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ABSTRACT:

This paper describes a deep learning approach to semantic segmentation of very high resolution (aerial) images. Deep neural architec-

tures hold the promise of end-to-end learning from raw images, making heuristic feature design obsolete. Over the last decade this idea

has seen a revival, and in recent years deep convolutional neural networks (CNNs) have emerged as the method of choice for a range

of image interpretation tasks like visual recognition and object detection. Still, standard CNNs do not lend themselves to per-pixel

semantic segmentation, mainly because one of their fundamental principles is to gradually aggregate information over larger and larger

image regions, making it hard to disentangle contributions from different pixels. Very recently two extensions of the CNN framework

have made it possible to trace the semantic information back to a precise pixel position: deconvolutional network layers undo the spatial

downsampling, and Fully Convolution Networks (FCNs) modify the fully connected classification layers of the network in such a way

that the location of individual activations remains explicit. We design a FCN which takes as input intensity and range data and, with the

help of aggressive deconvolution and recycling of early network layers, converts them into a pixelwise classification at full resolution.

We discuss design choices and intricacies of such a network, and demonstrate that an ensemble of several networks achieves excellent

results on challenging data such as the ISPRS semantic labeling benchmark, using only the raw data as input.

1. INTRODUCTION

Large amounts of very high resolution (VHR) remote sensing im-

ages are acquired daily with either airborne or spaceborne plat-

forms, mainly as base data for mapping and earth observation.

Despite decades of research the degree of automation for map

generation and updating still remains low. In practice, most maps

are still drawn manually, with varying degree of support from

semi-automated tools [Helmholz et al., 2012]. What makes au-

tomation particularly challenging for VHR images is that on the

one hand their spectral resolution is inherently lower, on the other

hand small objects and small-scale surface texture become visi-

ble. Together, this leads to high within-class variability of the im-

age intensities, and at the same time low inter-class differences.

An intermediate step between raw images and a map layer in vec-

tor format is semantic image segmentation (a.k.a. land-cover clas-

sification, or pixel labeling). Its aim is to determine, at every im-

age pixel, the most likely class label from a finite set of possible

labels, corresponding to the desired object categories in the map,

see Fig. 1. Semantic segmentation in urban areas poses the addi-

tional challenge that many man-made object categories are com-

posed of a large number of different materials, and that objects in

cities (such as buildings or trees) are small and interact with each

other through occlusions, cast shadows, inter-reflections, etc.

A standard formulation of the semantic segmentation problem is

to cast it as supervised learning: given some labeled training data,

a statistical classifier learns to predict the conditional probabili-

ties gi = P (class = i|data) from spectral features of the image.

Typical choices of input features are raw pixel intensities, simple

arithmetic combinations of the raw values such as vegetation in-

dices, and different statistics or filter responses that describe the

local image texture [Leung and Malik, 2001,Schmid, 2001,Shot-

ton et al., 2009]. Since the advent of classifiers that include effi-

cient feature selection (e.g., boosting, decision trees and forests),

an alternative has been to pre-compute a large, redundant set of

Figure 1: Class map estimated with the proposed ensemble of

fully convolution networks (FCNs), over a scene taken from un-

labelled official ISPRS Vaihingen dataset. Visualization is color

coded, red color depicts buildings, dark green depicts trees, light

green depicts low-vegetation, blue depicts impervious-surfaces

and purple depicts cars respectively.

features for training and let the classifier select the optimal sub-

set [Viola and Jones, 2001, Dollár et al., 2009, Fröhlich et al.,

2013, Tokarczyk et al., 2015], in the hope that in this way less of

the relevant information is lost by the feature encoding.

Since the ground breaking paper [Krizhevsky et al., 2012] (re-

viving earlier work of [Fukushima, 1980, LeCun et al., 1989]),

deep learning has quickly become the state of the art for a whole

range of learning-based image analysis tasks. Deep learning with

multi-layer neural networks does not require a separate feature

definition, but instead starts from raw image data and includes

the discovery of the most suitable features as part of the training

procedure. The break-through came when it was shown that a

particular learning architecture, Convolutional Neural Networks

(CNNs), outperforms competing methods by a large margin on

classification tasks like the ImageNet challenge [Russakovsky et



al., 2015], if given enough training data and compute power.

CNNs on one hand exploit the shift-invariance of image signals,

on the other hand they can easily be parallelised and run on GPUs,

making it possible to train from millions of images on a sin-

gle machine. In recent years they have been the top-performing

method for tasks ranging from speech processing to visual ob-

ject recognition. Recently, CNNs have also been among the top

performers on the ISPRS benchmark for aerial image labelling1,

e.g., [Paisitkriangkrai et al., 2015]. For completeness, we note

that earlier deep learning methods have also occasionally been

applied for remote sensing, e.g. [Mnih and Hinton, 2010].

In this paper, we explore the potential of CNNs for end-to-end,

fully automated semantic segmentation of high-resolution images

with < 10 cm ground sampling distance. Starting from their per-

pixel classifier version, so-called Fully Convolutional Networks

(FCNs), we discuss a number of difficulties, and propose de-

sign choices to address them. In particular, we employ a late

fusion approach with two structurally identical, parallel process-

ing strands within the network, in order to use both image in-

tensities and DEM data as input, while respecting their differ-

ent statistical characteristics. We also show that model averaging

over multiple instances of the same CNN architecture, trained

with different initial values for the (millions of) free parameters in

the network, even further improves the final segmentation result.

