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Abstract

Recent advances in semantic image segmentation have
mostly been achieved by training deep convolutional neural
networks (CNNs). We show how to improve semantic seg-
mentation through the use of contextual information; specif-
ically, we explore ‘patch-patch’ context between image re-
gions, and ‘patch-background’ context. For learning from
the patch-patch context, we formulate Conditional Random
Fields (CRFs) with CNN-based pairwise potential func-
tions to capture semantic correlations between neighboring
patches. Efficient piecewise training of the proposed deep
structured model is then applied to avoid repeated expen-
sive CRF inference for back propagation. For capturing the
patch-background context, we show that a network design
with traditional multi-scale image input and sliding pyra-
mid pooling is effective for improving performance. Our ex-
perimental results set new state-of-the-art performance on a
number of popular semantic segmentation datasets, includ-
ing NYUDv2, PASCAL VOC 2012, PASCAL-Context, and
SIFT-flow. In particular, we achieve an intersection-over-
union score of 78.0 on the challenging PASCAL VOC 2012
dataset.

1. Introduction

Semantic image segmentation aims to predict a category
label for every image pixel, which is an important yet chal-
lenging task for image understanding. Recent approaches
have applied convolutional neural network (CNNs) [13, 32,

] to this pixel-level labeling task and achieved remarkable
success. Among these CNN-based methods, fully convo-
lutional neural networks (FCNNs) [32, 3] have become a
popular choice, because of their computational efficiency
for dense prediction and end-to-end style learning.

Contextual relationships are ubiquitous and provide im-
portant cues for scene understanding tasks. Spatial context
can be formulated in terms of semantic compatibility re-
lations between one object and its neighboring objects or
image patches (stuff), in which a compatibility relation is
an indication of the co-occurrence of visual patterns. For
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Figure 1. An illustration of the prediction process of our method.
Both our unary and pairwise potentials are formulated as multi-
scale CNNs for capturing semantic relations between image re-
gions. Our method outputs low-resolution prediction after CRF
inference, then the prediction is up-sampled and refined in a stan-
dard post-processing stage to output the final prediction.

example, a car is likely to appear over a road, and a glass
is likely to appear over a table. Context can also encode in-
compatibility relations. For example, a car is not likely to be
surrounded by sky. These relations also exist at finer scales,
for example, in object part-to-part relations, and part-to-
object relations. In some cases, contextual information is
the most important cue, particularly when a single object
shows significant visual ambiguities. A more detailed dis-
cussion of the value of spatial context can be found in [21].

We explore two types of spatial context to improve the
segmentation performance: patch-patch context and patch-
background context. The patch-patch context is the se-
mantic relation between the visual patterns of two image
patches. Likewise, patch-background context is the seman-
tic relation between a patch and a large background region.

Explicitly modeling the patch-patch contextual relations
has not been well studied in recent CNN-based segmenta-
tion methods. In this work, we propose to explicitly model
the contextual relations using conditional random fields
(CRFs). We formulate CNN-based pairwise potential func-
tions to capture semantic correlations between neighboring
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patches. Some recent methods combine CNNs and CRFs
for semantic segmentation, e.g., the dense CRFs applied in
[3, 40, 48, 5]. The purpose of applying the dense CRFs in
these methods is to refine the upsampled low-resolution pre-
diction to sharpen object/region boundaries. These methods
consider Potts-model-based pairwise potentials for enforc-
ing local smoothness. There the pairwise potentials are con-
ventional log-linear functions. In contrast, we learn more
general pairwise potentials using CNNs to model the se-
mantic compatibility between image regions. Our CNN
pairwise potentials aim to improve the coarse-level predic-
tion rather than doing local smoothness, and thus have a
different purpose compared to Potts-model-based pairwise
potentials. Since these two types of potentials have different
effects, they can be combined to improve the segmentation
system. Fig. 1 illustrates our prediction process.

In contrast to patch-patch context, patch-background
context is widely explored in the literature. For CNN-
based methods, background information can be effectively
captured by combining features from a multi-scale image
network input, and has shown good performance in some
recent segmentation methods [13, 33]. A special case
of capturing patch-background context is considering the
whole image as the background region and incorporating
the image-level label information into learning. In our ap-
proach, to encode rich background information, we con-
struct multi-scale networks and apply sliding pyramid pool-
ing on feature maps. The traditional pyramid pooling (in a
sliding manner) on the feature map is able to capture infor-
mation from background regions of different sizes.

Incorporating general pairwise (or high-order) potentials
usually involves expensive inference, which brings chal-
lenges for CRF learning. To facilitate efficient learning we
apply piecewise training of the CRF [43] to avoid repeated
inference during back propagation training.

Thus our main contributions are as follows.

1. We formulate CNN-based general pairwise potential
functions in CRFs to explicitly model patch-patch semantic
relations.

2. Deep CNN-based general pairwise potentials are chal-
lenging for efficient CNN-CRF joint learning. We perform
approximate training, using piecewise training of CRFs
[43], to avoid the repeated inference at every stochastic gra-
dient descent iteration and thus achieve efficient learning.

3. We explore background context by applying a network
architecture with traditional multi-scale image input [13]
and sliding pyramid pooling [26]. We empirically demon-
strate the effectiveness of this network architecture for se-
mantic segmentation.

4. We set new state-of-the-art performance on a num-
ber of popular semantic segmentation datasets, including
NYUDv2, PASCAL VOC 2012, PASCAL-Context, and
SIFT-flow. In particular, we achieve an intersection-over-
union score of 78.0 on the PASCAL VOC 2012 dataset,

which is the best reported result to date.
1.1. Related work

Exploiting contextual information has been widely stud-
ied in the literature (e.g., [39, 21, 7]). For example, the early
work “TAS” [21] models different types of spatial context
between Things and Stuff using a generative probabilistic
graphical model.

The most successful recent methods for semantic image
segmentation are based on CNNs. A number of these CNN-
based methods for segmentation are region-proposal-based
methods [14, 19], which first generate region proposals and
then assign category labels to each. Very recently, FCNNs
[32, 3, 5] have become a popular choice for semantic seg-
mentation, because of their effective feature generation and
end-to-end training. FCNNs have also been applied to a
range of other dense-prediction tasks recently, such as im-
age restoration [10], image super-resolution [8] and depth
estimation [1 1, 29]. The method we propose here is simi-
larly built upon fully convolution-style networks.

The direct prediction of FCNN based methods usually
are in low-resolution. To obtain high-resolution predic-
tions, a number of recent methods focus on refining the
low-resolution prediction to obtain high resolution predic-
tion. DeepLab-CRF [3] performs bilinear upsampling of
the prediction score map to the input image size and ap-
ply the dense CRF method [24] to refine the object bound-
ary by leveraging the color contrast information. CRF-RNN
[48] extends this approach by implementing recurrent lay-
ers for end-to-end learning of the dense CRF and the FCNN
network. The work in [35] learns deconvolution layers to
upsample the low-resolution predictions. The depth esti-
mation method [30] explores super-pixel pooling for build-
ing the gap between low-resolution feature map and high-
resolution final prediction. Eigen et al. [9] perform coarse-
to-fine learning of multiple networks with different resolu-
tion outputs for refining the coarse prediction. The methods
in [18, 32] explore middle layer features (skip connections)
for high-resolution prediction. Unlike these methods, our
method focuses on improving the coarse (low-resolution)
prediction by learning general CNN pairwise potentials to
capture semantic relations between patches. These refine-
ment methods are complementary to our method.

Combining the strengths of CNNs and CRFs for seg-
mentation has been the focus of several recently developed
approaches. DeepLab-CRF in [3] trains FCNNs and ap-
plies a dense CRF [24] method as a post-processing step.
CRF-RNN [48] and the method in [40] extend DeepLab
and [25] by jointly learning the dense CRFs and CNNs.
They consider Potts-model based pairwise potential func-
tions which enforce smoothness only. The CRF model
in these methods is for refining the up-sampled predic-
tion. Unlike these methods, our approach learns CNN-
based pairwise potential functions for modeling semantic
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Surrounding Above/Below

Figure 2. An illustration of constructing pairwise connections in
a CRF graph. A node is connected to all other nodes which lie
within the range box (dashed box in the figure). Two types of
spatial relations are described in the figure, which correspond to

two types of pairwise potential functions.

relations between patches.

Jointly learning CNNs and CRFs has also been explored
in other applications apart from segmentation. The recent
work in [29, 30] proposes to jointly learn continuous CRFs
and CNNs for depth estimation from single monocular im-
ages. The work in [45] combines CRFs and CNNs for hu-
man pose estimation. The authors of [4] explore joint train-
ing of Markov random fields and deep neural networks for
predicting words from noisy images and image s classifi-
cation. Different from these methods, we explore efficient
piecewise training of CRFs with CNN pairwise potentials.

2. Modeling semantic pairwise relations

Fig. 3 conceptualizes our architecture at a high level.
Given an image, we first apply a convolutional network
to generate a feature map. We refer to this network as
‘FeatMap-Net’. The resulting feature map is at a lower
resolution than the original image because of the down-
sampling operations in the pooling layers.

We then create the CRF graph as follows: for each lo-
cation in the feature map (which corresponds to a rect-
angular region in the input image) we create one node in
the CRF graph. Pairwise connections in the CRF graph
are constructed by connecting one node to all other nodes
which lie within a spatial range box (the dashed box in
Fig. 2). We consider different spatial relations by defining
different types of range box, and each type of spatial re-
lation is modeled by a specific pairwise potential function.
As shown in Fig. 2, our method models the “surrounding”
and “above/below” spatial relations. In our experiments,
the size of the range box (dash box in the figure) size is
0.4a x 0.4a. Here we denote by a the length of the short

edge of the feature map.
Note that although ‘FeatMap-Net’ defines a common ar-

chitecture, in fact we train three such networks: one for the
unary potential and one each for the two types of pairwise
potential.

3. Contextual Deep CRF's

Here we describe the details of our deep CRF model.
We denote by * € X one input image and y € Y the
labeling mask which describes the label configuration of
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Figure 3. An illustration of generating unary or pairwise potential
function outputs. First a feature map is generated by a FeatMap-
Net, and a CRF graph is constructed based on the spatial resolution
of the feature map. Finally the Unary-Net (or Pairwise-Net) pro-
duces potential function outputs.

each node in the CRF graph. The energy function is de-
noted by E(y, x; 0) which models the compatibility of the
input-output pair, with a small output value indicating high
confidence in the prediction y. All network parameters are
denoted by 6 which we need to learn. The conditional like-
lihood for one image is formulated as follows:

P(yla) = %exp[—E(y,wn. (0

Here Z(x) =}, exp[—E(y, )] is the partition function.
The energy function is typically formulated by a set of unary
and pairwise potentials:

E(y,xz) = Z Z U(yp, xp) + Z Z V(Yps Yq> Tpq)-

UelU peNy VeV (p,q) eSSy

Here U is a unary potential function, and to make the ex-
position more general, we consider multiple types of unary
potentials with U the set of all such unary potentials. Ny is
a set of nodes for the potential U. Likewise, V' is a pairwise
potential function with 'V the set of all types of pairwise po-
tential. Sy is the set of edges for the potential V. x, and
Z,, indicates the corresponding image regions which asso-
ciate to the specified node and edge.

3.1. Unary potential functions

We formulate the unary potential function by stacking
the FeatMap-Net for generating feature maps and a shallow
fully connected network (referred to as Unary-Net) to gen-
erate the final output of the unary potential function. The
unary potential function is written as follows:

U(yp, Tp; Ou) = —2py, (x;00). 2
Here z;, ,, is the output value of Unary-Net, which corre-

sponds to the p-th node and the y,-th class.
Fig. 3 includes an illustration of the Unary-Net and how
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Figure 4. The details of our FeatMap-Net. An input image is first resized into 3 scales, then each resized image goes through 6 convolution
blocks to output one feature map. Top 5 convolution blocks are shared for all scales. Every scale has a specific convolution block (Conv
Block 6). We perform 2-level sliding pyramid pooling (see Fig. 5 for details). d indicates the feature dimension.

it integrates with FeatMap-Net. The unary potential at each
CRF node is simply the K-dimensional output (where K
is the number of classes) of Unary-Net applied to the node
feature vector from the correpsonding location in the feature
map (i.e. the output of FeatMap-Net).

3.2. Pairwise potential functions

Fig. 3 likewise illustrates how the pairwise potentials are
generated. The edge features are formed by concatenating
the corresponding feature vectors of two connected nodes
(similar to [23]). The feature vector for each node in the pair
is from the feature map output by FeatMap-Net. The edge
features of one pair are then fed to a shallow fully connected
network (referred to as Pairwise-Net) to generate the final
output that is the pairwise potential. The size of this is K X
K to match the number of possible label combinations for a
pair of nodes. The pairwise potential function is written as
follows:

V(Ups Yg> Tpg; Ov) = —2p.q,,.9, (€; 0v). 3)
Here z 44,4, 18 the output value of Pairwise-Net. It is
the confidence value for the node pair (p, ¢) when they are
labeled with the class value (y,,y,), which measures the
compatibility of the label pair (y,, y,) given the input image
x. Oy is the corresponding set of CNN parameters for the
potential V', which we need to learn.

Our formulation of pairwise potentials is different from
the Potts-model-based formulation in the existing methods
of [3, 48]. The Potts-model-based pairwise potentials are
a log-linear functions and employ a special formulation for
enforcing neighborhood smoothness. In contrast, our pair-
wise potentials model the semantic compatibility between
two nodes with the output for every possible value of the
label pair (y,, y4) individually parameterized by CNNs.

In our system, after obtaining the coarse level prediction,
we still need to perform a refinement step to obtain the final
high-resolution prediction (as shown in Fig. 1). Hence we
also apply the dense CRF method [24], as in many other re-

cent methods, in the prediction refinement step. Therefore,
our system takes advantage of both contextual CNN poten-
tials and the traditional smoothness potentials to improve
the final system. More details are described in Sec. 5.

As in [47, 20], modeling asymmetric relations requires
the potential function is capable of modeling input orders,
since we have: V(yp, Yq, €pq) # V(Yq, Up, Tqp). Take the
asymmetric relation “above/below” as an example; we take
advantage of the input pair order to indicate the spatial con-
figuration of two nodes, thus the input (y,, Yq, Tpe) indi-
cates the configuration that the node p is spatially lies above
the node q.

The asymmetric property is readily achieved with our
general formulation of pairwise potentials. The potential
output for every possible pairwise label combination for
(p, q) is individually parameterized by the pairwise CNNs.

4. Exploiting background context

To encode rich background information, we use multi-
scale CNNs and sliding pyramid pooling [26] for our
FeatMap-Net. Fig. 4 shows the details of the FeatMap-Net.

CNNs with multi-scale image network inputs have
shown good performance in some recent segmentation
methods [ ]. The traditional pyramid pooling (in a
sliding manner) on the feature map is able to capture infor-
mation from background regions of different sizes. We ob-
serve that these two techniques (multi-scale network design
and pyramid pooling) for encoding background information
are very effective for improving performance.

Applying CNNs on multi-scale images has shown good
performance in some recent segmentation methods [ 1.
In our multi-scale network, an input image is first resized
into 3 scales, then each resized image goes through 6 convo-
lution blocks to output one feature map. In our experiment,
the 3 scales for the input image are set to 1.2, 0.8 and 0.4.
All scales share the same top 5 convolution blocks. In addi-
tion, each scale has an exclusive convolution block (“Conv

bl

bl
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Figure 5. Details for sliding pyramid pooling. We perform 2-level
sliding pyramid pooling on the feature map for capturing patch-
background context, which encode rich background information
and increase the field-of-view for the feature map.

Block 6” in the figure) which captures scale-dependent in-
formation. The resulting 3 feature maps (corresponding to
3 scales) are of different resolutions, therefore we upscale
the two smaller ones to the size of the largest feature map
using bilinear interpolation. These feature maps are then
concatenated to form one feature map.

We perform spatial pyramid pooling [26] (a modified
version using sliding windows) on the feature map to cap-
ture information from background regions in multiple sizes.
This increases the field-of-view for the feature map and thus
it is able to capture the information from a large image re-
gion. Increasing the field-of-view generally helps to im-
prove performance [3].

The details of spatial pyramid pooling are illustrated in
Fig. 5. In our experiment, we perform 2-level pooling for
each image scale. We define 5 X 5 and 9 x 9 sliding pooling
windows (max-pooling) to generate 2 sets of pooled feature
maps, which are then concatenated to the original feature
map to construct the final feature map.

