arXiv:1611.01962v1 [cs.CV] 7 Nov 2016

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 1

High-Resolution Semantic Labeling
with Convolutional Neural Networks

Emmanuel Maggiori, Student member, IEEE, Yuliya Tarabalka, Member, IEEE,
Guillaume Charpiat, and Pierre Alliez

Abstract—Convolutional neural networks (CNNs) have re-
ceived increasing attention over the last few years. They were
initially conceived for image categorization, i.e., the problem of
assigning a semantic label to an entire input image.

In this paper we address the problem of dense semantic
labeling, which consists in assigning a semantic label to every
pixel in an image. Since this requires a high spatial accuracy
to determine where labels are assigned, categorization CNNs,
intended to be highly robust to local deformations, are not
directly applicable.

By adapting categorization networks, many semantic labeling
CNNs have been recently proposed. Our first contribution is an
in-depth analysis of these architectures. We establish the desired
properties of an ideal semantic labeling CNN, and assess how
those methods stand with regard to these properties. We observe
that even though they provide competitive results, these CNNs
often underexploit properties of semantic labeling that could lead
to more effective and efficient architectures.

Out of these observations, we then derive a CNN framework
specifically adapted to the semantic labeling problem. In addition
to learning features at different resolutions, it learns how to
combine these features. By integrating local and global informa-
tion in an efficient and flexible manner, it outperforms previous
techniques. We evaluate the proposed framework and compare
it with state-of-the-art architectures on public benchmarks of
high-resolution aerial image labeling.

Index Terms—Semantic labeling, convolutional neural net-
works, deep learning, high-resolution aerial imagery.

I. INTRODUCTION

EMANTIC labeling is the problem of assigning a se-
mantic class to every individual pixel of an image. In
certain application domains, such as high-resolution aerial
image analysis, it is of paramount importance to provide
fine-grained classification maps where object boundaries are
precisely located. For example, with the advent of autonomous
driving there is an increasing interest in locating the exact
boundaries of roads or even lanes from aerial imagery [1].
Over the last few years, deep learning and, in particular,
convolutional neural networks (CNNs), have gained signifi-
cant attention in the image analysis community. These have
been originally devised for the image categorization problem,
i.e., the assignment of one label to an entire image. For
example, they have been used to categorize objects in natural
scenes (e.g., airplane, bird, person) or land use in the case of

E. Maggiori, Y. Tarabalka and P. Alliez are with Université Cote d’Azur,
TITANE team, Inria, 2004 route des Lucioles, BP93 06902 Sophia Antipolis
Cedex, France. E-mail: emmanuel.maggiori @inria.fr.

G. Charpiat is with Tao team, Inria Saclay—lle-de-France, Laboratoire de
Recherche en Informatique, Université Paris-Sud, 91405 Orsay Cedex, France.

Manuscript received ...; revised ...

aerial images (e.g., forest, beach, tennis court). CNNs jointly
learn to extract relevant contextual features and conduct the
categorization. In addition to the suppression of the feature
design process, which is an interesting advantage itself, this
technique has consistently beaten alternative methods in a wide
range of problems [2]. Nowadays, one can reasonably expect
to find CNN-based techniques scoring the best positions in the
leaderboards of online image-related contests.

While neural networks have existed for a few decades, a
combination of recent advances has facilitated their devel-
opment as deep learning techniques. One of these advances
is the use of novel architectures. Notably, the novelty in
the aforementioned convolutional network is its architecture,
which imposes significant restrictions to the neuronal con-
nections compared to previous approaches. While CNNs are
thus less general than traditional architectures, the restrictions
applied are well grounded in the domain of image analysis,
reducing thus the optimization search space in a sensible way.
This directs the network to learn a more appropriate function,
yielding better categorization results. The lesson learned is
that finding the right type of architecture for a given problem
often boosts the performance of neural networks. Moreover,
fewer computational resources are required for training and
conducting labeling.

A sort of “recipe” or meta-architecture for the image
categorization problem was incrementally developed in the
community. The typical ingredients of a state-of-the-art CNN
to categorize images are a combination of convolutional, so-
called pooling layers and rectifed linear units, followed by
traditional fully-connected layers. However, when it comes
to semantic pixel labeling (i.e., assigning a class to every
pixel), this categorization recipe cannot be directly transferred.
Indeed, while categorization networks are devised to lose
spatial precision in order to identify objects that come in differ-
ent appearances, semantic labeling networks should preserve
the spatial resolution to correctly locate object boundaries.
This is not straightforward to implement, because of a well-
known trade-off between recognition and localization [9], [L1],
due to the need to keep the networks small (and thus more
efficient and easier to train). Since both qualities are required
in semantic labeling at the same time, it is important to design
specific architectures for this problem.

There have been recent research efforts in this direction,
using CNNs for pixel labeling and, in particular, for high-
resolution aerial image labeling (e.g., [3], [4]). These networks
certainly provide good results and stand as competitive alter-
natives compared to other methods. However, there is still a

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 2

need for finding optimal architectures for semantic labeling,
i.e., the “recipe” for suitable semantic labeling networks. We
consider that just by doing a proper analysis of the architecture
required for our problem we may develop smaller, more
efficient networks to achieve equivalent or even better results.

Our first contribution is a detailed analysis of the main fam-
ilies of CNN architectures proposed recently for the semantic
labeling problem. We group the different methods into three
categories: dilation (e.g., [4], [3]]), deconvolution (e.g., [6], [71,
[8lI, [3]) and skip (e.g., [9], [10]) networks. These categories
are different from each other in the way of addressing the
aforementioned recognition/localization trade-off. For exam-
ple, while the networks by Long et al. [9] and Marmanisa et
al. [10] are substantially different in structure and application
domain, they are both skip networks in how they manage
to provide a high-resolution output. After establishing the
desired properties of a semantic labeling architecture, we
position the different families of networks with respect to
these properties. Let us remark that it is also common to
include post-processing modules to increase the resolution
of CNN’s outputs, such as fully connected CRFs [4]], [IL1],
[12]]. However, our review focuses on architectures that are
specifically designed to provide a high-resolution output.

Our second contribution is a novel semantic labeling net-
work architecture, referred to as MLP (after multi-layer per-
ceptron). Derived from the notion of skip network, the MLP
architecture yields high flexibility and expressiveness by ex-
tracting features at different resolutions (and thus at different
levels of details), and learning how to combine them in order
to generate fine-grained classification maps. In the literature,
probably the most similar approach is the one in [[13] which,
though for a different problem, also seeks to learn to combine
multi-resolution features. Our MLP architecture exhibits a
better performance in aerial image labeling than many other
recent techniques, despite being simpler and smaller than
them. The design of an appropriate architecture thus leads to a
win-win situation, in which both accuracy and computational
complexity are improved.

We conduct experiments on two popular benchmarks for
high-resolution aerial segmentation: Vaihingen and Potsdam
datasets, proposed as part of the ISPRS Semantic Labeling
Contest [[14]. These datasets highlight the specific challenges
of aerial image labeling, requiring to outline small objects with
a high spatial precision.

This paper first introduces convolutional neural networks
and their use in semantic labeling (Sec. [[[). An analysis of
the different high-resolution labeling schemes is then pre-
sented (Sec. [lT). We later describe our proposed architecture
(Sec. and perform an experimental evaluation (Sec. [V).
Conclusions are drawn in Sec.

II. CONVOLUTIONAL NEURAL NETWORKS

An artificial neural network is a system of interconnected
neurons that pass messages to each other. When the messages
are passed from one neuron to the next one without ever
going back (i.e., the graph of message passing is acyclic)
they network is referred to as feed-forward [[L5], which is the

most common type of network in image categorization. An
individual neuron takes a vector of inputs x = x7...x, and
performs a simple operation to produce an output a. The most
common neuron is defined as follows:

a=o(wx+b), (1)

where w denotes a weight vector, b a scalar known as bias
and o an activation function. Put simply, a neuron computes
a weighted sum of its inputs and applies a possibly nonlinear
scalar function on the result. The weights w and biases b are
the parameters of the neurons that define the function. The goal
of training is to find the optimal values for these parameters,
so that the function computed by the neural network performs
the best on the task assigned.

The most common activation functions o are sigmoids,
hyperbolic tangents and rectified linear units (ReLU). For
image analysis, ReLUs have become the most popular choice
due to some practical advantages at training time, but novel
activation functions have been recently proposed as well [16].

Despite an apparent simplicity, neural networks are ex-
tremely expressive: by using at least one layer of nonlinear
activation functions, a sufficiently large network can represent
any function within a given bounded error [135].

Instead of directly connecting a huge set of neurons to the
input, it is common to organize them in groups of stacked
layers that transform the outputs of the previous layer and
feed it to the next layer. This enforces the networks to learn
hierarchical features, performing low-level reasoning in the
first layers (such as edge detection) and higher-level tasks in
the last layers (e.g. , assembling object parts). For this reason,
the first and last layers are often referred to as lower and upper
layers, respectively.

In an image categorization problem, the input of the network
is an image (or a set of features derived from an image), and
the goal is to predict the correct category of the entire image.
We can view the pixelwise semantic labeling problem as taking
an image patch and categorizing its central pixel. Finding
the optimal neural network classifier reduces to finding the
weights and biases that minimize a loss L between the
predicted labels and the target labels in a training set. Let
L be the set of possible semantic classes; labels are typically
encoded as a vector of length |£| with value ‘1" at the position
of the correct label and ‘0’ elsewhere. The network contains
thus as many output neurons as possible labels. A softmax
normalization is performed on top of the last layer to guarantee
that the output is a probability distribution, i.e. the label values
are between zero and one and sum to one. The multi-label
problem is then seen as a regression on the desired output
label vectors.

The loss function L quantifies the misclassification by
comparing the target label vectors y(*) and the predicted label
vectors §(¥), for n training samples i = 1...n. In this work
we use the common cross-entropy loss, defined as:

RR C R
L:_Ezzyk log 7.~ 2)
i=1 k=1
Training neural networks by optimizing this criterion con-
verges faster (compared with, for instance, the Euclidean

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 3

distance between y and ¥). In addition, it is numerically stable
when coupled with softmax normalization [15].

Once the loss function is defined, the parameters (weights
and biases) that minimize the loss are found via gradient
descent, by computing the derivative BaTi; of the loss function
with respect to every parameter w;, and updating the param-

eters with a learning rate A\ as follows:

8wi

The derivatives a%i are obtained by backpropagation, which
consists in explicitly computing the derivatives of the loss
with respect to the last layer’s parameters and using the chain
rule to recursively compute the derivatives of each layer’s
outputs with respect to its weights and inputs (i.e. the lower
layer’s outputs). In practice, instead of averaging over the full
dataset, the loss is estimated from a random small subset
of the training set, referred to as a mini-batch. This learning
technique is named stochastic gradient descent.

A. Comvolutional Layers

Convolutional neural networks (CNNs) [17] contain so-
called convolutional layers, a specific type of layer that im-
poses a number of restrictions compared to a more general
fully-connected layer (discussed below). These restrictions
(e.g., local connectivity) have been introduced for image cate-
gorization networks because they make sense in that particular
context.

In CNNs, each neuron is associated to a spatial location
(1,7) in the input image. The output a;; associated with
location (7, j) in a convolutional layer is computed as:

Q5 = O’((W * X)ij + b), (4)

where W denotes a kernel with learned weights, X the input
to the layer and ‘x’ the convolution operation. Notice that this
is a special case of the neuron in Eq. [I| with the following
constraints:

o The connections only extend to a limited spatial neigh-

borhood determined by the kernel size;

o The same filter is applied to each location, guaranteeing

translation invariance.

Multiple convolution kernels are usually learned in every layer,
interpreted as a set of spatial feature detectors. The responses
to every learned filter are thus referred to as feature maps. Note
that the convolution kernels are actually three-dimensional: in
addition to their spatial extent (2D), they span along all the
feature maps in the previous layer (or eventually through all
the bands in the input image). As this third dimension can be
inferred from the previous layer it is rarely mentioned in the
architecture descriptions.

Compared to the fully connected layer, in which every
neuron is connected to all outputs of the previous layer, a
convolutional layer highly reduces the number of parameters
by enforcing the aforementioned constraints. This results in an
easier optimization problem, without losing much generality.
This opened the door to using the image itself as an input
without any feature design and selection process, as CNNs
discover the relevant spatial features to conduct classification.

B. Increasing the Receptive Field

In CNNS, the receptive field denotes the spatial extent of the
input image connected to a certain neuron, possibly indirectly
through other neurons in previous layers: it is the set of pixels
on which this neuron depends. In other words, it quantifies
how far a neuron can “see” in the image. In most applications,
a large amount of spatial context must be taken into account in
order to successfully label the images. For example, to deduce
that a certain pixel belongs to a rooftop, it might not be enough
to just consider its individual spectrum: we might need to
observe a large patch around this pixel, taking into account
geometry and structure of the objects, to infer its correct class.

Neural networks for image analysis should thus be designed
to accumulate, through their layers, a large enough receptive
field. While a straightforward way to do it is to use large
convolution kernels, this is not a common practice mostly due
to its computational complexity. Besides, this would aim at
learning large filters all at once, with millions of parameters.
However, it is preferable to learn a hierarchy of small filters
instead, reducing the number of parameters while remaining
expressive, and thus making the optimization problem easier.

The most common approach to reduce the number of
parameters for a given receptive field size is to downsample
the feature maps throughout the network. This is commonly
achieved progressively through interleaving downsampling
layers with convolutional layers. This way, the resolution of
the feature maps gets lower and lower as we traverse the layers
from input to output. For example, neurons after a chain of
two 3 x 3 convolutions in successive layers would normally
have a receptive field of 5 x 5 pixels, which extends to 12 x 12
pixels with an accumulated downsampling of factor 4.

To downsample the feature maps, the most popular ap-
proach is to use the so-called max pooling layer [18]. A max
pooling layer takes a group of neighbors in the feature map
and condenses them into a single output by computing the
maximum of all incoming activations in the window. The
pooling windows in general do not overlap, hence the output
map is downsampled (see Fig. [T). For instance, if pooling is
performed in a 2 x 2 window, the feature map is reduced to
half of its resolution.

Computing the maximum value is inspired by the idea of
detecting objects from their parts. For example, in a face
detector it is important to identify the constituents of a face,
such as hair or nose, while the exact locations of these
components should not be such a determinant factor. The max
pooling layer conveys then to which extent there is evidence
of the existence of a feature in a vicinity. Other less popular
forms of downsampling include average pooling and applying
convolutions with a stride, i.e., “skipping” some of them (e.g.,
applying every other convolution).

Pooling operations (and downsampling in general) hard-
code robustness to spatial deformations, an attribute that
boosted the success of CNNs for image categorization. How-
ever, spatial precision is lost when downsampling. The in-
creased receptive field (and thus recognition capability) comes
at the price of losing localization capability. This well-reported
trade-off [9], [[11] is a major concern for dense labeling.

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 4

3x3 conv. 2x deconv.

2x2 pooling 3x3 conv.

Fig. 1: Lateral view of a fully convolutional network (dashed
lines indicate inputs that have been padded in conv. layers and
cropped in the deconv. layer to preserve spatial dimensions).