Compared to other work on FCNs in remote sensing [Paisitkri-

angkrai et al., 2015, Lagrange and Le Saux, 2015], we employ

strictly end-to-end training and refrain from using any informa-

tion that requires manual interaction, such as hand-designed filter

responses, edges or normalised DSMs. Experiments on the IS-

PRS Vaihingen Dataset show that our method achieves state-of-

the-art results, with overall accuracy >88% on unseen test data.

2. RELATED WORK

Much research effort has gone into semantic segmentation of satel-

lite and aerial images in the last three decades. For a general

background we refer the reader to textbooks such as [Richards,

2013]. Here, we review some of the latest works dealing with

very high-resolution (VHR) imagery, which we define as having

a GSD on the order of 10 cm. We then turn to recent advances

in general image analysis with deep learning methods. VHR data

calls for different strategies than lower-resolution images (such

as the often-used Landsat and SPOT satellite data), due to the in-

comparably greater geometric detail; and, conversely, the much

lower spectral resolution – in most cases only RGB channels, and

possibly an additional NIR.

In VHR data the class information is not sufficiently captured

by a pixel’s individual spectral intensity, instead analysis of tex-

ture and spatial context becomes important. Consequently, much

of the literature has concentrated on feature extraction from a

pixel’s spatial neighborhood [Herold et al., 2003, Dalla Mura et

al., 2010, Tokarczyk et al., 2015]. As in other areas of image

analysis, too [Winn et al., 2005], the emphasis was on finding (by

trial-and-error) a feature encoding that captures as much as pos-

sible of the relevant information, while ideally also being com-

putationally efficient. The features are then fed to some standard

classification algorithm (SVM, Random Forest, logistic regres-

sion or similar) to predict class probabilities. As local feature

engineering began to saturate, more emphasis was put on includ-

ing a-priori information about the class layout like smoothness,

shape templates, and long-range connectivity [Karantzalos and

1http://www2.isprs.org/commissions/comm3/wg4/

semantic-labeling.html

Paragios, 2009, Lafarge et al., 2010, Schindler, 2012, Montoya-

Zegarra et al., 2015], often in the form of Conditional Random

Fields or Marked Point Processes.

In the last few years neural networks, which had fallen out of

favour in machine learning for some time, have made a spectac-

ular return. Driven by a number of methodological advances,

but especially by the availability of much larger image databases

and fast computers, deep learning methods – in particular CNNs

– have outperformed all competing methods on several visual

learning tasks. With deep learning, the division into feature ex-

traction, per-pixel classification, and context modelling becomes

largely meaningless. Rather, a typical deep network will take as

input a raw image. The intensity values are passed through mul-

tiple layers of processing, which transform them and aggregate

them over progressively larger contextual neighborhoods, in such

a way that the information becomes explicit which is required to

discriminate different object categories. The entire set of network

parameters is learned from raw data and labels, including lower

layers that can be interpreted as “features”, middle layers that can

be seen as the “layout and context” knowledge for the specific do-

main, and deep layers that perform the actual “classification”.

Among the first who applied CNNs to semantic segmentation

were [Farabet et al., 2013], who label super-pixels derived from

a large segmentation tree. In the course of the last year multiple

works have pushed the idea further. [Chen et al., 2015] propose

to add a fully connected CRF on top of a CNN, which helps to re-

cover small details that get washed out by the spatial aggregation.

Similarly, [Tsogkas et al., 2015] combine a CNN with a fully con-

nected CRF, but add a Restricted Boltzmann Machine to learn

high-level prior information about objects, which was previously

lacking. The top-performers for semantic segmentation of remote

sensing images are based on CNNs, too. [Lagrange et al., 2015],

ranked second in the 2015 2D IEEE GRSS data fusion contest,

use pre-trained CNNs as feature extractor for land cover classi-

fication. More similar to our research is the work of [Paisitkri-

angkrai et al., 2015], who are among the top performers on the

ISPRS semantic segmentation benchmark. Instead of directly

applying pre-trained models, the authors individually train a set

of relatively small CNNs over the same aerial images (respec-

tively, nDSMs) with different contextual input dimensions. Re-

sults are further refined with an edge-sensitive, binary CRF. In

contrast to those works, which make use of several ad-hoc pre-

and post-processing steps (e.g., extraction of vegetation indices;

terrain/off-terrain filtering of the DSM; additional Random For-

est classifier), we attempt to push the deep learning philosophy to

its extreme, and construct a true end-to-end processing pipeline

from raw image and DSM data to per-pixel class likelihoods.

3. SEMANTIC SEGMENTATION WITH CNNS

Convolutional Neural Networks are at present the most success-

ful deep learning architecture for semantic image understanding

tasks. Their common property is the use of layers that implement

learned convolution filters: each neuron at level l takes its in-

put values only from a fixed-size, spatially localised window W
in the previous layer (l − 1), and outputs a vector of differently

weighted sums of those values, cl =
∑

i∈W
wic

l−1

i . The weights

wi for each vector dimension are shared across all neurons of a

layer. This design takes into account the shift invariance of image

structures, and greatly reduces the number of free parameters in

the model.

Each convolutional layer is followed by a fixed non-linear trans-

formation2, in modern CNNs often a rectified linear unit (ReLU )

2Directly stacking convolution kernels u and v would not make sense,



clrec = max(0, cl), which simply truncates all negative values

to 0 and leaves the positives values unchanged [Nair and Hin-

ton, 2010]. Moreover, the network also gradually downsamples

the input spatially, either by using a stride > 1 for the convo-

lutions or with explicit spatial pooling layers. By doing so, the

network gradually increases its receptive field, collecting infor-

mation from a larger spatial context. Finally, the top layers of

the model are normally fully connected to combine information

from the entire image, and the final output is converted to class

probabilities with the softmax function.

CNNs can be learned end-to-end in a supervised manner with the

back-propagation algorithm, usually using stochastic gradients in

small batches for efficiency. In the last few years they have been

extremely successful and caused a small revolution in the fields

of speech and image analysis.

Fully Convolutional Neural Networks CNNs in their original

form were designed for recognition, i.e. assigning a single label

(like “car” or “dog”) to an entire image. The bottleneck when us-

ing them for semantic segmentation (labeling every single pixel)

is the loss of the spatial location. On the one hand, repeated con-

volution and pooling smear out the spatial information and re-

duce its resolution. On the other hand, even more severe, fully

connected layers mix the information from the entire image to

generate their output.

In recent work [Zeiler et al., 2010, Long et al., 2015], extensions

of the basic CNN architecture have been developed, which mit-

igate this problem, but still allow for end-to-end learning from

raw images to classification maps. So-called Fully Convolutional

Networks view the fully connected layers as a large set of 1 × 1
convolutions, such that one can track back the activations at dif-

ferent image locations. Moreover, deconvolution layers that learn

to reverse the down-sampling, together with direct connections

from lower layers that “skip” parts of network, make it possible

to predict at a finer spatial resolution than would be possible after

multiple rounds of pooling.

Converting a CNN into a FCN Traditional CNN architectures

for image-level classification (like the popular variants OverFeat,

AlexNet, GoogLeNet, VGGnet) do not aim for pixel-level seg-

mentation. They require an input image of fixed size w × h and

completely discard the spatial information in the top-most layers.

These are fully connected and output a vector of class scores gi.

FCNs use the following trick to trace back the spatial location:

the fully connected layers are seen as convolution with a w × h

kernel, followed by a large set of 1×1 convolutions that generate

a spatially explicit map of class scores gi(x, y). Since all other

layers correspond to local filters anyway, the network can then be

applied to images of arbitrary size to obtain such a score map.

Deconvolution layers The FCN outputs per-class probability

maps, but these come at an overly coarse spatial resolution, due

to the repeated pooling in the lower layers. The FCN is thus

augmented with deconvolution layers, which perform a learned

upsampling of the previous layer. I.e., they are the reverse of a

convolution layer (literally, backpropagation through such a layer

amounts to convolution). By inserting multiple deconvolution

layers in the upper parts of the network, the representation is

upsampled back to the original resolution, so as to obtain class

scores for each individual pixel.

Deconvolution layers are notoriously tricky to train. We follow

the current best practice and employ deep supervision [Lee et al.,

2014]. The idea is to add “shortcuts” from intermediate layers

since it is equivalent to a single convolution with the new kernel v ⋆ u.

directly to a classification layer and associated additional com-

panion loss functions. Bypassing the higher layers provides a

more direct supervision signal to the intermediate layers. It also

mitigates the problem that small gradients vanish during back-

propagation and speeds up the training.

Reinjecting low-level information The deconvolution layers

bring the representation back to the full resolution. But they do

not have access to the original high-frequency information, so the

best one can hope for is to learn a good a-priori model for upsam-

pling. To recover finer detail of the class boundaries, one must go

back to a feature representation near the original input resolution.

To do so, it is possible, after a deconvolution layer, to combine

the result with the output of an earlier convolution layer of the

same spatial resolution. These additional “skip” connections by-

pass the part of the network that would drop the high-frequency

information. The original, linear sequence of operations is turned

into a directed acyclic graph (DAG), thus giving the classification

layers at the top access to high-resolution image details.

Training Multiple CNNs Deep networks are notorious for hav-

ing extremely non-convex, high-dimensional loss functions with

many local minima.3 If one initialises with different (pre-trained,

see next paragraph) sets of parameters, the net is therefore vir-

tually guaranteed to converge to different solutions, even though

it sees the same training data. This observation suggests a sim-

ple model averaging (ensemble learning) procedure: train several

networks with different initialisations, and average their predic-

tions. Our results indicate that, as observed previously for image-

level classification, e.g. [Simonyan and Zisserman, 2015], aver-

aging multiple CNN instances further boosts performance.

Note that model averaging in the case of end-to-end trained deep

networks is in some sense a “stronger” ensemble than if one av-

erages conventional classifiers such as decision trees: all classi-

fiers in a conventional ensemble work with the same predefined

pool of features, and must be decorrelated by randomising the

feature subset and/or the training algorithm (c.f. the popular Ran-

dom Forest method). On the contrary, CNNs learn useful features

from the raw data, thus even the low-level features in early layers

can be expected to vary across different networks and add diver-

sity to the ensemble.