The detailed network layer configuration for all networks
are described in Fig. 6.

5. Prediction

In the prediction stage, our deep structured model will
generate low-resolution prediction (as shown in Fig. 1),
which is 1/16 of the input image size. This is due to
the stride setting of pooling or convolution layers for sub-
sampling. Therefore, we apply two prediction stages for ob-
taining the final high-resolution prediction: the coarse-level
prediction stage and the prediction refinement stage.

5.1. Coarse-level prediction stage

We perform CRF inference on our contextual structured
model to obtain the coarse prediction of a test image. We
consider the marginal inference over nodes for prediction:

VpeN: Pylz) =3, Pylz). )
The obtained marginal distribution can be further applied in
the next prediction stage for boundary refinement.
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Figure 6. The detailed configuration of the networks: FeatMap-
Net, Unary-Net and Pairwise-Net. K is the number of classes.
For FeatMap-Net, the top 5 convolution blocks share the same
configuration as the convolution blocks in the VGG-16 network.
The stride of the last max pooling layer is 1, and for the other max
pooling layers we use the same stride setting as VGG-16.

Our CRF graph does not form a tree structure, nor are
the potentials submodular, hence we need to an apply ap-
proximate inference. To address this we apply an efficient
message passing algorithm which is based on the mean field
approximation [36]. The mean field algorithm constructs a
simpler distribution Q(y), e.g., a product of independent
marginals: Q(y) = [[ e @p(yp), which minimizes the
KL-divergence between the distribution Q(y) and P(y). In
our experiments, we perform 3 mean field iterations.

5.2. Prediction refinement stage

We generate the score map for the coarse prediction
from the marginal distribution which we obtain from the
mean-field inference. We first bilinearly up-sample the
score map of the coarse prediction to the size of the in-
put image. Then we apply a common post-processing
method [24] (dense CRF) to sharpen the object boundary for
generating the final high-resolution prediction. This post-
processing method leverages low-level pixel intensity infor-
mation (color contrast) for boundary refinement. Note that
most recent work on image segmentation similarly produces
low-resolution prediction and have a upsampling and refine-
ment process/model for the final prediction, e.g., [3, 48, 5].

In summary, we simply perform bilinear upsampling of
the coarse score map and apply the boundary refinement
post-processing. We argue that this stage can be further im-
proved by applying more sophisticated refinement methods,
e.g., training deconvolution networks [35], training multi-
ple coarse to fine learning networks [9], and exploring mid-
dle layer features for high-resolution prediction [18, 32]. It
is expected that applying better refinement approaches will
gain further performance improvement.
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6. CRF training

A common approach for CRF learning is to maximize
the likelihood, or equivalently minimize the negative log-
likelihood, which can be written for one image as:

—log P(y|x;0) = E(y,x;0) +log Z(x;0). (5)

Adding regularization to the CNN parameter 0, the opti-
mization problem for CRF learning is:

N
min = [6]]3 + {E(y“,a&>;0)+1ogZ(m“;0>. (6)
i=1

Here (¥, y(*) denote the i-th training image and its seg-
mentation mask; /N is the number of training images; A is
the weight decay parameter. We can apply stochastic gradi-
ent (SGD) based methods to optimize the above problem for
learning @. The energy function E(y,x; ) is constructed
from CNNss, and its gradient V¢ E(y, x; 0) easily computed
by applying the chain rule as in conventional CNNs. How-
ever, the partition function Z brings difficulties for opti-
mization. Its gradient is:

VelogZ(x;0)
exp[—E(y, z;0)]

B >y exp[—E(y', x;0)] Vol-E(y, z;6)]

- Ey,\,P(mm;g)VGE(yvx;g) (7)
Generally the size of the output space Y is exponential in the
number of nodes, which prohibits the direct calculation of Z
and its gradient. The CRF graph we considered for segmen-
tation here is a loopy graph (not tree-structured), for which
the inference is generally computationally expensive. More
importantly, usually a large number of SGD iterations (tens
or hundreds of thousands) are required for training CNNss.
Thus performing inference at each SGD iteration is very
computationally expensive.

