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Learning a Confidence Measure for Optical
Flow

Oisin Mac Aodha, Ahmad Humayun, Marc Pollefeys and Gabriel J. Brostow

Abstract—We present a supervised learning based method to estimate a per-pixel confidence for optical flow vectors. Regions
of low texture and pixels close to occlusion boundaries are known to be difficult for optical flow algorithms. Using a spatiotemporal
feature vector, we estimate if a flow algorithm is likely to fail in a given region. Our method is not restricted to any specific class of
flow algorithm, and does not make any scene specific assumptions. Additionally, we can combine the output of several computed
flow fields from different algorithms and automatically select the best performing algorithm at each location.

Our optical flow confidence measure allows one to achieve better overall results by discarding the most troublesome pixels. We
illustrate the effectiveness of our method on four different optical flow algorithms over a variety of real and synthetic sequences.
For algorithm selection, we achieve the top overall results on a large test set, and at times, surpasses even those of the one best

algorithm at our disposal.

Index Terms—Optical flow, confidence measure, random forest, synthetic data, algorithm selection.

1 INTRODUCTION

ATA sets with good variety help highlight both gener-
D alist “winners,” and special-purpose algorithms with
winning strategies for specific situations, e.g., rankings of
optical flow algorithms [1]. These evaluations are useful for
researchers planning a new strategy, but practitioners can
have trouble capitalizing on these rankings. A practitioner
looks to these scores when picking which algorithm to
trust for processing a new set of images. To a limited
extent, each algorithm could be used to self-assess its own
performance, as is typically done for stereo and optical
flow. Most algorithms seeking to optimize a non-convex
energy term at test time, know only that once converged,
a local minimum has been reached. The room for doubt
increases if multiple algorithms, whether competing or
collaborating, are solving the same problem using different
energy functions or priors. Each “expert” will be satisfied,
reporting with its own confidence that it has reached an
optimum. Our proposed approach addresses situations in
general, where some form of gold standard is available in
a training stage, but not at test time

It is difficult for most non experts to assess how suitable
a particular algorithm will be, given their data. For optical
flow, the expense and difficulty of obtaining ground truth
is enormous, especially for real-world data. This leaves
practitioners trying to choose which among the very few
well-tested image-pairs is most like their test video at hand.
Also, many algorithms do not gauge the confidence in
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Fig. 1: Optical Flow Confidence. a) Input image, one of two.
b) Computed flow field using [2]. c) Confidence image, green
indicates low confidence while yellow is high. Our algorithm
correctly identifies confidence for situations such as /A motion
discontinuities, ¢ high and [] low texture.

their output. In our previous work, we proposed a meta-
algorithm that automatically chooses the most appropri-
ate algorithm for the situation [3] and also introduced a
supervised learning based confidence measure for optical
flow. We presented results for both optical flow and feature
matching. This confidence was employed in a state of
the art occlusion detector [4]. In this paper, we improve
and carefully measure the accuracy of our optical flow
confidence. We define confidence, 1, for each flow vector
as the probability of that flow being below some specified
error €;,,, where €, is the amount of end point error
acceptable to the user. Confidence measures for optical flow
have been explored in the literature in the past. However,
they have typically been algorithm-type specific [5], or
have made simplifying assumptions about the statistics of
local flow [6]. We seek out the correlation between good
performance by a constituent algorithm and specific local
situations that can be discerned statistically from the image
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sequence. Figure 1 illustrates a typical confidence image
from our algorithm.

The semantic segmentation community has been devel-
oping successful techniques to find correlations between
object-classes and appearance (e.g., [7] and [8]). Using
similar intuition, we learn the relationship between spa-
tiotemporal image features and algorithm success. As a re-
lated problem, we also attempt to predict the best algorithm
locally, given a set of constituent flow algorithms, where the
“best” algorithm is the one that is predicted to yield the
best accuracy. We assume that implementations of all the
algorithms under consideration are available. Recognizing
that most flow algorithms may be ported to leverage GPU
processing, we accept the fixed cost of running all of them
on a given sequence as acceptable, in pursuing the best
overall accuracy.

We extend our previous work [3] and make the following
contributions:

« a thorough evaluation of our optical flow confidence
measure on new flow algorithms and several new
sequences

o comparison to other confidence measures

« separate confidence in X and Y directions

o improved accuracy for optical flow by automatically
combining known constituent algorithms

o an improved system for easily producing synthetic
ground truth optical flow data for scenes with moving
objects.