We also point out that while it might seem a big effort to train

multiple complicated deep networks, it is in fact very simple.

Training only needs raw images and label maps as input, and a

small number of hyper-parameters such as the learning rate and

its decay. Since the variation comes from the initialization, one

need not to change anything in the training procedure, but merely

has to rerun it multiple times.

Pre-trained Networks The most powerful CNN models for im-

age analysis have been trained over many iterations, using huge

databases with thousands or even millions of images. Fortunately,

it turned out that CNNs are good at transfer learning: once a

network has been trained with a large database, it has adapted

well enough to the structure of image data in general, so that it

can be adapted for a new task with relatively little training. It is

now common practice to start from an existing network that has

been pre-trained on one of the big image databases such as Im-

ageNet [Russakovsky et al., 2015], Microsoft COCO [Lin et al.,

2014], Pascal VOC [Everingham et al., 2010], etc. In this way,

the network only needs to be fine-tuned to the task at hand, which

requires a lot less training data and computation time.

3Local minimum does not equate to bad solution here. There is no

known way to find a globally optimal configuration for a deep network.



For remote sensing application, it is at present still unclear which

of the existing pre-trained models is most suitable. In fact, it is

quite likely that none of them is optimal. On the other hand, it

is also not clear what would be a better architecture for remote

sensing problems, and how to chose the right (big) dataset to

train it from scratch. Our solution at this point is to start from

several proven networks that have excelled in other applications,

and apply model averaging to combine their results. In particular

we use the following three networks to initialize three separate

FCNs: VGG-16, trained on ImageNet; FCN-Pascal, trained on

Pascal VOC specifically for semantic segmentation; and Places,

trained on the MIT Places database for scene recognition.

The VGG-16 network was designed for the ImageNet 2012 Large-

Scale Visual Recognition Challenge, and achieved excellent over-

all results [Simonyan and Zisserman, 2015]. Important character-

istics of the VGG architecture are relatively few trainable param-

eters per layer, due to the use of small convolution kernels of size

3 × 3. This makes it possible to train very deep networks with

16 (or even 19) layers in reasonable time. For our task of seman-

tic segmentation, we convert the 16-layer version to a FCN. This

proved to be the strongest individual network for our data.

The FCN-Pascal network is another powerful network pre-trained

on the Pascal VOC Context database for the purpose of semantic

segmentation [Long et al., 2015]. Its lower layers have the same

layout as VGG-16, but it already comes as fully connected net-

work for pixel-wise labeling, so it is arguably most tuned to our

application. We point out that this network is not completely in-

dependent of the previous one, because its creators started from

VGG-16 and transferred it to the Pascal VOC database. In our

implementation, we start from the final version optimized for Pas-

cal VOC, and further adapt it to our aerial images. An interesting

feature of FCN-Pascal is the cascaded training procedure, which

starts from a shallower, partial model and gradually adds layers so

as to learn the DAG-connections from low convolutional layers to

high deconvolutional ones. We also employ a set of 4 cascaded

architectures when training this particular model. Empirically,

the final, deepest model works better than any of the intermediate

shallower ones, so we only use the latest one in our final classifier.

The Places Network also uses the VGG-16 architecture, but has

been learned from scratch on a different dataset. Its training set is

a scene recognition dataset named Places [Zhou et al., 2014]. We

expect this model to be less correlated to the other two, so that

it can make a contribution during model averaging, although by

itself it has significantly lower performance on our data.

Complete Network Architecture Our network is an extension

of the FCN-Pascal network introduced above, see Fig. 2. It uses

small 3 × 3 convolution kernels throughout. Compared to the

original layout we add another skip-layer connection to inject

high-resolution features from an even earlier layer, in order to

better represent the fine detail of the class boundaries. Moreover,

we use as input not only the image intensities but also the DEM,

as often done in high-resolution remote sensing. Since height

data and intensity data have different statistics, one should expect

that they require different feature representations. We therefore

set up two separate paths for the two modalities with the same

layer architecture, and only merge those two paths at a very high

level, shortly before the final layer that outputs the class prob-

abilities. This late fusion of spectral and height features makes

it possible to separately normalise spectral and height responses

(see next paragraph), and shall enable the network to learn inde-

pendent sets of meaningful features for the two inputs, driven by

the same loss function.

The last modification of the FCN network is of a technical na-

ture. We found that the network during training exhibited a ten-

Figure 2: Schematic diagram of our network architecture. Layers

and connections on the left, number of kernels per layer on the

right. All convolution kernels are 3×3, all max-pooling windows

are 2× 2, with no overlap.

dency to excessively increase the activations at a small number of

neurons. To prevent the formation of such spikes, whose exag-

gerated influence causes the training to stall, we add local re-

sponse normalisation (LRN) as last layer of the two separate

branches for spectral intensities and height, right before merging

them for the final classification stage. LRN was first employed

by [Krizhevsky et al., 2012] and can be biologically interpreted

as lateral inhibition. It amounts to re-scaling activations, such

that spikes are damped and do not overly distort the gradients

for back-propagation. The LRN for an activation c is defined as

cLRN = c ·
(

1 + α
∑

i∈Nγ
c2i
)−β

, with hyper-parameters α and

β, and Nγ a neighborhood of γ “adjacent” kernels at the same

spatial location (although the ordering of the kernels is of course

arbitrary). We set γ = 5, and chose α and β such that intensity

and DEM activations are both scaled to mean values of ≈ 10.