We could still imagine a downsampling network that pre-
serves localization: it would learn features of the type “a corner
at the center of the receptive field”, “a corner one pixel left
of the center of the receptive field”, “a corner two pixels left
of the center of the receptive field”, and so on, multiplying
the number of features to be learned. This would however
discredit the use of downsampling to gain robustness to spatial
variation in the first place. The recognition/localization trade-
off must thus be properly addressed to design a high-resolution
semantic labeling network.

C. Fully Convolutional Networks (FCNs)

Image categorization networks are typically written as a
series of interleaved convolution and pooling layers that extract
spatial features, followed by a few fully connected layers that
compute the final classification values. The dense semantic
labeling problem can be seen as classifying the central pixel of
an image patch, the size of the input patch being the receptive
field used to classify it. To label the whole image the prediction
must thus be performed on many overlapping image patches,
which requires a huge amount of redundant operations.

Fully convolutional networks (FCNs) [9] are especially
relevant to semantic labeling. They contain only convolutional
layers, i.e., no fully connected layers. Therefore, they can be
applied to images with various sizes: inputting a larger image
patch produces a larger output, the convolutions being per-
formed on more locations. In contrast, networks with any fully
connected layer require a fixed image size, because of the fixed
input size of such layers. Using fully convolutional networks
also removes any redundancy when computing classification
maps on large inputs, as they are applied only once.

The first obvious advantage of FCNs is a reduced com-
putational complexity. Moreover, we can efficiently train on
input patches that are larger than the receptive fields, and in
turn produce larger classified patches, with more than a single
pixel. While the elements inside a contiguous patch are highly
correlated, the use of moderately larger patch sizes has been
reported to be beneficial [4], [19]. Furthermore, the patch size
at training time is decoupled from the one at test time. For
example, we could use use small patches to train the network
in order to have a highly variable input in every mini-batch, but
later conduct predictions on the largest patch size that fits in
the GPU. Let us finally remark that a traditional classification

(b)

Fig. 2: To classify the central gray pixel of this patch (and not
to confuse it, e.g., with an asphalt road), we need to take into
account a spatial context (a). However, we do not need a high
resolution everywhere in the patch. It can be lower as we go
away from the central pixel and still identify the class (b).

network (with fully connected layers) can be in fact easily
rewritten as a fully convolutional network [9]].

When an FCN has downsampling layers, the output contains
fewer elements than the input, since the resolution has been
decreased. This gave birth to the so-called deconvolutional
(or upconvolutional) layer, which upsamples a feature map by
interpolating neighboring elements (as the last layer in Fig. [I)).
Instead of determining a priori the type of interpolation, e.g.,
bilinear, the operation is parametrized by a kernel that can
also be learned. Deconvolutional layers are typically used to
perform a naive interpolation at the very end of the pipeline,
on the output classification maps. In the next section we study
more advanced ways of providing high-resolution outputs.

III. ANALYSIS OF HIGH-RESOLUTION LABELING CNNS

Fully convolutional networks (FCNs), as described in Sec-
tion[[I-C] have become the standard in semantic labeling. Nev-
ertheless, the open question is how to conduct fine predictions
that provide detailed high-resolution outputs, while still taking
large amounts of context into account and without exploding
the number of trainable parameters. Simply adding a decon-
volutional layer to upsample the output on top of a network
provides dense outputs but imprecise labeling results, because
the upsampling is performed in a naive way from the coarse
classification. This is dissatisfying in many applications, such
as high-resolution aerial image labeling, where the goal is to
precisely identify and outline tiny objects such as cars.

We now describe what we consider to be the elementary
principle from which to derive efficient semantic labeling
architectures. Let us then first observe that while our goal is
to take large amounts of context into account, we do not need
this context at the same spatial resolution everywhere. For
example, let us suppose we want to classify the central pixel
of the patch in Fig. Zh. Such a gray pixel, taken out of context,
could be easily confused with an asphalt road. Considering the
whole patch at once helps to infer that the pixel belongs indeed
to a gray rooftop. However, two significant issues arise if we
take a full-resolution large patch for context: a) it requires
many computational resources that are actually not needed for
an effective labeling, and b) it does not provide robustness

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 5

Fig. 3: A dilated convolution (i.e., on non-adjacent inputs) with
a dilation factor S = 4.

to spatial variation (we might actually not care about the
exact location of certain features). Conducting predictions
from low-resolution patches instead is not a solution as it
produces inaccurate coarse classification maps. Nevertheless,
it is actually not necessary to observe all surrounding pixels
at full resolution: the farther we go from the pixel we want to
label, the lower the requirement to know the exact location
of the objects. For example, in the patch of Fig. it is
still possible to classify the central pixel, despite the outer
pixels being blurry. Therefore, we argue that a combination of
reasoning at different resolutions is necessary to conduct fine
labeling, if we wish to take a large context into account in an
efficient manner.

In the following, we analyze the main families of high-
resolution semantic labeling networks that have been proposed
in the past two years. For each of them we discuss the
following aspects:

o How a solution to the fine-grained labeling problem is
provided;

o Where this solution stands with respect to the principle
of Fig.

o General advantages and disadvantages, and computational
efficiency.

A. Dilation Networks

Dilation networks are based on the shift-and-stitch approach
or a trous algorithm [9]]. This consists in conducting a pre-
diction at different offsets to produce multiple low-resolution
outputs, which are then interleaved to compose the final high-
resolution result. For example, if the downsampling factor of
a network is S, one should obtain S? classification maps by
shifting the input horizontally and vertically. Such an inter-
leaving can also be implemented directly in the architecture,
by using “dilated” operations [20], i.e., performing them on
non-contiguous elements of the previous feature maps. This
principle is illustrated in Fig. [3

Dilations have been used with two purposes:

1) as an alternative to upsampling for generating full-
resolution outputs [, [9l,

2) as a means to increase the receptive field [L1], [20],
by enlarging the area covered by a convolution kernel
without increasing the number of trainable parameters.

Regarding the first point, we must mention that there is no
theoretical improvement compared to an FCN with naive up-
sampling, because the presence of pooling layers still reduces
spatial precision. Executing the prediction multiple times at
small offsets still keeps predictions spatially imprecise.

Pooling indices

(aoo ooafi

3 b4
Unpooling/ H %

Deconv. ~

Fig. 4: Deconvolution network. The CNN is “mirrored” to
learn the deconvolution.

Regarding the second point, we must remark that while
dilated convolutions increase the receptive field, this does not
introduce robustness to spatial variation per se. For example,
a network with only dilated convolution layers would have a
large receptive field but would only be able to learn filters of
the type “a building in the center, with a car exactly five pixels
to the left”. This robustness would have to be thus learned,
hopefully, by using a larger number of filters.

The use of an interleaved architecture at training time,
implemented with dilations, has been however reported
to be beneficial. In the context of aerial image label-
ing, Sherrah [4] recently showed that it outperformed its
FCN/upsampling counterpar The major improvement com-
pared to the FCN/upsampling network was measured in the
labeling capabilities of the car class, which is a minority class
with tiny objects, difficult to recognize [3]. While the dilation
strategy is not substantially different from an architectural
point of view compared to naive upsampling, some advantages
in training might explain the better results: In the upsampling
case the network is encouraged to provide a coarse classifica-
tion that, once upsampled, is close to the ground truth. In the
dilation network, on the contrary, the interleaved outputs are
directly compared to individual pixels in the ground truth, one
by one. The latter seems to better avoid suboptimal solutions
that absorb minority classes or tiny objects.

The computational time and memory required by dilation
networks are significant, to the point that using GPUs might
become impractical even with moderately large architectures.
This is because the whole network rationale is applied at many
contiguous locations.

Overall, while dilation networks have been reported to ex-
hibit certain advantages, they are computationally demanding
and do not particularly address the principle of Fig.

B. Deconvolution Networks (unpooling)

Instead of naively upsampling the classification score maps
with one deconvolutional layer, a more advanced approach is
to attach a multi-layer network to learn a complex upsampling
function. This idea was simultaneously presented by differ-
ent research groups [6], [7] and later extended to different
problems (e.g., [21]]). The most hassle-free way to do this is

'While such architecture is named a “no-downsampling” network in [4]], a
more appropriate name would probably be “no-upsampling”, because there is
indeed downsampling due to the max pooling layers.

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 6

ajojofo zal5a|5bl5b
o] foTololo] [e]o]afifialies
c|d c|d A E

OlcfO]O scliclzdl4d
Max pooling [0 | 0 [d | O lcllc|ld|id
indices

Fig. 5: Max (left) and average (right) unpooling.

to simply “reflect” an existent FCN, with the same number
of layers and kernel sizes, to perform the upsampling. The
convolutional layers are reflected as deconvolutional layers,
and the pooling layers as unpooling layers (see Fig.). While
pooling condenses several activations into one representative
value (typically, the maximum activation), unpooling layers
must reconstruct the original size of activations. In the case
of max unpooling, the location of the maximal activation is
recalled from the corresponding pooling layer, and is used to
place the activation back into its original pooled location. The
other elements in the unpooling window are set to zero, leading
to sparse feature maps, as illustrated in Fig. [5] Unpooling
was first introduced as part of a framework to analyze and
visualize CNN features [2]. The arrows in Fig. [represent the
communication of the pooling indices from the pooling layer
to the unpooling layer. In the case of average pooling, the
corresponding unpooling layer simply outputs at every location
the input activation value divided by the number of elements
in the target unpooling window(see Fig. [5). In this case, there
is no need to transmit a location from pooling to unpooling.

This concept can be thought of as an “encoder—decoder”,
where the middle layer is seen as a common representation
to images and classification maps, while the “encoder” and
“decoder” ensure the translation between this representation
and the two modalities. When converting an FCN to a de-
convolution network, the final classification layer of the FCN
is usually dropped before reflecting the architecture. This
way the interface between the encoder and the decoder is
a rich representation with multiple features. The first layer
of the encoder takes as input as many channels there are in
the input image, and usually the last layer of the decoder
produces as many feature maps as classes required. In [7],
[22], alternatively, the network outputs a larger set of features
that are then classified with additional layers.

While pooling is used to add robustness to spatial defor-
mation, the fact of “remembering” the location of the max
activation helps to precisely locate objects in the deconvolution
steps. For example, the exact location of a road might be
irrelevant to do any higher-level reasoning later on, but once
the network decides to label the road as a semantic object we
need to recover the location information to outline it with high
precision. This illustrates how deconvolution networks balance
the localization/recognition trade-off.

Note however that if one happens not to choose max pooling
for downsampling, then the unpooling scheme is not able to
recover per se the lost spatial resolution. There is no memory
about the location of the higher resolution feature. Even though
max pooling is very common, it has been shown that average

or other types of pooling might be more effective in certain
applications [18]. In fact, recent results [23] suggested that
max pooling can be emulated with a strided convolution and
achieve similar performance. The deconvolution network idea
is however leveraged when max pooling is the downsampling
mechanism used.

This certainly does not mean that a deconvolutional net-
work is incapable of learning without max pooling layers.
Convolution/deconvolution architectures without max pooling
have been successfully used in different domains [3[], [24].
For example, a recent submission to the ISPRS Semantic
Labeling Challenge [3] is such type of network. The recogni-
tion/localization trade-off is not really alleviated in this case:
the encoder should encode features of the type “an object
boundary 5 (or 7, 10...) pixels away to the left”, so that the
decoder can really leverage that information and reconstruct a
high-resolution classification map.

The depth of deconvolution networks is significantly larger,
roughly twice the one of the associated FCN. This often
implies a slower and more difficult optimization, due to the
increase in trainable parameters introduced by deconvolutional
layers. While the decoding part of the network can be simpli-
fied [8]], this adds arbitrariness to the design.

To conclude, the deconvolution scheme does address the
recognition/localization trade-off, but only in the case where
max pooling is used for downsampling. The increased network
depth can be a concern for an effective training.

C. Skip Networks

In the original paper about fully convolutional networks,
Long et al. [9] proposed the so-called “skip” architecture
to generate high-resolution classification outputs. The idea is
to build the final classification map by combining multiple
classification maps, obtained from intermediate features of the
network at different resolutions (and not just the last one).

The last layer of an FCN outputs as many feature maps as
classes, which are interpreted as score or “heat” maps for every
class. Intermediate layers, however, tend to have many more
features than the number of classes. Therefore, skip networks
add extra layers that convert the arbitrarily large number of
features of intermediate layers into the desired number of heat
maps. This approach allows us to extract multiple score maps
for each class from a single network, at different resolutions.
The lower-level score maps are fine but have a small receptive
field, while the higher-level ones can see farther but with less
detail. As a result, we have a pool of score maps.

The score maps are then combined pairwise, from the lower
scales to the higher scales. At every step, the lower-resolution
score maps are upsampled to match the higher-resolution ones.
They are then added elementwise. This is repeated until all
intermediate maps are processed. The overall combination of
resolutions forms a directed acyclic graph, with links that
“skip” ahead from lower layers to higher ones. A skip network
is illustrated in Fig. [

Skip networks address the trade-off between localization
and precision quite explicitly: the information at different
resolutions is extracted and combined. The original paper

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 7

@@@

Score

(B 1)

Scor
1 Score Score

Upsample
HRr————

]

Add]
+

Upsample

Upsample

Add]
i
Fig. 6: Skip network: multiple classification scores are ob-

tained from intermediate CNN features at different resolutions,
and are combined by element-wise adding and upsampling.

introduces this methodology as “combining what and where”.
This approach is closer to the principle described in Fig. [2]than
the previous approaches reviewed above. The skip network
mixes observations at different resolutions, without unneces-
sarily increasing the depth or width of the architecture (as
in deconvolution and dilation networks respectively) and it
does not impose a particular type of downsampling (as in
deconvolution networks).

While the idea of extracting different resolutions is certainly
very relevant, the skip model seems to be inflexible and
arbitrary in how to combine them. First of all, it combines
classification verdicts, instead of a rich set of features, coming
from each of the resolutions. For example, it combines how
a layer evaluates that an object is a building by using low-
level information, with how another layer evaluates whether
the same object is a building by using higher-level information.
Let us recall that we use deep multi-layer schemes with down-
sampling because we actually consider that certain objects can
only be detected at the upper layers of the network, when
a large amount of context has been taken into account and
at a high level of abstraction. It seems thus contradictory to
try to refine the boundaries of an object detected at a high
level, by using a classification conducted at a lower level,
where the object might not be detected at all. Moreover, the
element-wise addition restricts the combination of resolutions
to be simply a linear combination. The skip links to combine
resolutions are in fact parameterless (besides the addition of
the scoring layers). We could certainly imagine classes that
require a more complex nonlinear combination of high- and
low-level information to be effectively classified.

It is worth noting that the creation of the intermediate score
maps has also been referred to as a dimensionality reduction

step [22]. It is however not by chance that the amount of
reduced features coincides with the amount of classes: even
though it is technically a dimensionality reduction, its spirit
is to create a partial classification, not just to reduce the
number of features. This is confirmed by the name of these
layers in the public implementation of [9] : “score” layers.
Moreover, if this operation were indeed intended to be just
a reduction of dimensionality, we could imagine outputting
different amounts of feature maps from different resolutions.
However, in that case there would be no way of adding them
element by element as suggested.

To conclude, the skip network architecture provides an
efficient solution to address the localization/recognition trade-
off, yet this could be done in a more flexible way that allows
a more complex combination of the features.

IV. LEARNING TO COMBINE RESOLUTIONS

In this section we propose an alternative scheme for high-
resolution labeling, derived as a natural consequence of our
observations about the other families of methods. In particular,
this architecture leverages the benefits of the skip network
described in Section while addressing its potential limi-
tations.

Taking multiple intermediate features at different resolutions
and combining them seems to be a sensible approach to
specifically address the localization/recognition trade-off, as
done with skip networks. In such a scheme, the high-resolution
features have a small receptive field, while the low-resolution
ones have a wider receptive field. Combining them constitutes
indeed an efficient use of resources, since we do not actually
need the high-resolution filters to have a wide receptive field,
following the principle of Fig. 2]

The skip network combines predictions derived from the
different resolutions, i.e., score maps for each of the classes.
For example, we try to refine the “blobby” building outputted
by the coarse classifier, via a higher-resolution classification.
However, it is unclear how effectively the higher-resolution
classifier detects the building in question, considering its
reduced receptive field and shallow reasoning.

We thus argue that the most appropriate way of performing
fine semantic labeling is to combine features, not classification
maps. For example, to refine the boundaries of a coarse
building, we would use high-resolution edge detectors (and
not high-resolution building detectors).

In our proposed scheme, intermediate features are extracted
from the network and treated equally, creating a pool of
features that emanate from different resolutions. A neural
network then learns how to combine these features to give
the final classification verdict. This adds flexibility to learn
more complex relations between the different resolutions and
generalizes the element-wise addition of the skip architecture.

The overall process is depicted in Fig. [/] First, a subset of
intermediate features are extracted from the network. These
are naively upsampled to match the resolution of the higher-
resolution features. They are then concatenated to create the
pool of features. Notice that while the spatial dimensions of
the feature maps are all the same, they originally come from

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 8

1 1%

/
Upsample features

a4
@
Concatenate

Cocnate_
77 A A

I }

Learn to combine features

Fig. 7: MLP network: intermediate CNN features are concate-
nated, to create a pool of features. Another network learns
how to combine them to produce the final classification.

different resolutions. This way, the variation of the feature
responses across space will be smoother in certain maps while
sharper in others. Note that while it is practical to store in
memory the upsampled responses, this is not intrinsically
necessary. For example, we could imagine a system that
answers to a high-resolution query by outputting the nearest
neighbor in the coarser map or by interpolating neighboring
values on the fly.

From the pool of features, a neural network predicts the final
classification map (we could certainly use other classifiers, but
this lets us train the system end to end). We assume that all the
spatial reasoning has been conveyed in the features computed
by the initial CNN. This is why we operate on a pixel-by-pixel
basis to combine the features. Any need to look at neighbors
should be expressed in the spatial filters of the CNN. This way
we conceptually and architecturally separate the extraction of
spatial features from their combination.

We can think of the multi-layer perceptron (MLP) with one
hidden layer and a non-linear activation function as a minimal
system to learn how to combine the pool of features. Such
MLPs can learn to approximate any function and, since we
do not have any particular constraints, it seems an appropriate
choice. In practice, this is implemented as a succession of
convolutional layers with 1 x 1 kernels, since we want the
same MLP to be applied at every location. By introducing the
MLP and executing it at a fine resolution, we must expect an
overhead in processing time compared to the skip network.

The proposed technique is intended to learn how to combine
information at different resolutions, not how to upsample
a low-resolution classification. An example of the type of
relation we are able to convey in this scheme is as follows:

“label a pixel as building if it is red and belongs to a larger red
rectangular structure, which is surrounded by areas of green
vegetation and near a road”.

Finally, let us discuss the CNN from which features are
extracted (the topmost part of Fig. [7). The different features
are extracted from intermediate layers of a single CNN. This
assumes that the higher-level features can be derived from the
lower-level ones. It is basically a part-based model [25]], where
we consider that an object can be detected by its parts, and
we are using those same parts as the higher-resolution features
inputted to the MLP. This seems to be a sensible assumption,
yet we must mention that we could eventually think of separate
networks to detect features at different resolutions instead of
extracting intermediate representations of a single network (as,
e.g., in [26]). While we adopt the model of Fig.[7]in this work,
the alternative could be also considered. It would be certainly
interesting to study to which extent it is redundant to learn
the features in separate networks and, conversely, how results
could be eventually improved by doing it.

V. EXPERIMENTS
A. Datasets and Evaluation Metrics

We evaluate the aforementioned architectures on two bench-
marks of aerial image labeling: Vaihingen and Potsdam, pro-
vided by Commission III of the ISPRS [14]. The Vaihin-
gen dataset is composed of 33 image tiles (of average size
2494 x 2064), out of which 16 are fully annotated with class
labels. The spatial resolution is 9 cm. Near infrared (NIR),
red (R) and green (G) bands are provided, as well as a digital
surface model (DSM), normalized and distributed by [27]. We
select 5 images for validation (IDs: 11, 15, 28, 30, 34) and
the remaining 11 images for training, following [4], [3], [12].

Potsdam dataset consists of 38 tiles of size 6000 x 6000 at
a spatial resolution of 5 cm, out of which 24 are annotated. It
provides an additional blue channel and the normalized DSM.
We select the same 7 validation tiles as in [4] (IDs: 2_11,
212,410, 5_11, 6_7, 7_8 7_10) and the remaining 17 tiles
for training. Both datasets are labeled into the following six
classes: impervious surface, building, low vegetation, tree, car
and clutter/background.

In order to account for labeling mistakes, another version of
the ground truth with eroded boundaries is provided, on which
accuracy is measured. To evaluate the overall performance,
overall accuracy is used, i.e., the percentage of correctly
classified pixels. To evaluate class-specific performance, the
Fl1-score is used, computed as the harmonic mean between
precision and recall [28]. We also include the mean F1 measure
among classes, since overall accuracy tends to be less sensitive
to minority classes in imbalanced datasets.

B. Network Architectures

To conduct our experiments we depart from a base fully
convolutional network (FCN) and derive other architectures
from it. Table [I| summarizes our base FCN for the Vaihingen
dataset. The architecture is borrowed from [19], except for the
fact that we increased the size of the filters from 3 to 5 in the
first layer, since it is a common practice to use larger filters

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 9

TABLE I: Architecture of our base FCN.

Layer Filter size ~ Number of filters Stride = Padding
Conv-1_1 5 32 2 2
Conv-1_2 3 32 1 1

Pool-1 2 2
Conv-2_1 3 64 1 1
Conv-2_2 3 64 1 1

Pool-2 2 2
Conv-3_1 3 96 1 1
Conv-3_2 3 96 1 1

Pool-3 2 2
Conv-4_1 3 128 1 1
Conv-4_2 3 128 1 1

Pool_4 2 2
Conv-Score 1 5 1

if there is a stride. Every convolutional layer (except the last
one) is followed by a batch normalization layer [29] and a
ReLU activation. We did not optimize the architecture of the
base FCN.

The total downsampling factor is 16, out of which 8 is
the result of the max pooling layers and 2 of the stride in
the first layer. The conversion of the last set of features to
classification maps (the “score” layer) is performed by a 1 x 1
convolution. To produce a dense pixel labeling we must add a
deconvolutional layer to upsample the predictions by a factor
of 16, thus bringing them back to the original resolution.

To implement a skip network, we extract the features of
layers Conv-*_2, i.e., produced by the last convolution in
each resolution and before max pooling. Additional scoring
layers are added to produce classification maps from the
intermediate features. The resulting score maps are then com-
bined as explained in Section [[lI-Cl Our MLP network was
implemented by extracting the same set of features. As no
intermediate scores are needed, we remove layer ‘Conv-Score’
from the base FCN. The features are combined as explained
in Section The added multi-layer perceptron contains one
hidden layer with 1024 neurons.

