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Abstract

We state a combinatorial optimization problem whose
feasible solutions define both a decomposition and a node
labeling of a given graph. This problem offers a com-
mon mathematical abstraction of seemingly unrelated com-
puter vision tasks, including instance-separating sefant
segmentation, articulated human body pose estimation and
multiple object tracking. Conceptually, the problem we-pro () Decomposition (b) Node Labeling
pose generalizes the unconstrained integer quadratic pro-_. ) _ ) o
gram and the minimum cost lifted multicut problem, both of Figuré 1. This article studies an optimization problem
which arenp-hard. In order to find feasible solutions effi- WNOse feasible solutions define both a decompositign
ciently, we define a local search algorithm that converges @1d @ node labelingo) of a given graphtz = (V. E). A
monotonously to a local optimum, offering a feasible solu- decomposition /OG is a partitionl1 of the_ node sev’ Sl/J_Ch
tion at any time. To demonstrate the effectiveness of this al that, for everyy” € II, the_ subgraph of induced byV" is
gorithm in solving computer vision tasks, we report running connected. A node labeling 6fis a mapf : V' — L from
times and competitive solutions for two above-mentioned!tS Node sev” to afinite, non-empty set of labels.
applications.

beling problem w.r.t. a (super)pixel adjacency graph of the
image. Feasible solutions of their problem have three prop-
erties: For each object, all its pixels have the same label.

In this article, we state a combinatorial optimization Pixels with distinct labels belong to distinct objects. Pix
problem whose feasible solutions define both a decomposiels with the same label, including neighboring pixels, can
tion and a node labeling of a given graph (Fiyy. This prob-  belong to distinct objects. We generalize their problem to
lem offers a common mathematical abstraction of seem-elaxations of these constraints and more complex obgctiv
ingly unrelated computer vision tasks: functions.

Multiple object tracking2, 3, 4, 7, 13, 17, 19, 29, 30| Articulated human body pose estimatipii), 9] is the
can be seen as the task of deciding, for every point in an im-task of deciding, for every point in an image, whether this
age, whether this point depicts an object, and of deciding,point depicts a part of the human body, and of deciding, for
for every pair of points that depict objects, if the object is every pair of points that depict body parts, if they belong
the same. Tang et al2, 27] abstract this task as a graph de- to the same body. Pishchulin et ai(] and Insafutdinov et
composition and node labeling problem w.r.t. a finite graph al. [9] abstract this problem as a graph decomposition and
whose nodes are parts of the image, and w.r.t. 01-labels innode labeling problem w.r.t. a finite graph whose nodes are
dicating that a part depicts an object. We generalize theirputative detections of body parts and w.r.t. labels that-ide
problem to more labels and more complex objective func-fity body parts (head, wrist, etc.) and background. We gen-
tions. eralize their problem to more complex objective functions.

Instance-separating semantic segmentafigrs, 15, 22, Formally, the minimum cost node labeling lifted multicut

, 24, 31, 37] is the task of assigning, to every point in problem we propose and refer to as the LMP generalizes
an image, a label that identifies a class of objects (e.g., hutheNpP-hard unconstrained integer quadratic programep,
man, car, bicycle), and of deciding, for every pair of paints that has been studied intensively in the context of graphica
whether they belong to the same object. Kroeger etld]. [  models [.(] and also generalizes tha-hard minimum cost
state this problem as a graph decomposition and node lalifted multicut problem 7], LmMp. Unlike in pure node la-

1. Introduction and Related Work
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beling problems such as theqQp, neighboring nodes with v e w
the same label can be assigned to distinct components by

feasible solutions of theiL-LMP, and neighboring nodes Tyl @ o ® Tyl

H foti H Ty2 Tw?2
with distinct labels can be assigned to the same component. Tos ® ° ® Tus
Unlike in pure decomposition problems such as tivee, Yow

the cost of assigning nodes to the same component or disl—:_ 9 E teasibl luti f the : .
tinct components can depend on node labels. Also unlike IgurEfdl Very feasible sovu;ugn Odt "‘MPPf iﬂpalr

in the LMP, constraining nodes with the same label to the (x’y),f(,) i -vectors: € {0, 13 f?nh Yy ef {0,117 agre
same component constrains the feasible decompositions gpPecineally,z1s _constralne such that, for every nade

be k-colorable, withk € N the number of labels. Fdr= 2 V there IS precisely one IabEIe_ L such thatz,; . 1.y

in particular, thenL -LMP specializes to thetax -cUT prob- is constrained so as to well-define a decomposmoﬁpy
lem. the set{e € F'|y. = 1} of those edges that straddle distinct

In order to find feasible solutions of theL-LmpP effi- components.
ciently, we define and implement two local search algo-

rithms that converges monotonously to a local optimum, o A digraphH = (V, A) that fixes an arbitrary orienta-

offering a feasible solution at any time. These algorithms tion of the edges?’. That is, for every edgév, w} of
does not compute lower bounds. Their feasible solutions &, the graphH contains either the edde, w) or the
come without approximation certificates. Hence, they be- edge(w, v), Moreover,H does not contain additional
long to the class of primal feasible heuristics for thie- edges. FormallyH is such that for alb, w € V:

LMP. The first algorithm we define as a baseline, alternat-

ing Kernighan-Lin search with joins and node relabeling, {vw}e B ewwe AV (wv)eAd (1)
KLj-r, is a straightforward generalization of the algorith (v,w) ¢ AV (w,v) ¢ A (2)
KLj defined by Keuper et al.1[7]. In fact, our implemen- .

tation is an extension of theg++ code. The second algo- ~ ® Afinite, non-empty sef called the set ofnode) labels

rithm we define as our main contribution, joint Kernighan- e The following functions whose values are callembts

Lin search with joins and node relabeling, KLj+r, is a non-

straightforward genera!l_zatloq of KLj that combines up- labell € I, the cost, is payed iffv is labeled

dates of the decomposition with updates of the node label- !

ing in a novel manner. Both algorithms build on seminal 'N )

work of Kernighan and LinT1]. — T AX L/ - QR For any edgew € A and
To demonstrate the effectiveness of the algorithms in any labels!” € L”, the coSt:,, 1, 1S payed iffv

solving computer vision tasks, we analyze their absolute is labeled andw is labeled’ andv andw are in

running time and output for instances of the-Lmp for

—c¢:V x L — R. Forany nodes € V and any

the same component.

two above-mentioned applicationg/e will make the code - ¢*: Ax L* — R. For any edgew € A and
and data publicly available upon acceptance of the paper. any labeldl’ € L?, the COStfw,zz/ is payed iffv

is labeled andw is labeled’ andv andw are in
2. Problem distinct components.

In this section, we define the minimum cost node label- 2.2. Feasible Set

ing lifted multicut problem {L-LMP). Section2.1-2.3of- Every feasible solution of theL-LMP is a pair(z, y) of
fer an intuition for its parameters, feasible solutionseost ~ 01-vectorse € {0,1}V*L andy € {0,1}¥’; see Fig.2.

function. Sectior.4 offers a concise and rigorous defini- More specificallyy: is constrained such that, for every node

tion. Sectior2.5discusses special cases. v € V, there is precisely one labek L such thatz,; = 1.
y is constrained so as to well-define a decompositio& of
2.1. Parameters by the set{e € F|y. = 1} of those edges that straddle
Any instance of theuL-LMP is defined with respect to  distinct components. Formallyy, y) € Xvi x Yaer with
the following parameters: Xv 1, andYger defined below.

e Xy C {0,1}V*L, the set of all characteristic func-
tions of maps fromV to L, i.e., the set of alkk €
{0,1}V>*E such that

e Aconnected grapty = (V, E) whose decompositions
we care about, e.g., the pixel grid graph of an image.

e AgraphG’ = (V,E’') with E C E’. This graph can
contain as edges pairs of nodes that are not neighbors VvoeV: Z%z =1. 3)
in G. It defines the structure of the cost function. leL



Foranyx € X,anyv € Vandany € Lwithz,; =1,
we say that node is labeled! by z.

e Yoo C {0, 1}E/, the set of all characteristic functions
of multicuts of G’ lifted from G. For anyy € Ygo-
and anye = {v,w} € E’, yo = 1 indicates that

andw are in distinct components of the decomposition

of G defined by the multicu{e’ € E|y. = 1} of
G. Formally,Ysc is the set of ally € {0,1}F that
satisfy the following system of linear inequalities:

VC ecycle$G)Ve e C:ye < Y yer  (4)

e’eC\{e}
V{v,w} € B\ EVP € vw-pathgG) :
Y{v,w} < Z Ye (5)
ecP
V{v,w} € E"\ EVC € vw-cutyQq) :
1- Y{v,w} < Z(l - ye) . (6)
ecC

2.3. Cost Function

For everyz € {0,1}V*~ and everyy € {0,1}4*L*, a
costy(z,y) € Z is defined by the form

90(557 y) = Z Z Col Lyl

veV leL
+ Z Z c;w,ll/ Lol Lwl! (1 - y{v,w})
vweAll’'eL?
+ Z Z Czéw,ll’ Tyl Twl’ y{v,w} . (7)
vweAll'eL?
2.4. Definition

We define thenL-LMP rigorously and concisely in the
form of a linearly constrained binary qubic program.

Definition 1 For any connected grapf = (V, E), any
graphG’ = (V, E’) with E C E’, any orientationd =
(V,A) of G, any finite, non-empty sef, any function
¢: V x L — Zand any functions™, ