the structure of the prob-



Color image Object indices Material indices

Figure 4. Segmentation data: object indices are unique per scene.
Material indices can be shared across objects, but can be combined
with the object indices to yield an oversegmentation into parts.

lem is well known (correspondences can only be found in
accordance with the epipolar geometry [9]), we introduced
an alternative architecture – the DispNetCorr – in which we
explicitly correlate features along horizontal scanlines.

While the DispNet uses two stacked RGB images as a
single input (i.e. one six-channel input blob), the Disp-
NetCorr architecture first processes the input images sepa-
rately, then correlates features between the two images and
further processes the result. This behavior is similar to the
correlation architecture used in [4] where Dosovitskiy et al.
constructed a 2D correlation layer with limited neighbor-
hood size and different striding in each of the images. For
disparity estimation, we can use a simpler approach with-
out striding and with larger neighborhood size, because the
correlation along one dimension is computationally less de-
manding. One can additionally reduce the amount of com-
parisons by limiting the search to only one direction. For
example, if we are given a left camera image and look for
correspondences within the right camera image, then all dis-
parity displacements are to the left.

Given two feature blobs a and b with multiple channels
and identical sizes, we compute a correlation map of the
same width and height, but with D channels, where D is
the number of possible disparity values. For one pixel at
location (x, y) in the first feature blob a, the resulting cor-
relation entry at channel d∈ [0, D − 1] is the scalar product
of the two feature vectors a(x,y) and b(x−d,y).

4. Qualitative Examples
We show a qualitative evaluation of our networks for dis-

parity estimation and compare them to other approaches in
Figures 5 to 10.



RGB image (L) RGB image (R) DispNet DispNet-K MC-CNN-fst

ground truth occlusion ground truth DispNetCorr1D DispNetCorr1D-K SGM

Figure 5. Disparities on a Sintel frame: DispNet and DispNetCorr1D fill the occluded regions in a much more reasonable way compared
to other approaches.

RGB image (L) RGB image (R) DispNet DispNet-K MC-CNN-fst

ground truth occlusion ground truth DispNetCorr1D DispNetCorr1D-K SGM

Figure 6. Disparities on a Sintel frame: DispNetCorr1D provides sharper estimates and the smooth areas on the dragon head are estimated
better than with DispNet.

RGB image (L) RGB image (R) DispNet DispNet-K MC-CNN-fst

ground truth occlusion ground truth DispNetCorr1D DispNetCorr1D-K SGM

Figure 7. Disparities on a Sintel frame: The networks finetuned on the KITTI 2015 dataset cannot estimate large disparities anymore
(large disparities are not present in KITTI). Also MC-CNN-fst has problems with the large disparities.

RGB image (L) RGB image (R) DispNet DispNet-K MC-CNN-fst

ground truth occlusion ground truth DispNetCorr1D DispNetCorr1D-K SGM

Figure 8. Disparities on a Sintel frame: DispNet and DispNetCorr1D can handle occluded regions in a nice way. After finetuning on
KITTI 2015 the networks fail in the sky region (ground truth for sky and other small disparities are not present in KITTI).



RGB image (L) DispNet DispNetCorr1D

RGB image (R) DispNet-K DispNetCorr1D-K

ground truth MC-CNN-fst SGM

Figure 9. Disparities on a KITTI 2015 frame: The sparsity of the KITTI 2015 dataset leads to very smooth predictions when finetuning
a network with such ground truth. While the non-finetuned DispNet and DispNetCorr1D estimate fine details accurately, they are less
accurate in the smooth road and ground regions which are very common in KITTI.

RGB image (L) DispNet DispNetCorr1D

RGB image (R) DispNet-K DispNetCorr1D-K

ground truth MC-CNN-fst SGM

Figure 10. Disparities on a KITTI 2015 frame: Finetuning the networks on KITTI leads to much smoother estimates. However, DispNet-K
and DispNetCorr1D-K can still recognize the delineator posts in the bottom left, which DispNet and DispNetCorr1D ignore completely.
This shows that the finetuned networks do not simply oversmooth, but are still able to find small structures and disparity discontinuities.