We also created a deconvolution network that exactly
reflects the base FCN (as in [6]). This is straightforward,
with deconvolutional and unpooling layers associated to every
convolutional and pooling layer. The only particularity is that
the last layer outputs as many maps as required classes and
not as input channels. We here call it unpooling network, to
differentiate it in the experiments from another method that
uses a stack of deconvolutions but without unpooling [3],
which we simply refer to as deconvolution network. To cover
the last family of architectures of Sec. the dilation network,
we incorporate the results recently presented by Sherrah [4].

In both datasets we use the same four input channels: DSM,
NIR, R and G. Notice that we simply add the DSM as an
extra band. While for Potsdam dataset the blue channel is
also available, we here excluded it for simplicity. In the case
of Vaihingen we predict five classes, ignoring the clutter class,
due to the lack of training data for that class. In the case of
Potsdam we predict all six classes.

Considering the difference in resolution in both datasets, in
the case of Potsdam we downsample the input and linearly
upsample the output by a factor of 2 (following [4]). We use
the same architecture as for Vaihingen (besides the different

number of output classes) between the downsampling and
upsampling layers. This is intended to cover similar receptive
field in terms of meters (and not pixels) for both datasets.

C. Training

The networks are trained by stochastic gradient descent [[15].
In every iteration a group of patches is fed to the network
for backpropagation. We sample random patches from the
images, performing random flips (vertically, horizontally or
both) and transpositions, augmenting the data 8 times. At
every iteration we group five patches in the mini-batch, of size
256 x 256 for Vaihingen dataset and 512 x 512 for Potsdam
(to roughly cover the same geographical area, considering the
difference in resolution). In all cases, gradient descent is run
with a momentum of 0.9, and an L2 penalty on the network’s
parameters of 0.0005. Weights are initialized following [30]
and, since we use batch normalization layers before ReLUs,
there is no need to normalize the input channels.

We start from a base learning rate of 0.1 and anneal it
with an exponential decay. The decay rate is set so that the
learning rate is divided by ten every 10,000 iterations in the
case of Vaihingen and every 20,000 iterations in Potsdam. We
decrease the learning rate more slowly in the case of Potsdam
because the total surface covered by the dataset is larger, thus
we assume it must take longer to explore. Training is stopped
after 45,000 iterations in the first dataset and 90,000 in the
second one, when the error stagnates on the validation set.

To train the unpooling, skip and MLP networks we initialize
the weights with the pretrained base FCN, and jointly retrain
the entire architecture. We start this second training phase
with a learning rate of 0.01, and stop after 30,000 and 65,000
iterations for Vaihingen and Potsdam datasets respectively. We
verified that the initialization with the pretrained weights is
indeed beneficial compared to training from scratch.

D. Numerical Results

In this section we first present how our base FCN network
compares to its derived architectures: unpooling, skip and
MLP. We then position MLP with respect to other results
reported in the literature, including a dilation network, thus
completing the evaluation over all four families of techniques.
We finally discuss our submission to the ISPRS contest.

a) Comparison of a base FCN to its derived unpooling,
skip and MLP networks: The classification performances on
the validation sets are included in Tables [[I] and for Vai-
hingen and Potsdam datasets, respectively. The MLP network
exhibits the best performance in almost every case. The skip
network effectively enhances the results compared with the
base network, yet it does not outperform MLP. Let us remark
that the unpooling strategy does not necessarily constitute an
improvement to the base FCN. This might be a result of the
increased training difficulty due to the depth of the network
and the sparsity of the unpooled maps. We tried to modify the
training scheme, yet we could not improve its performance.

Overall, the numerical results show that the injection of
lower-resolution features significantly improves the classifica-
tion accuracy. MLP is the most competitive method, boosting
the performance by learning how to combine these features.

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS

TABLE II: Numerical evaluation of architectures derived from our base FCN on the Vaihingen validation set.

Imp. surf. Building Low veg. Tree Car Mean F1 | Overall acc.
Base FCN 91.46 94.88 79.19 87.89 7225 85.14 88.61
Unpooling 91.17 95.16 79.06 87.78 69.49 84.54 88.55
Skip 91.66 95.02 79.13 88.11 77.96 86.38 88.80
MLP 91.69 95.24 79.44 88.12 78.42 86.58 88.92

TABLE III: Numerical evaluation of architectures derived from our base FCN on the Potsdam validation set.

Imp. surf. Building Low veg. Tree Car Clutter | Mean F1 | Overall acc.
Base FCN 88.33 93.97 84.11 80.30 86.13 75.35 84.70 86.20
Unpooling 87.00 92.86 82.93 78.04 84.85 7247 83.03 84.67
Skip 89.27 94.21 84.73 81.23 9347 7518 86.35 86.89
MLP 89.31 94.37 84.83 81.10 93.56 76.54 86.62 87.02

b) Comparison with other methods: Tables[[V]and[V](for
Vaihingen and Potsdam datasets respectively) incorporate the
numerical results reported by other authors using the same
training and validation sets. Since not every method was
applied to both datasets, the tables do not display exactly
the same techniques. The MLP approach also outperforms
the dilation strategy, in both datasets, thus positioning it
as the most competitive category among those presented in
Sections (dilation, unpooling, skip, MLP).

In the case of Vaihingen dataset, we also report the results
of the deconvolution network [3]], commented in Sec.
which performs upsampling by using a series of deconvolu-
tional layers. Contrary to the unpooling network, the decoder
does not exactly reflect the encoder and no unpooling op-
erations are used. Additionally, we include the performance
of other methods recently presented in the literature: the
CNN+RF approach [12]], which combines a CNN with a
random forest classifier; the CNN+RF+CRF approch, which
adds CRF post-processing to CNN+RF; and Dilation+CRF [4],
which adds CRF post-processing to the dilation network. As
depicted in the table, the MLP approach outperforms these
other methods too.

For Potsdam dataset, Table [V] reports the performance of
two other methods, presented in [4]]. In both cases, a pretrained
network based on VGG [31]] is applied to the IR-R-G channels
of the image, and another FCN is applied to the DSM, resulting
in a huge hybrid architecture. An ordinary version (with
upsampling at the end) and a dilation version are considered
(‘VGG pretr.” and ‘VGG+Dilation’ in Table [V] respectively).
In the latter version, the dilation strategy could only be
applied partially as it is too memory intensive. While MLP
outperforms the non-pretrained simpler dilation network, the
VGG+Dilation variants exhibits the best overall performance
(though not on all of the individual classes). This suggests
that the VGG component might be adding a competitive edge,
though the authors stated that this is not the case on the
Vaihingen dataset.

Overall, MLP provides better accuracies than most tech-
niques presented in the literature, including dilation networks,
ensemble approaches and CRF post-processing.

c) Submission to the ISPRS challenge: We submitted the
result of executing MLP on the Vaihingen test set to the ISPRS
server (ID: ‘INR’), which can be accessed online [14]. Our
method scored second out of 29 methods, with an overall
accuracy of 89.5. Note that the MLP technique described in

this paper is very simple compared to other methods in the
leaderboard, yet it scored better than them. For example, an
ensemble of two skip CNNs was pretrained on large natural
image databases [[10]], with over 20 convolutional layers and
separate paths for the image and the DSM. Despite being
simpler, our MLP network outperforms it in the benchmark.

E. Visual Results

We include visual comparisons on closeups of classified
images of both datasets in Fig. |8l As expected, the base FCN
tends to output “blobby” objects, while the other methods
provide sharper results. This is particularly noticeable for the
cars of Rows 2, 5 and 6, and for the thin road at the lower
left corner of Row 4. We also observe that the incorporation
of reasoning at lower resolutions allows the derived networks
to discover small objects that are otherwise lost. This is
particularly noticeable in the 4th row, where there is a set of
small round/cross-shaped objects of the clutter class (in red)
that are omitted or grouped together by the base FCN.