6.1. Piecewise training of CRF's

Instead of directly solving the optimization in (6), we
propose to apply an approximate CRF learning method.
In the literature, there are two popular types of learning
methods which approximate the CRF objective : pseudo-
likelihood learning [!] and piecewise learning [43]. The
main advantage of these methods in term of training deep
CRF is that they do not involve marginal inference for gradi-
ent calculation, which significantly improves the efficiency
of training. Decision tree fields [37] and regression tree
fields [22] are based on pseudo-likelihood learning, while
piecewise learning has been applied in the work [43, 23].

Here we develop this idea for the case of training the
CRF with the CNN potentials. In piecewise training, the
conditional likelihood is formulated as a number of inde-

pendent likelihoods defined on potentials, written as:

Plyle) =TT II Pole) IT II Pvws vle).

UeU peNu VeV (p.g)esv
The likelihood Py (y,|x) is constructed from the unary po-
tential U. Likewise, Py (yp, yq|2) is constructed from the
pairwise potential V. Py and Py, are written as:

exp[~U(yp, zp)]
PU(yp‘m) - Zy; exp[—[](yl/,,:l:p)]7

exp[—V (Yp, Ygs Tpqg)]
yéwyz/; eXp[_V(y;)a i%’ xPQ)]
Thus the optimization for piecewise training is to minimize
the negative log likelihood with regularization:

A = .
w3 1613 - 3| 5 % tow Puluyleion)

i=1-UelU pGNS)

+> 0> log Py (yp, ygla; 0v)} . (10)
VEY (p.g)esy
Compared to the objective in (6) for direct maximum like-
lihood learning, the above objective does not involve the
global partition function Z(x;6). To calculate the gradi-
ent of the above objective, we only need to calculate the
gradient Vg, log Py and Vg, log Py. With the definition
in (8), Py is a conventional Softmax normalization func-
tion over only K (the number of classes) elements. Similar
analysis can also be applied to Py. Hence, we can eas-
ily calculate the gradient without involving expensive infer-
ence. Moreover, we are able to perform parallel training of
potential functions, since the above objective is formulated
as a summation of independent log-likelihoods.
As previously discussed, CNN training usually involves
a large number of gradient update iterations. However this
means that expensive inference during every gradient iter-
ation becomes impractical. Our piecewise approach here
provides a practical solution for learning CRFs with CNN
potentials on large-scale data.

®)

PV(ypqu‘m) = Z (9)

7. Experiments

We evaluate our method on 4 popular semantic segmen-
tation datasets: PASCAL VOC 2012, NYUDv2, PASCAL-
Context and SIFT-flow. The segmentation performance is
measured by the intersection-over-union (IoU) score [12],
the pixel accuracy and the mean accuracy [32].

The first 5 convolution blocks and the first convo-
lution layer in the 6th convolution block are initialized
from the VGG-16 network [42]. All remaining layers are
randomly initialized. All layers are trained using back-
propagation/SGD. As illustrated in Fig. 2, we use 2 types
of pairwise potential functions. In total, we have 1 type of
unary potential function and 2 types of pairwise potential
functions. We formulate one specific FeatMap-Net and po-
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Table 1. Segmentation results on NYUDv2 dataset (40 classes).
We compare to a number of recent methods. Our method signifi-

cantly outperforms the existing methods.
method ‘ training data ‘ pixel accuracy mean accuracy IoU

Table 2. Ablation Experiments. The table shows the value
added by the different system components of our method on the
NYUDv2 dataset (40 classes).

method \ pixel accuracy mean accuracy IoU

Gupta et al. [16] RGB-D 60.3 - 28.6
FCN-32s [32] RGB 60.0 422 29.2
FCN-HHA [32] RGB-D 65.4 46.1 34.0
ours RGB 70.0 53.6 40.6

tential network (Unary-Net or Pairwise-Net) for one type of
potential function. We apply simple data augmentation in
the training stage; specifically, we perform random scaling
(from 0.7 to 1.2) and flipping of the images for training.
Our system is built on MatConvNet [46].

7.1. Results on NYUDvV2

We first evaluate our method on the dataset NYUDv2
[41]. NYUDv2 dataset has 1449 RGB-D images. We use
the segmentation labels provided in [15] in which labels are
processed into 40 classes. We use the standard training set
which contains 795 images and the test set which contains
654 images. We train our models only on RGB images
without using the depth information.