Implementation Details While CNNs offer end-to-end machine

learning and empirically obtain excellent results, training them

does require some care. In our network, the part that appears

hardest to learn are the deconvolution layers. We initialise the

upsampling weights with bilinear interpolation coefficients and

use deep supervision, nevertheless these layers slow down the

back-propagation and require many training iterations.

Local Response Normalization proved to be crucial. We assert

that there are two main reasons (both not specific to our model).

First, ReLU non-linearities are not bounded from above, so there

is no built-in saturation that would stop the formation of spikes.4

Second, the initial input data is not whitened (mainly for practi-

cal reasons, because of its large volume). We found that spikes

did hold back the training of our network and therefore introduce

4Note, the fact that they have a non-zero gradient and keep learning

even at high activation at the same time appears to be the reason for their

superior performance.



LRN layers at the appropriate stages, where the effect occurs. For

a given architecture and data characteristics this solves the prob-

lem once and for all, but we note that when faced with a different

problem it may be important to check the activation statistics and

insert LRN where necessary.

In our experience, a good practice with large, pre-trained CNNs

is gradual training, starting from the deeper layers. The low-

level features, while not fully optimised to the task at hand, can

be assumed to already be reasonable, so we first clamp them and

only update the deep layers of the network near the output, which

are initially tuned to the completely different class nomenclature

of the pre-training task. When the loss flattens out, or after a fixed

number of iterations, one adds further layers, until finally the full

network is optimised. This greatly speeds up the training.

4. EXPERIMENTS

We empirically validate our approach with experiments on the

Vaihingen data set of the ISPRS 2D semantic labeling contest. It

comprises 33 tiles, varying a bit in size, from an aerial orthophoto

mosaic with three spectral bands (red, green, near-infrared), plus

a digital surface model (DSM) of the same resolution. The data

set contains roughly 1.7 × 108 pixels in total, but ground truth

is only released for half of the tiles, which are designated for

training and validation. For the remainder, the ground truth is

withheld by the organizers for objective evaluation of submitted

results. The images are rich in detail, with a GSD of 9 cm. Cat-

egories to be classified are Impervious Surfaces, Buildings, Low

Vegetation, Trees, and Cars. In order to keep our pipeline au-

tomated to the largest possible degree, we refrain from any pre-

processing that would require human intervention or selection of

data-specific hyper-parameters (such as DSM-to-DTM filtering,

or radiometric adjustments), but rather feed the data provided by

the benchmark directly into the network.

For our detailed experiments, we split those 16 tiles, for which

ground truth is available, into a training subset (tile numbers 1, 3,

11, 13, 15, 17, 21 ,26, 28, 32, 34, 37) and a hold-out subset for

testing (tiles 5, 7, 23, 30). We randomly sample 12,000 patches

of 259×259 pixels from the training subset for learning the FCN

parameters. Note that also at test time the network outputs labels

for a complete patch of 259×259 pixels at once. To predict labels

for whole tiles, we run it on overlapping patches and average the

per-pixel class scores.

Training Details Low-level features like edges or colors do not

vary dramatically across different images, while the high-level

features that capture larger shapes and patterns are more task-

specific. Thus it makes sense to first train only the deep layers,

while keeping the shallower ones fixed. We first train all layers

above the fully-convolutional ones (see Fig. 2) for 40’000 epochs,

then train the entire model for another 50’000 epochs. Empiri-

cally, the latter only marginally increases the performance (gain

in overall accuracy < 1%), which indicates that the filter weights

of lower layers indeed generalise from close-range images to re-

mote sensing imagery. It is common practice to start with a rea-

sonably fast learning rate, and keep decreasing it during training.

In this way, the network learns faster in the beginning, when it is

still far from a good solution, but does not overshoot when fine-

tuning in the end. We start with a learning rate of lr = 10−9,

and reduce it by a factor of 10 every 20,000 epochs.

Each training iteration consists of a feed-forward pass, a com-

parison between the prediction and the ground truth labels, and

a back-propagation step, in which the weights in the network

are adjusted via Stochastic Gradient Descent. Forward passes

require only matrix multiplications and are a lot cheaper than

back-propagation, where gradients have to be evaluated for all

the weights.

It is also good practice to use so-called drop-out during training,

i.e., randomly switch off part of the neurons to decorrelate the

learning of different neurons and reduce over-fitting. We use a

50% drop-out rate at two deep layers, as shown in Fig. 2. Em-

pirically, we find that in our case drop-out during training only

marginally increases performance. We attribute this to two rea-

sons. First, the models we start from have already been care-

fully pre-trained (with drop-out) on large databases. The (shal-

lower) majority of layers is fine-tuned to our training data, but

not dramatically altered w.r.t. the initial, well-regularised state,

so that over-fitting is not an issue. Second, our model includes

direct connections from shallow to deep layers. The purpose of

these “skip” connections is better spatial localisation, but it is

possible that merging in the low-level features, which are more

generic and less prone to over-fitting, also regularises the more

task-specific high-level patterns.

FCRF Post-processing As mentioned earlier, the focus of this

work lies on an integrated deep-learning approach. Neverthe-

less, it is of course possible to view FCN predictions as pixel-

wise unary likelihoods and post-process them with CRF-type pri-

ors. Some authors have tried this and have shown that it (moder-

ately) improves aerial image segmentation [Paisitkriangkrai et al.,

2015]. To quantify the influence of state-of-the-art post process-

ing we therefore optionally use the class likelihoods predicted by

our FCN ensemble as input to a fully connected CRF (FCRF)

[Krähenbühl and Koltun, 2011], similar to [Chen et al., 2015,

Zheng et al., 2015]. Most work in remote sensing uses a CRF

with pairwise potentials only between neighbouring pixels. The

fully connected CRF does not seem to be widely used, the only

example we know of is [Quang et al., 2015]. But but we found it

to work better than a standard pairwise CRF.

The prior brings only a tiny quantitative improvement, even if

carefully tuned for optimum (overall) performance. It does how-

ever qualitatively improve object boundaries, see examples in

Fig. 3. Without a deeper analysis, we assert that there is sim-

ply not much to be gained, because the FCN already learns to

take into account the context within a 259 × 259 pixel window.

Differences occur mainly in the form of small, isolated regions

near class boundaries. There, the smoothing learned by the FCN

seems to be a little bit weaker than it should be, such that isolated

mis-classifications survive. In the following, we always quote re-

sults both without and with FCRF post-processing, but we note

that the quantitative differences are insignificant, except for a ten-

dency to smooth away cars in favour of the surrounding road.

4.1 Results

In the following we name models according to the data set used

for pre-training model weights. Recall that the network architec-

ture is the same for all models. FCN-Pascal of [Long et al., 2015]

was pre-trained on Pascal VOC, FCN-ImageNet of [Simonyan

and Zisserman, 2015] was pre-trained on the ImageNet data set,

and FCN-Places of [Zhou et al., 2014] was pre-trained on the

Places data set. All models are fine-tuned on our aerial data with-

out any changes to their network architectures.

Label prediction on the four images of the hold-out data subset

(tiles 5,7,23,30 of the ISPRS 2D semantic labeling benchmark)

delivers state-of-the-art performance (Tab. 1). We report over-

all accuracies per test tile and the average overall accuracy over

all four tiles per model. Results for ensemble models as well as



FCN-ImageNet+FCN-Pascal+FCN-Places

tile 5 tile 7 tile 23 tile 30 Mean

FCN 86.6 87.2 83.7 85.5 85.7

FCN-ImageNet+FCN-Pascal

FCN 86.3 87.1 83.7 86.1 85.8

FCN-FCRF 86.8 86.9 84.2 86.2 86.0

FCN-ImageNet

FCN 85.2 86.8 82.8 85.6 85.1

FCN-Pascal

FCN 84.7 86.2 82.4 85.2 84.6

FCN-Places

FCN 84.0 82.1 77.5 77.2 80.2

Table 1: Overall accuracies over the four images of our hold-

out set. The fully connected CRF (FCN-FCRF) is only tested

with the top-performing FCN ensemble (FCN-ImageNet+FCN-

Pascal). We report overall accuracies per scene, and average over-

all accuracy across all four scenes (all numbers in %).

FCN

Imp. Surf. 93.1 1.8 3.8 1.1 0.2

Building 7.2 89.1 3.3 0.3 0.1

Low Veg. 4.0 1.6 81.3 13.0 0

Tree 0.7 0.2 6.8 92.3 0

Car 19.4 4.9 0.5 0.4 74.8

Overall Accuracy : 88.4

FCN-FCRF

Imp. Surf. 93.6 1.7 3.6 1.0 0.1

Building 7.1 89.4 3.3 0.3 0.1

Low Veg. 3.9 1.6 81.8 12.7 0

Tree 0.8 0.2 7.0 92.0 0

Car 28.1 4.8 0.6 0.4 66.1

Overall Accuracy : 88.5

Table 2: Confusion matrices and overall accuracies for the test

set of the ISPRS benchmark (all numbers in %).

separate results per model are given. Recall that classifier scores

of different models are always combined by averaging prediction

scores across models per class.

To further clean up isolated, mis-classified pixels and to sharpen

edges we add the fully connected CRF (FCRF) of [Krähenbühl

and Koltun, 2011] on top of the best performing ensemble FCN

(FCN-ImageNet+FCN-Pascal) and report quantitative results in

Tab. 1. In general, the FCRF only marginally improves the num-

ber, but it does visually improve results (Fig. 3).

It turns out that pre-training weights on the Places data set (FCN-

Places) performs worst among the three models (bottom rows in

Tab. 1) if applied stand-alone to the Vaihingen data. Furthermore,

adding it to the ensemble slightly decreases mean overall accura-

cies on the hold out subset (by 0.04 percent points) compared

to FCN-ImageNet+FCN-Pascal (Tab. 1). FCN-Pascal and FCN-

ImageNet deliver similarly good results, and their combination

slightly improves over the separate models.

Fig. 4 visually compares the output scores of all three models for

four classes (red: high score, blue: low score). FCN-ImageNet

generally shows the highest activations thus discriminating classes

best, cf. Tab. 1. Each model assigns slightly different class scores

per pixel, such that they can complement another.

We also submitted the results of the best performing FCN en-

semble (FCN-ImageNet+FCN-Pascal) and its FCN-FCRF vari-

ant to the ISPRS 2D semantic labeling test.5 On the test set (for

5www2.isprs.org/vaihingen-2d-semantic-labeling-contest.html
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Figure 3: Comparison of FCN with FCN-FCRF outputs on tiles.

which the ground truth is not public) we reach 88.4% overall

accuracy with the FCN ensemble alone, and 88.5% with FCRF

post-processing, see Tab. 2. I.e., we reach the second best over-

all result, 0.6 percent points below the top-performing method.

Moreover, our method works particularly well on the smaller tree

and car classes and, with 86.9%, reaches the highest average F1-

score, 1 percent point higher than the nearest competitor. We

note that compared to other methods we do not use a normalised

DSM as additional input. The nDSM seems to be a key ingredi-

ent for the performance of some methods, c.f. [Paisitkriangkrai et

al., 2015], and can be expected to also improve our results. But

generating it via DSM-to-DTM filtering requires dataset-specific

parameters, which we want to avoid. We also do not add conven-

tional classifiers such as Random Forests in our ensemble, be-

cause they wold require manual feature engineering.

4.2 Discussion

Although the CNN results (ours as well as others) are already

astonishingly good, there is still room for improvement. We gen-

erally observe that the network sometimes over-smoothes sharp

edges and corners, while at the same time making small, isolated

mistakes. The latter are often classified as impervious surface,

possibly the network learns to preserve them because some very

narrow roads do exist in the data. Unsharp boundaries may in
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Figure 4: Score maps for classes building, impervious surface,

low vegetation, and tree of the three pre-trained models using the

input in the top row (red: high score, blue: low score).

part be caused by the features’ increased location uncertainty af-

ter pooling and deconvolution. We assert that a further reason

could be the inherent inaccuracy of the annotated training data.

Human annotators with their domain knowledge will usually an-

notate a sharp and straight boundary, but they might not be as

consistent in placing it w.r.t. the image gradient. If in different

patches the same class boundaries are randomly shifted inwards

or outwards by a few pixels, this could cause the system to “learn”

that uncertainty in the boundary localisation. In true ortho-photos

the boundaries are particularly difficult to define precisely, as lim-

ited DSM accuracy often causes small parts of facades to be visi-

ble near the roof edge, or the roof edge to bleed into the adjacent

ground (c.f. Fig. 4).

Another more technical problem that currently limits performance

is the restricted receptive field of the classifier. We choose 259×
259 pixel patches over which the classifier assigns class proba-

bilities per pixel. Increasing the window size leads to a massive

increase in unknowns for the fully convolutional layers, which

eventually makes training infeasible. This is particularly true for

remote sensing, where images routinely have many millions of

pixels and one cannot hope to overcome the limitation by brute

computational power. Tiling will at some point be necessary.

We make predictions in a sliding window fashion with overlap-

ping patches (of one or multiple different strides) and average

the scores from different patches for the final score map. An ap-

propriate stride is a compromise between computational cost and

sufficient coverage. Moreover, it makes sense to use multiple dif-

ferent strides or some degree of randomisation, in order to avoid

aliasing. The extreme case of a one-pixel stride (corresponding

to 67’081 predictions per pixel) will lead to much computational

overhead without significant performance gain, since neighbor-

ing predictions are highly correlated. On the other hand, tiling

images without any overlap will lead to strong boundary effects.

What is more, the spatial context would be extremely skewed for

pixels on the patch boundary – in general one can assume that the

classifier is more certain in the patch center. For our final model

we empirically found that overlapping predictions with a small

number of different strides (we use 150, 200 and 220 pixels)

produces good results, while being fast to compute. The over-

all classification time for a new scene (2000x2500 pixel) using

image ground truth prediction

Figure 5: Labeling errors in the ground truth.

two networks (FCN-ImageNet , FCN-Pascal) with three different

strides is ≈ 9 minutes with a single GPU. Additional FCRF infer-

ence takes ≈ 9 minutes per scene on a single CPU, but multi-core

parallelisation across different scenes is trivial.

Limitations of the ground truth A close inspection of the an-

notations for the Vaihingen data set quickly reveals a number

of ground truth errors (as also noticed by [Paisitkriangkrai et

al., 2015]). In several cases our pipeline classifies these regions

correctly, effectively outperforming the human annotators, but is

nevertheless penalised in the evaluation. See examples in Fig. 5.

A certain amount of label noise is unavoidable in a data set of that

size, still it should be mentioned that with several authors reach-

ing overall accuracies of almost 90%, and differences between

competitors generally < 5%, ground truth errors are not negligi-

ble. It may be necessary to revisit the ground truth, otherwise the

data set may soon be saturated and become obsolete.

5. CONCLUSION

We have presented an end-to-end semantic segmentation method,

which delivers state-of-the-art semantic segmentation performance

on the aerial images of the ISPRS semantic labeling data set. The

core technology of our system are Fully Convolutional Neural

Networks [Long et al., 2015]. These FCNs, like other deep learn-

ing methods, include the feature extraction as part of the training,

meaning that they can digest raw image data and relieve the user

of feature design by trial-and-error. FCNs, and CNNs in general,

are now a mature technology that non-experts can use out-of-the-

box. In language processing and general computer vision they

have already become the standard method for a range of predic-

tion tasks, similar to the rise of SVMs about 15 years ago. We

believe that the same will also happen in remote sensing.

Although we limit our investigation to semantic segmentation of

VHR aerial images of urban areas, the CNN framework and its

variants are very general, and potentially useful for many other

data analysis problems in remote sensing. In this context it be-

comes particularly useful that no feature engineering for the par-

ticular spectral and spatial image resolution is necessary, such

that only training data is needed to transfer the complete classifi-

cation pipeline to a new task.

REFERENCES

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. and
Yuille, A. L., 2015. Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs. In: International
Conference on Learning Representations (ICLR).

Dalla Mura, M., Benediktsson, J., Waske, B. and Bruzzone, L.,
2010. Morphological attribute profiles for the analysis of very
high resolution images. IEEE TGRS 48(10), pp. 3747–3762.

Dollár, P., Tu, Z., Perona, P. and Belongie, S., 2009. Integral
channel features. In: British Machine Vision Conference.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J. and Zis-
serman, A., 2010. The Pascal visual object classes (VOC) chal-
lenge. International Journal of Computer Vision 88(2), pp. 303–
338.



Farabet, C., Couprie, C., Najman, L. and LeCun, Y., 2013. Learn-
ing hierarchical features for scene labeling. IEEE T. Pattern Anal-
ysis and Machine Intelligence 35(8), pp. 1915–1929.
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2015. Semantic segmentation of aerial images in urban areas
with class-specific higher-order cliques. ISPRS Annals II(3/W4),
pp. 127–133.

Nair, V. and Hinton, G. E., 2010. Rectified linear units improve
restricted boltzmann machines. In: International Conference on
Machine Learning (ICML).

Paisitkriangkrai, S., Sherrah, J., Janney, P. and van den Hengel,
A., 2015. Effective semantic pixel labelling with convolutional
networks and conditional random fields. In: CVPR Workshops,
Computer Vision and Pattern Recognition.

Quang, N. T., Thuy, N. T., Sang, D. V. and Binh, H. T. T.,
2015. Semantic segmentation for aerial images using RF
and a full-CRF. Technical report, Ha Noi University of Sci-
ence and Technology and Vietnam National University of Agri-
culture. https://www.itc.nl/external/ISPRS_WGIII4/
ISPRSIII_4_Test_results/papers/HUST_details.pdf.

Richards, J. A., 2013. Remote Sensing Digital Image Analysis.
fifth edn, Springer.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma,
S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg,
A. and Fei-Fei, L., 2015. Imagenet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision 115(3),
pp. 211–252.

Schindler, K., 2012. An overview and comparison of smooth
labeling methods for land-cover classification. IEEE Transactions
on Geoscience and Remote Sensing 50(11), pp. 4534–4545.

Schmid, C., 2001. Constructing Models for Content-based Image
Retrieval. In: Computer Vision and Pattern Recognition (CVPR).

Shotton, J., Winn, J., Rother, C. and Criminisi, A., 2009. Tex-
tonboost for image understanding: Multi-class object recognition
and segmentation by jointly modeling texture, layout, and con-
text. International Journal of Computer Vision 81, pp. 2–23.

Simonyan, K. and Zisserman, A., 2015. Very deep convolutional
networks for large-scale image recognition. In: International
Conference on Learning Representations (ICLR).

Tokarczyk, P., Wegner, J. D., Walk, S. and Schindler, K., 2015.
Features, color spaces, and boosting: New insights on semantic
classification of remote sensing images. IEEE Transactions on
Geoscience and Remote Sensing 53(1), pp. 280–295.

Tsogkas, S., Kokkinos, I., Papandreou, G. and Vedaldi, A., 2015.
Semantic part segmentation with deep learning. arXiv preprint
arXiv:1505.02438.

Viola, P. and Jones, M., 2001. Rapid object detection using a
boosted cascade of simple features. In: Computer Vision and
Pattern Recognition (CVPR).

Winn, J., Criminisi, A. and Minka, T., 2005. Object categoriza-
tion by learned universal visual dictionary. In: International Con-
ference on Computer Vision (ICCV).

Zeiler, M. D., Krishnan, D., Taylor, G. W. and Fergus, R., 2010.
Deconvolutional networks. In: Computer Vision and Pattern
Recognition (CVPR).

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su,
Z., Du, D., Huang, C. and Torr, P., 2015. Conditional random
fields as recurrent neural networks. In: International Conference
on Computer Vision (ICCV).

Zhou, B., Lapedriza, A., Xiao, J., Torralba, A. and Oliva, A.,
2014. Learning deep features for scene recognition using places
database. In: Advances in Neural Information Processing Sys-
tems (NIPS).