The unpooling technique seems to be prone to outputting
artifacts. These are often very small in size, even isolated
pixels. This is well observed for example for the car of
Row 3. This effect could be a natural consequence of the max
unpooling mechanism, as depicted in Fig. [5] which upsamples
into sparse matrices and delegates the task of reconstructing a
smoother output to the deconvolutional layers.

At first sight it is more challenging to visually assess why
MLP beats the skip network in almost every case in the
numerical evaluation. Taking a closer look we can however
observe that boundaries tend to be more accurate at a fine
level in the case of MLP. For example, the “staircase” shape
of one of the buildings in Row 1 is noticeably better outlined
by the MLP network.

We can also observe that the ground truth itself is often
not very precise. For example, the car in Row 3 does not
seem to be labeled accurately, hence it is difficult to imagine
that a network would learn to finely label that class. In Row
5, an entire lightwell between buildings has apparently been
omitted in the ground truth (labeled as part of the building),
yet recognized as an impervious surface by the CNNss.

The general recognition capabilities of CNNs can also be
well appreciated in these fragments. For example, in Row 4,
while there are tiny round objects both on the roof of the
building and outside the building, CNNs correctly label as
building the ones on the roof and as clutter the other ones.

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS

TABLE IV: Comparison of MLP with other methods on the Vaihingen validation set.

Imp. surf. Build. Low veg. Tree Car F1 Acc.
CNN+RF 88.58 9423 76.58 8629 67.58 | 82.65 | 86.52 TABLE VI: Execution times.
CNN+RF+CRF [12] 89.10 94.30 7736 8625 7191 | 83.78 | 86.89 _

Deconvolution [3]] 83.58 | 87.83 Train [s] Test [s/ha]
Dilation 90.19 9449 7769 8724 7677 | 8528 | 87.70 Vaih. Pots. | Vaih. Pots.
Dilation + CRF [4] 90.41 94.73 7825 8725 7557 | 85.24 | 87.90 Base FC(N 39 98 | 081 144
MLP 91.69 95.24 79.44 88.12 78.42 | 86.58 | 88.92 Unpooling 84 21.0 | 1.38 184
Skip 6.6 169 | 081 148

)) o MLP 100 245 | 170 20
TABLE V: Comparison of MLP with other methods on the Potsdam validation set. Dilation* 62 400 | 481 172

Imp. surf. Build. Low veg. Tree Car Clutter F1 Acc.

Dilation [4] 86.52 90.78 8301 7841 0042 6867 | 8294 | 8414 aﬁz fﬁpé’;t:‘iﬁll)@’ using a faster machine (see
VGG pretr. [4] 89.84 9380 8543 8361 88.00 7448 | 85.86 | 87.42 :
VGG+Dilation 8995 9373 8591 8386 9431 7462 | 87.06 | 87.69
MLP 89.31 9437 8483 8110 9356 76.54 | 86.62 | 87.02

Image Ground truth Base FCN

. @

\:
&
O

7
Q{

y

)

*{
-
\

3
'F*:*

Fig. 8: Classification of closeups of Vahingen (1-3) and Potsdam (4-6) validation sets. Classes: Impervious surface (white),
Building (blue), Low veget. (cyan), Tree (green), Car , Clutter (red).

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 12

Deconvolution [3]]

Fig. 9: Classification of entire tiles of the Vaihingen test set.

In Fig. [0 we show the classification of entire tiles of the
Vaihingen set, obtained from the test set submissions. We
include the deconvolution [3]] and dilation [4] network results,
together with our MLP. We can see, for instance, that a large
white building in the first image is recognized by MLP but
misclassified or only partially recovered by the other methods.
In the second tile, the Dilation method outputs some holes in
the buildings which are not present in the MLP results. A
better combination of the information coming from different
resolutions might explain why MLP successfully recognizes
that these entire surfaces do belong to the same object.

F. Running Times

Table [V]] reports the running times for training and testing
on both datasets. The training time of the architectures de-
rived from the base FCN comprises the time to pretrain the
base FCN first and the time to then train the whole system
altogether (see details in Sec. |V-C)). The architectures were
implemented using Caffe and run on an Intel I7 CPU @
2.7Ghz with a Quadro K3100M GPU (4 GB RAM). We also
add for comparison the results reported by the author of the
Dilation network [4], run on a larger 12 GB RAM GPU. To
classify large images we crop them into tiles with as much
overlap as the amount of padding in the network, to avoid tile
border effects.

As reported in the table, the unpooling, skip and MLP
networks introduce an overhead to the base FCN. MLP is the
slowest of the derived networks, followed by the unpooling
and skip networks. MLP, which provides the highest accuracy,
classifies the entire Vaihingen validation set in about 30
seconds and the Postdam validation set in 2 minutes. This
is much faster than the dilation network. Incorporating the
principle of Fig. 2] allows us to better allocate computational
resources, not spending too much time and space in conducting
a high-resolution analysis where it is not needed, boosting
accuracy and performance.

VI. CONCLUDING REMARKS

Convolutional neural networks (CNNs) are becoming the
leading choice for high-resolution semantic labeling. The
biggest concern with this technique is the spatial coarseness
of the outputs. Most of the work has moderately modified
or post-processed well-known CNN architectures in order to
counteract this issue. We decided, however, to rethink CNNs
from a semantic labeling perspective.

For this purpose, we first analyzed different families of
semantic labeling CNN prototypes. This analysis bears some
similarity with the reasoning that gave birth to CNNs them-
selves: we study which relevant constraints can be imposed
in the architecture by construction, reducing the number of
parameters and improving the optimization. We observed that
existing networks often spend efforts in learning invariances
that could be otherwise guaranteed, and reason at a high reso-
lution even when it is not needed. While previous methods are
already competitive, we can devise more optimal approaches.

We derived a model in which spatial features are learned
at multiple resolutions (and thus different levels of detail) and
a specific CNN module learns how to combine them. In our
experiments on aerial imagery, such a model proved to be
more effective than the other approaches to conduct high-
resolution labeling. It provides a better accuracy with low
computational requirements, leading to a win-win situation.
Some of the outperformed methods are in fact significantly
more complex than our approach, proving once again that
striving for simplicity is often the way to go when using CNN
architectures.

We hope that our architectural prototype will be used as
a basis for semantic labeling networks. Our future plan is to
create a large-scale aerial image dataset, covering dissimilar
areas of the earth, on which to conduct semantic labeling with
convolutional neural networks.

ACKNOWLEDGMENT

The authors would like to thank CNES for initializing and
funding this study.

HIGH-RESOLUTION SEMANTIC LABELING WITH CONVOLUTIONAL NEURAL NETWORKS 13

[1]

[2]
[3]

[4]

[5]

[9]
[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

Gellert Mattyus, Shenlong Wang, Sanja Fidler, and Raquel Urtasun,
“Hd maps: Fine-grained road segmentation by parsing ground and aerial
images,” in IEEE CVPR, 2016.

Matthew D Zeiler and Rob Fergus, “Visualizing and understanding
convolutional networks,” in ECCV. Springer, 2014.

Michele Volpi and Devis Tuia, “Dense semantic labeling of sub-
decimeter resolution images with convolutional neural networks,” arXiv
preprint arXiv:1608.00775, 2016.

Jamie Sherrah, “Fully convolutional networks for dense seman-
tic labelling of high-resolution aerial imagery,” arXiv preprint
arXiv:1606.02585, 2016.

Anastasia Dubrovina, Pavel Kisilev, Boris Ginsburg, Sharbell Hashoul,
and Ron Kimmel, “Computational mammography using deep neural
networks,” Computer Methods in Biomechanics and Biomedical Engi-
neering: Imaging & Visualization, pp. 1-5, 2016.

Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han, “Learning
deconvolution network for semantic segmentation,” in /[EEE CVPR,
2015, pp. 1520-1528.

Vijay Badrinarayanan, Ankur Handa, and Roberto Cipolla, “Segnet:
A deep convolutional encoder-decoder architecture for robust semantic
pixel-wise labelling,” arXiv preprint arXiv:1505.07293, 2015.

Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culur-
ciello, “Enet: A deep neural network architecture for real-time semantic
segmentation,” arXiv preprint arXiv:1606.02147, 2016.

Jonathan Long, Evan Shelhamer, and Trevor Darrell, “Fully convolu-
tional networks for semantic segmentation,” in CVPR, 2015.

D Marmanisa, JD Wegnera, S Gallianib, K Schindlerb, M Datcuc, and
U Stillad, “Semantic segmentation of aerial images with an ensemble of
cnns,” ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, pp. 473-480, 2016.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-
phy, and Alan L Yuille, “Semantic image segmentation with deep convo-
lutional nets and fully connected crfs,” arXiv preprint arXiv:1412.7062,
2014.

Sakrapee Paisitkriangkrai, Jamie Sherrah, Pranam Janney, Van-Den
Hengel, et al., “Effective semantic pixel labelling with convolutional
networks and conditional random fields,” in IEEE CVPR Workshops,
2015.

Bharath Hariharan, Pablo Arbeldez, Ross Girshick, and Jitendra Malik,
“Hypercolumns for object segmentation and fine-grained localization,”
in IEEE CVPR, 2015, pp. 447-456.

ISPRS, “http://www2.isprs.org/commissions/comm3/wg4/semantic-
labeling.html,” .

Christopher M Bishop, Neural networks for pattern recognition, Oxford
university press, 1995.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter, “Fast
and accurate deep network learning by exponential linear units (elus),”
arXiv preprint arXiv:1511.07289, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner,
“Gradient-based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

Y-Lan Boureau, Jean Ponce, and Yann LeCun, “A theoretical analysis
of feature pooling in visual recognition,” in /CML, 2010, pp. 111-118.
Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen, “Se-
mantic segmentation of small objects and modeling of uncertainty in
urban remote sensing images using deep convolutional neural networks,”
in IEEE CVPR Workshops, 2016.

Fisher Yu and Vladlen Koltun, “Multi-scale context aggregation by
dilated convolutions,” arXiv preprint arXiv:1511.07122, 2015.

Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and Ming-Hsuan
Yang, “Object contour detection with a fully convolutional encoder-
decoder network,” arXiv preprint arXiv:1603.04530, 2016.

Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla, “Segnet: A
deep convolutional encoder-decoder architecture for image segmenta-
tion,” arXiv preprint arXiv:1511.00561, 2015.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller, “Striving for simplicity: The all convolutional net,” arXiv
preprint arXiv:1412.6806, 2014.

Edgar Simo-Serra, Satoshi lizuka, Kazuma Sasaki, and Hiroshi Ishikawa,
“Learning to simplify: fully convolutional networks for rough sketch
cleanup,” ACM Transactions on Graphics, vol. 35, no. 4, pp. 121, 2016.
Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva
Ramanan, “Object detection with discriminatively trained part-based
models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp.
1627-1645, 2010.

[26] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun,
“Learning hierarchical features for scene labeling,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 8, pp. 1915-1929, 2013.

Markus Gerke, “Use of the stair vision library within the isprs 2d
semantic labeling benchmark (vaihingen),” Tech. Rep., Technical report,
University of Twente, 2015.

Russell G Congalton and Kass Green, Assessing the accuracy of
remotely sensed data: principles and practices, CRC press, 2008.
Sergey loffe and Christian Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” arXiv
preprint arXiv:1502.03167, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification,” in IEEE CVPR, 2015, pp. 1026-1034.

Karen Simonyan and Andrew Zisserman, ‘“Very deep convolutional
networks for large-scale image recognition,” CoRR, 2014.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell, “Caffe:
Convolutional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[27]

[28]

[29]

(30]

(31]

(32]

Emmanuel Maggiori (S’15) received the Engineering degree in computer
science from Central Buenos Aires Province National University (UNCPBA),
Tandil, Argentina, in 2014. The same year he joined AYIN and STARS teams
at Inria Sophia Antipolis-Méditerranée as a research intern in the field of
remote sensing image processing. Since 2015, he has been working on his
Ph.D. within TITANE team, studying machine learning techniques for large-
scale processing of satellite imagery.

Yuliya Tarabalka (S’08-M’10) received the B.S. degree in computer science
from Ternopil Ivan Pul’uj State Technical University, Ukraine, in 2005 and
the M.Sc. degree in signal and image processing from the Grenoble Institute
of Technology (INPG), France, in 2007. She received a joint Ph.D. degree in
signal and image processing from INPG and in electrical engineering from
the University of Iceland, in 2010.

From July 2007 to January 2008, she was a researcher with the Norwegian
Defence Research Establishment, Norway. From September 2010 to December
2011, she was a postdoctoral research fellow with the Computational and
Information Sciences and Technology Office, NASA Goddard Space Flight
Center, Greenbelt, MD. From January to August 2012 she was a postdoctoral
research fellow with the French Space Agency (CNES) and Inria Sophia
Antipolis-Méditerranée, France. She is currently a researcher with the TI-
TANE team of Inria Sophia Antipolis-Méditerranée. Her research interests
are in the areas of image processing, pattern recognition and development of
efficient algorithms. She is Member of the IEEE Society.

Guillaume Charpiat received the B.S. degree in mathematics and physics
from the Ecole Normale Supérieure (ENS) at Paris, France, the M.Sc. degree
in computer vision and machine learning, and theoretical physics from ENS at
Cachan, France, and the Ph.D. degree in computer science at ENS in 2006. His
Ph.D. thesis was on the distance-based shape statistics for image segmentation
with priors.

He was with the Max-Planck Institute for Biological Cybernetics
(Tiibingen, Germany), where he was involved in medical imaging (MR-
based PET prediction) and automatic image colorization. He was a researcher
with Inria Sophia Antipolis-Méditerranée, Valbonne, France, where he was
involved in image segmentation and optimization techniques. He is currently
a Researcher with the TAO team, Inria Saclay, Palaiseau, France, where
he is involved in machine learning, in particular on building a theoretical
background for neural networks.

Pierre Alliez is Senior Researcher and team leader at Inria Sophia-Antipolis
- Méditerranée, Valbonne, France. He has authored scientific publications and
several book chapters on mesh compression, surface reconstruction, mesh
generation, surface remeshing and mesh parameterization.

Dr. Alliez was a recipient of the EUROGRAPHICS Young Researcher
Award in 2005 for his contributions to computer graphics and geometry
processing and a Starting Grant from the European Research Council on
Robust Geometry Processing in 2011. He was the co-chair of the Symposium
on Geometry Processing in 2008, Pacific Graphics in 2010 and Geometric
Modeling and Processing 2014. He is currently an Associate Editor of the
Computational Geometry Algorithms Library and an Associate Editor of the
ACM Transactions on Graphics.

	I Introduction
	II Convolutional Neural Networks
	II-A Convolutional Layers
	II-B Increasing the Receptive Field
	II-C Fully Convolutional Networks (FCNs)

	III Analysis of High-Resolution Labeling CNNs
	III-A Dilation Networks
	III-B Deconvolution Networks (unpooling)
	III-C Skip Networks

	IV Learning to Combine Resolutions
	V Experiments
	V-A Datasets and Evaluation Metrics
	V-B Network Architectures
	V-C Training
	V-D Numerical Results
	V-E Visual Results
	V-F Running Times

	VI Concluding Remarks
	References