Results are shown in Table 1. Unless otherwise spec-
ified, our models are initialized using the VGG-16 net-
work. VGG-16 is also used in the competing method FCN
[32]. Our contextual model with CNN pairwise potentials
achieves the best performance, which sets a new state-of-
the-art result on the NYUDv2 dataset. Note that we do not
use any depth information in our model.

Component Evaluation We evaluate the performance
contribution of different components of the FeatMap-Net
for capturing patch-background context on the NYUDv2
dataset. We present the results of adding different compo-
nents of FeatMap-Net in Table 2. We start from a base-
line setting of our FeatMap-Net (“FullyConvNet Baseline”
in the result table), for which multi-scale and sliding pool-
ing is removed. This baseline setting is the conventional
fully convolution network for segmentation, which can be
considered as our implementation of the FCN method in
[32]. The result shows that our CNN baseline implementa-
tion (“FullyConvNet”) achieves very similar performance
(slightly better) than the FCN method. Applying multi-
scale network design and sliding pyramid pooling signifi-
cantly improve the performance, which clearly shows the
benefits of encoding rich background context in our ap-
proach. Applying the dense CRF method [24] for bound-
ary refinement gains further improvement. Finally, adding
our contextual CNN pairwise potentials brings significant
further improvement, for which we achieve the best perfor-
mance in this dataset.

7.2. Results on PASCAL VOC 2012

PASCAL VOC 2012 [12] is a well-known segmentation
evaluation dataset which consists of 20 object categories

FCN-32s [32] 60.0 422 29.2
FullyConvNet Baseline 61.5 432 30.5

+ sliding pyramid pooling 63.5 453 324
+ multi-scales 67.0 50.1 37.0

+ boundary refinement 68.5 50.9 38.3

+ CNN contextual pairwise 70.0 53.6 40.6

(a) Testing

(b) Truth  (c) Predict (d) Testing  (e) Truth  (f) Predict

Figure 7. Some prediction examples of our method.

and one background category. This dataset is split into a
training set, a validation set and a test set, which respec-
tively contain 1464, 1449 and 1456 images. Following a
conventional setting in [19, 3], the training set is augmented
by extra annotated VOC images provided in [17], which re-
sults in 10582 training images. We verify our performance
on the PASCAL VOC 2012 test set. We compare with a
number of recent methods with competitive performance.
Since the ground truth labels are not available for the test
set, we report the result through the VOC evaluation server.

The results of IoU scores are shown in the last column
of Table 3. We first train our model only using the VOC
images. We achieve 75.3 IoU score which is the best result
amongst methods that only use the VOC training data.

To improve the performance, following the setting in re-
cent work [3, 5], we train our model with the extra images
from the COCO dataset [27]. With these extra training im-
ages, we achieve an IoU score of 77.2.

For further improvement, we also exploit the the middle-
layer features as in the recent methods [3, 32, 18]. We
learn extra refinement layers on the feature maps from mid-
dle layers to refine the coarse prediction. The feature maps
from the middle layers encode lower level visual informa-
tion which helps to predict details in the object boundaries.
Specifically, we add 3 refinement convolution layers on top
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Table 3. Individual category results on the PASCAL VOC 2012 test set (IoU scores). Our method
£ =l