Experiments show our confidence measure outperforms
other general purpose measures. Additionally, we automat-
ically combine the output of multiple different algorithms
which gives better results than any individual algorithm.

2 RELATED WORK

We examine the relevant work in optical flow confidence
estimation. For an overview of traditional optical flow
approaches see [9], and see [1] and [2] for more current
techniques. We also review work related to algorithm
selection; defined as finding the algorithm from a candidate
set, which produces the most accurate result for a given
task-algorithm combination.

Confidence Estimation

Early confidence measures for optical flow were only
concerned with intensity information. Simoncelli et al. [10]
proposed a method based on the gradient of the intensity
in a window about the patch. The justification is that one
would expect computed flow to be accurate in areas of high
gradient e.g., high texture regions and image corners. Their
method does not just return a single confidence estimate
for each vector, but a 2D distribution which they use to
represent uncertainty. Anandan [11] also express confidence
as a 2D measure of the curvature in the sum of squared
differences surface computed during candidate matching.
Their intuition for 2D confidence is that they can represent
the certainty of the flow in a particular direction (both x
and y). Uras et al. [12] look at the spatial Hessian matrix of

the local intensity patch. Jihne et al. [13] present several
methods based on a eigenvalue decomposition of the 3D
structure tensor. Some of their measures look at the tem-
poral gradient but do not take the computed flow field into
account. In effect, these measures attempt to predict how
difficult it will be to determine flow for a particular image
pair by analyzing their spatial and temporal gradients. Our
approach differs in that it learns a mapping between flow
algorithm success vs. spatiotemporal image data and the
computed flow field.

Algorithm-specific confidence estimation techniques also
exist. Kybic and Nieuwenhuis [5] describe a method which
works for optical flow algorithms that minimize spatially
decomposable variational image similarity terms, such
as [14], [15]. Their bootstrap resampling approach must
compute the flow field over multiple iterations (ten in their
paper), while at each iteration, the input data is perturbed
and the variability of the result is measured. As noted by the
authors, their algorithm may succeed in detecting the vari-
ance in the error but not the bias. Bruhn and Weickert [16]
propose a confidence measure for variational optical flow
methods where confidence is inversely proportional to the
local energy of the objective being minimized. For more
details on other algorithm specific methods which do not
generalize across optical flow algorithms see [5], [17].

Kondermann et al. [18] propose a PCA based method
where confidence is defined as how well a learned linear
subspace approximates the test flow vector. In follow up
work [6], they learn a probabilistic model of the flow field
in local windows from training data. These flow vectors are
then modeled as a multivariate Gaussian distribution and
a confidence measure is proposed based on statistical test
theory. These two approaches are most closely related to
ours in that they attempt to learn a model from training data
but differ in the fact that they rely on strong assumptions re-
garding local smoothness. In our previous work [3], which
we build on here, we used a supervised learning approach
to estimate confidence for both interest point descriptors
and optical flow. Our method seeks to learn where each
flow algorithm will succeed or fail based on analyzing a
feature vector computed from the image pair. We combine
multiple feature types such as temporal, texture, distance
from images edges, and others, to estimate the confidence
in a given flow algorithm’s success.

Attempts have been made to evaluate the performance
of different confidence measures. Bainbridge-Smith and
Lane [19] compare several spatial derivative based con-
fidence measures on a limited set of data. Kybic and
Nieuwenhuis [5] provide a thorough comparison of their
work against others but only for one optical flow algorithm.

Other areas have witnessed attempts to learn a confidence
measure. For depth images captured using a Time Of Flight
camera, Reynolds et al. [20] proposed a supervised learning
method in the spirit of this work, which classifies the
depth error returned by the camera. Using a learning based
approach, Li et al. [21] sought to learn a ranking function
which sorts interest points according to their stability.
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Algorithm Selection

In addition to estimating confidence for a particular flow
algorithm, our supervised learning approach also allows us
to combine the output of several different flow algorithms to
choose the best flow at each pixel. Here, we review related
work in combining different “experts” with specific empha-
sis on methods for combining optical flow algorithms.

Raykar et al. [22] proposed a model to deal with the
scenario in supervised learning where multiple annotators
(or experts) exist, but each of them is slightly wrong. In
their scenario, one expert is assumed to always be better
than all the rest, and the task consists of finding that
expert. The technique is an improvement over following
the majority vote when some experts are better than others.
Our problem formulation is different, however, because
we cannot assume that one expert is consistently better or
worse, independent of the image data being considered.