performs the best

e s = 2 BT . . . 5 sz 2 4 g £ 2 E § 5 =
method | & = 3 2 £ 3 B B S 3 S S £ g g g 3 2 g z | mean
Only using VOC training data
FCN-8s[32] | 76.8 342 689 494 603 753 747 776 214 625 468 71.8 639 765 739 452 724 374 709 551 | 622
Zoom-out [33] | 85.6 373 832 625 660 851 80.7 849 272 732 575 781 792 81.1 771 53.6 740 492 717 633 | 69.6
DeepLab [3] | 844 545 815 63.6 659 851 79.1 834 307 741 598 79.0 76.1 832 808 597 822 504 73.1 637 ]| 71.6
CRF-RNN [48] | 87.5 39.0 79.7 642 683 876 808 844 304 782 604 805 77.8 831 806 595 828 478 783 67.1 | 720
DeconvNet [35] | 89.9 393 79.7 639 682 874 812 861 285 770 620 79.0 803 836 802 588 834 543 807 650 | 725
DPN[31] | 87.7 59.4 784 649 703 893 835 86.1 31.7 799 62.6 819 800 835 823 605 832 534 779 650 | 741
ours | 90.6 37.6 800 678 744 920 852 862 39.1 812 589 838 839 843 848 621 832 582 808 723 753
Using VOC+COCO training data
DeepLab [3] | 89.1 383 881 633 69.7 87.1 831 850 293 765 565 79.8 779 858 824 574 843 549 805 o64.1 | 727
CRF-RNN [48] | 90.4 553 88.7 684 69.8 883 824 851 326 785 644 796 819 864 818 586 824 535 774 70.1 | 747
BoxSup [5] | 89.8 38.0 89.2 689 680 89.6 830 877 344 836 67.1 815 837 852 835 586 849 558 812 707 | 752
DPN[31] | 89.0 61.6 87.7 668 747 912 843 876 365 863 66.1 844 878 856 854 636 873 613 794 664 | 715
ours+ | 941 40.7 841 678 759 934 843 8384 425 864 0647 854 89.0 858 86.0 675 902 63.8 809 73.0 78.0

Table 4. Segmentation results on PASCAL-Context dataset (60
classes). Our method performs the best.

method ‘ pixel accuracy mean accuracy IoU
O2P [2] - - 18.1
CFM [6] - - 34.4
FCN-8s [32] 65.9 46.5 35.1
BoxSup [5] - - 40.5
ours 71.5 53.9 43.3

Table 5. Segmentation results on SIFT-flow dataset (33 classes).
Our method performs the best.

method \ pixel accuracy mean accuracy IoU
Liu et al. [28] 76.7 - -
Tighe et al. [44] 75.6 41.1 -
Tighe et al. (MRF) [44] 78.6 39.2 -
Farabet et al. (balance) [13] 72.3 50.8 -
Farabet et al. [13] 78.5 29.6 -
Pinheiro et al. [38] 77.7 29.8 -
FCN-16s [32] 85.2 51.7 39.5
ours 88.1 53.4 44.9

of the feature maps from the first 5 max-pooling layers
and the input image. The resulting feature maps and the
coarse prediction score map are then concatenated and go
through another 3 refinement convolution layers to output
the refined prediction. The resolution of the prediction is
increased from 1/16 (coarse prediction) to 1/4 of the in-
put image. With this refined prediction, we further perform
boundary refinement [24] to generate the final prediction.
Finally, we achieve an IoU score of 78.0, which is best re-
ported result on this challenging dataset. '

The results for each category are shown in Table 3. We
outperform competing methods in most categories. For only
using the VOC training set, our method outperforms the sec-
ond best method, DPN [31], on 18 categories out of 20.
Using VOC+COCO training set, our method outperforms
DPN [31] on 15 categories out of 20. Some prediction ex-
amples of our method are shown in Fig. 7.

7.3. Results on PASCAL-Context

The PASCAL-Context [34] dataset provides the segmen-
tation labels of the whole scene (including the “stuff” la-

IThe result link at the VOC evaluation server: http://host.
robots.ox.ac.uk:8080/anonymous/XTTRFF.html

bels) for the PASCAL VOC images. We use the segmen-
tation labels which contain 60 classes (59 classes plus the
“ background” class ) for evaluation. We use the provided
training/test splits. The training set contains 4998 images
and the test set has 5105 images.

Results are shown in Table 4. Our method significantly
outperforms the competing methods. To our knowledge,
ours is the best reported result on this dataset.

7.4. Results on SIFT-flow

We further evaluate our method on the SIFT-flow dataset.
This dataset contains 2688 images and provide the segmen-
tation labels for 33 classes. We use the standard split for
training and evaluation. The training set has 2488 images
and the rest 200 images are for testing. Since images are
in small sizes, we upscale the image by a factor of 2 for
training. Results are shown in Table 5. We achieve the best
performance for this dataset.

8. Conclusions

We have proposed a method which combines CNNs and
CRFs to exploit complex contextual information for seman-
tic image segmentation. We formulate CNN based pairwise
potentials for modeling semantic relations between image
regions. Our method shows best performance on several
popular datasets including the PASCAL VOC 2012 dataset.
The proposed method is potentially widely applicable to
other vision tasks.
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