Learned algorithm selection is shown by Yong et al. [23]
for the specific task of image segmentation. They used an
SVM for learning and performed their experiments on 1000
synthetic images of 2D squares, circles, efc., with additive
noise, demonstrating what is actually online learning for
algorithm selection. Working with 14 constituent real-time
tracking algorithms, Stenger et al. [24] developed a frame-
work that learned the expected error of each algorithm,
given its confidence values. Then during testing, the best-
performing pairs of algorithms could be cascaded or run
in parallel to track a hand or head. This approach is very
flexible for situations where one task is being accomplished
at a time. Alt et al. [25] describe a supervised learning
approach for assessing which planar patches will be difficult
for tracking. Using this pre-selection of reliable templates,
they report an improved detection rate for an existing
tracking-by-detection system. Peng and Veksler attempt to
automatically estimate the best parameters for interactive
segmentation [26]. They train a classifier on image features
computed from training data and during testing attempt to
choose the best set of parameters (where a parameter set
could be viewed as an algorithm) to segment the given
scene.

Muja and Lowe [27] have presented a unique approach
to algorithm-selection that is quite valuable in the con-
text of feature matching and beyond. Like us, they argue
that algorithm-suitability is data-dependent. Their system
searches a parameter space, where the algorithm itself is
just one of the parameters, to find an appropriate approx-
imate nearest-neighbor strategy (algorithm and settings).
The automatically determined strategy is based on the target
data itself, such as a database of SIFT descriptors [28], and
desired preferences for optimizing lookup speeds versus
memory. There, the training data is the same as the test
data, so their optimization is deterministic, while our algo-
rithm suitability must be learned so we can predict which
segments are suited for which strategy, just by looking at
each video.

Of the existing approaches to computing optical flow, the
iterative FusionFlow [29] is still very different technically,
but the closest to our approach in terms of its philosophy.

They compute a discrete optimization on continuous-valued
flow-fields (with another continuous optimization “clean-
up”), by performing a minimal cut on an extended graph.
The extended graph consists of auxiliary binary-valued
labels to represent either accepting a newly proposed flow
vector at that location, or keeping the current flow estimate.
The similarity to our work is that in each such iteration of
FusionFlow, the new proposed solution could be viewed
as a competing strategy or algorithm, offering a potentially
lower energy than the current estimate, at least in some spa-
tial neighborhood. FusionFlow is quite flexible and could
potentially be modernized with more competitive starting-
proposals than the 200+ based on Lucas-Kanade [30] and
Horn and Schunk [31], but the authors indicate that because
of their energy function, the computed minimum eventually
gives a score extremely close to the energy of the ground
truth solution (e.g., £ = 1613 vs. 1610).

A thorough understanding of existing energy functions
allowed Bruhn et al. [32] to formulate a new Combined
Local-Global (CLG) method, aptly named “Lucas/Kanade
Meets Horn/Schunk”. Their new 2D energy term (and its
3D variant) combined the local robustness to noise offered
by algorithms such as Lucas-Kanade [30], with the regular-
ized smoothness and dense flow of global algorithms, such
as Horn and Schunk [31]. They compute a confidence crite-
rion based on this new energy term, and demonstrate that it
is partly correlated with actual accuracy. The challenge they
describe has been one of our driving motivations, namely,
that one has few if any reliable confidence measures,
beyond the chosen energy function itself. That problem
is compounded when comparing multiple algorithms with
different energy-minimization objectives.

The nonparametric FRAME model of Zhu et al. [33]
optimized its texture synthesis by picking out filters from
a filter bank, whose responses are correlated with neigh-
borhoods in the training image. That approach is very
flexible, adaptively using potentially many filters, including
non-linear ones which filter large sub-images. Since then,
Roth and Black’s Fields of Experts (FoE) [34] has gained
a following by augmenting FRAME, extending Markov
random fields with the capability to learn filters that model
local field potentials. The completely data-driven nature of
FoE is very attractive, and Woodford et al. [35] showed
a method that trains with 5x5 cliques in a comparatively
short time. Roth and Black have further demonstrated FOE
for the purpose of modeling an optical flow prior [36].
In [36], they used range-images of known scenes with
separately obtained real camera motions to learn a model
of motion fields, which are different from optical flow.
Here, they still had to manually monitor convergence of the
learning, but in testing, demonstrated superior results using
these spatial statistics as priors for the aforementioned 2D
Bruhn et al. [32] flow algorithm. FoE’s expert functions
are less flexible than the FRAME model by design: they
can be non-linear, but need to be continuous, and the log
of an expert has to be differentiable with respect to both
the expert’s parameters and the (necessarily) linear filter
responses.
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Sun et al. [37] adapted their spatial FOE model of
optical flow, learning a relationship between image and flow
boundaries, this time with a parameterization of spatiotem-
poral brightness inconstancy. The steered model of flow and
the generalized data term are learned on the painstakingly
prepared ground truth flow data of Baker et al. [1]. In
our experiments, we too train on similar data and also
have no need for sequence-specific parameter tuning, and
we achieve better scores simply by virtue of leveraging
multiple black-box algorithms that are effective in their own
right.

An important result of the FoE line of research is the
finding, that with careful optimization procedures, a good
generalist algorithm’s priors about local responses to linear
filters should be learned from representative training data.
Different low-dimensional “experts” in this setting are not
unique algorithms, but are instead measures, being com-
bined to model high dimensional probability distributions
of parameterized statistics. Our goal is much simpler, non-
parametric, and complementary: to establish the discrim-
inability between visual situations given competing strate-
gies or algorithms, in this case, for computing optical flow.
For example, the algorithms with FoE-based priors trained
with different sized cliques (5x5 for [36], 9x9 for [37])
could be evaluated as different strategies in our framework.

3 LEARNING ALGORITHM

Given a dense optical flow field F', computed from an image
pair I; and I, we wish to estimate a confidence value
Yt € [0,1] for each flow vector f; = (u;,v;). One option
would be to pose this as a regression task and attempt
to estimate the true error value e, for each flow vector.
Where €, is the End Point Error (EPE), i.e. the distance
measured in pixels from the computed flow vector to the
ground truth. Instead, we attempt to solve the comparatively
easier problem of determining if the proposed flow vector
f; is reliable or not at a specific error threshold €Z,,.. Unlike
other methods, this has the advantage of allowing the user
to specify a lower limit on accuracy. For example in some
applications, it is beneficial to have more pixels, even with
coarser flow estimates, e.g., [38]. We pose confidence
estimation as a standard binary supervised learning problem

of the form:
D = {(xi,c;)[xi € RY, ¢; € {0,1}}1, )]

with n being the number of training examples, d the
dimensionality of the feature vector x; computed from the
images and flow field, and the label ¢;. In training, a flow
vector f; gets a label of 1 if its EPE, € is less than the

epe’
desired threshold €? _, otherwise it is set to O:

epe’

% s
C; = 1 681)6 < 661)6 (2)
1o € > e

epe epe*

At test time, the probability associated with the class label
c; is taken to be our confidence °.

The applicability of most flow algorithms is situation-
specific, and we wish to classify those situations auto-
matically. Using a similar approach, we seek to learn the
mapping between a feature vector and a class label which
represents the different possible algorithms. In this scenario,
algorithm selection is posed as a multi class supervised
learning problem:

D = {(x,¢)|x; € R ¢; € ZEY |, (3)

with the same notation as Equation 1, but now ¢; is the
algorithm with the lowest EPE, and K the number of
possible competing algorithms.

Our single classifier is taking the place of the multiple
algorithm-specific energy terms or confidence measures.
Being probabilistic, the posteriors of different classifiers
can be compared to each other. Task accuracy should be
improved if each part of an image sequence is handled by
the most suitable of K algorithms. The proposed approach
is most appropriate in situations where either no good single
algorithm exists, or where a generalist algorithm makes
mistakes in places that some specialist algorithm does not.

3.1 Choice of Algorithm

For our classifier, we have selected the Random Forests
algorithm developed by Breiman [39]. Random Forests is
an ensemble of decision trees which averages the pre-
dictions of the trees to assign the class labels. It makes
use of bagging to uniformly sample (with replacement)
subsets from the dataset to train the decision trees. It can
also use the remaining data to estimate the error for that
particular tree. During training, each node selects from a
random set of tests the one that best splits that data. A
Random Forest has the advantage of being fast to train
and test even on large amounts of data, it is multiclass,
robust to noise, inherently parallelizable, can handle large
datasets, and it also estimates the importance of the input
variables. See [40] for a detailed overview of classification
and regression forests. We also experimented with Boosted
Trees and SVMs and noted slightly worse performance with
an increase in training time.

4 FEATURES

Given an image pair I; and I (where I = f(z,y)
is a grayscale image), we wish to construct a feature
representation for each pixel in the first image, x;, which
is indicative of the success and failure cases of optical
flow algorithms. We use a similar feature representation
to [3], with the addition of some new features from [4].
This feature set, while certainly not exhaustive, combines
single image, temporal, and scale space features.

Appearance

Highly textured regions provide little challenge for modern
optical flow algorithms. By taking the gradient magnitude
of the image, it is possible to measure the level of “tex-
turedness” of a region:

g($7yaz): ||V11(x7y,z)||7 (4)
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where = and y are the pixel location in /7, and z is the level
in the image pyramid. Additionally, the distance transform
is calculated on edge detected images:

d(z,y, z) = disTrans(||VIi(z,y, 2)|| > Teq). ()

The intuition is that image edges may co-occur with motion
boundaries, and the higher the distance from them, the
lower the chance of occlusion. We also use the learned
P, edge detector of [41], which produces edge maps that
often correlate with object edges:

pb(z,y, z) = disTrans(Py[I1(x,y,2)] > Tpp).  (6)

Other texture based features, such as convolution with
filter banks, were tested to capture other neighborhood
information, but did not show increased performance.

Temporal

Flow algorithms tend to break down at motion discontinu-
ities. Identifying these regions can be a cue for improving
flow accuracy. Techniques such as image differencing can
potentially locate these regions, but we found that a more
robust approach is to take the derivative of the proposed
flow fields. This is done by computing the median of the
different candidate algorithms’ flow and then calculating the
gradient magnitude in the = and y directions respectively:

ta(z,y,2) = |IVall,  ty(z,y,2) = [[Voll. (D)
Photo Constancy

Another indicator of optical flow quality is to measure the
photoconstancy residual. For a given pixel, this is achieved
by subtracting the intensity in I5 at x,y advected with the
predicted flow w, v from the intensity in I; at x,y. Due to
the discrete nature of image space, we bicubicly interpolate
the intensity values in the second image. The residual error,
measured in intensity, is calculated independently for each
of the K candidate flow algorithms, so

r(z,y, k) = [I1(x,y) — bicubic(I2(x + uk, Y+ vk))|. 8)

In the scenario where the optical flow vector projects the
pixel outside the bounds of I5, we assign a constant penalty.

Median Flow

Pixels with very different proposed flow vectors tend to
correlate with regions where optical flow is challenging to
compute. To identify these regions we take the L? norm
of the median flow vector across the different constituent

algorithms:
m(x,y) = vV u?+ 02 )

Scale

Most effective approaches to optical flow estimation utilize
scale space to compute flow for big motions. With this
in mind, all of these features, with the exception of the
residual error and median flow, are calculated on an image
pyramid with z = [1,..,1] levels, and a rescaling factor of
s.

These individual features are combined to create the full
feature vector x;, computed for each of the pixels in [;:

X = {g(amy,z)7d(x7y,z)7tm(w,y,z),ty(x,y,z),

pb(x,y, 2),r(x,y, [1,k]), m(x,y)}. (10)

5 TRAINING DATA

Several techniques have been proposed to generate ground
truth optical flow data from real image sequences. The
popular Middlebury optical flow dataset approximated flow
by painting a scene with hidden fluorescent texture and
imaging it under UV illumination [1]. The ground truth
flow is then computed by tracking small windows in the
high resolution UV images, and performing a brute-force
search in the next frame. The high resolution flow field is
then downsampled to produce the final ground truth. This
technique, while successful, is extremely time consuming
and limited in the types of scenes that can be captured (re-
stricted to lab environments). Additionally the ambiguity in
matching the image patches can result in incorrect flow and
inaccurate labelling of occlusion regions. Human assistance
has been used to explicitly annotate motion boundaries in
scenes [42]. However these approaches remain inaccurate
and not scalable for producing large amounts of reliable
ground truth data.

Synthetically generated data offers an attractive method
for automatically creating large amounts of accurate train-
ing data. This type of approach has been shown to
be very successful in applications such as human body
pose estimation [43] and detecting occlusion regions [4].
Synthetically generated sequences have been used as an
alternative to natural images for optical flow evaluation
since the introduction of the famous Yosemite sequence
by Barron et al. [9]. Until now, the limiting factor in their
use has been the inability to generate realistic sequences. As
a result, practitioners have focussed on “toy” datasets with
unrealistic geometry and lighting [44], [45]. Using realistic
texture, global illumination techniques and by modeling
complex geometry, it is now possible to generate realistic
sequences with consumer 3D computer graphics packages.
Attempts have been made to assess whether synthetic data
produces the same error distribution as real data [46].

sy

T

Fig. 2: Unlimited Ground Truth Optical Flow Data The top
row depicts some example images from our system. Below is the
ground truth flow between successive frames. The flow field color
is coded using the same format as [1]. Black values in the flow
image indicate areas of occlusion between the two frames.

In our previous work, we presented a system which
allowed the user to generate ground truth optical flow
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for a given synthetic image pair of a static scene [3].
Our expanded system allows us to generate ground truth
flow for arbitrary scenes with rigid moving objects and
camera motion. Examples of our training data are shown
in Figure 2. The system works by casting a ray from the
camera center in the first image, through the image plane
and into the scene until it intersects an object. Then this
point is projected back into the second camera (respecting
occlusions in the scene and both camera and object motion),
and the optical flow is calculated from the position differ-
ence with respect to the first image plane. An advantage of
the system is that the texture and lighting of the scene is
independent of the geometry. This creates the possibility for
re-rendering the same scene using different illumination and
textures, without altering the ground truth. As the system
calculates intersections between projected rays and scene
objects, occlusions are noted and therefore not erroneously
labelled with incorrect flow (black regions in Figure 2).
To generate large amounts of data, we simulate rigid body
dynamics on the scene objects with gravitational and force
fields. We then randomly texture the objects from a library
of high resolution texture maps. Sequences consisting of
multiple image pairs and the software to create additional
ground truth optical flow for experiments are available on
our project website. In addition to the data from [3] we
perform tests on 15 new sequences.

5.1

Due to the potential unlimited training data available, it
is necessary to perform some selection on the examples
used. In the algorithm selection case, training data can
be quite redundant, as different algorithms can give the
correct (or very close to correct) flow for a given pixel.
Also, large portions of scenes can have very similar regions
of flow, offering little additional information. To overcome
these problems we pre-select a subset of the available data
on which to train. We only train on examples where the
end point error between the best performing algorithm and
the second best for a particular pixel is greater than a
threshold of 0.3 pixels. We also ensure that we have an
equal amount of training data for each of the K algorithms.
In the case of confidence estimation we select subsets at
random from the training data (equally sampling from each
scene). Samples which fall below €7, are labelled as class
1 (acceptable error) and samples above are set to class 0
(to large an error). This reduces the amount of training data
but also allows the selection of examples which are most
discriminative. For an experimental analysis of the effects
of varying the amount of training data, see Section 7.2.1.

Training Data Selection

6 COMPETING METHODS

We also compare our confidence measure against several
competing methods. Like our results, each of these confi-
dence measures is computed per pixel . While additional
confidence measures exist (e.g., [5]) we only consider those
that are generally applicable to any type of flow algorithm.

The first and most basic measure attempts to characterize
pixels of low texture, because optical flow algorithms
without any form of spatial regularization typically break
down in these regions [17]. Here, confidence is related to
the gradient magnitude of intensity in the first image,

1)

The next set of confidence measures are based on
properties of the 3D structure tensor [13]. The structure
tensor J is a 3D symmetric matrix of partial derivatives,
computed from the spatiotemporal image sequence. Unlike
the previous measure, these confidence measures use both
images in the sequence to construct the structure tensor,
though they still do not use any information specific to the
flow computed. The structure tensor is computed for each
pixel and has the form:

4 = [IVL]]-

2
gra

F=\0y Ly Ll 12
Ly Ty Ty

where I +, is the smoothed' product of the partial derivatives
in the p and ¢ direction at pixel . The derivatives are
approximated using finite differences in the z, y and ¢
(I; — I) dimensions. An eigenvalue decomposition is
then performed on this matrix, and the resulting eigen-
values (A1, A2, A3) are used to compute the confidence.
The eigenvalues are sorted into descending order, where
A=A 2 A3 20.

The first structure tensor based measure is the total
coherency measure. It seeks to estimate the overall certainty

of displacement:
P (MY
strTc — )\1 n )\3 .

The spatial coherency mea<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>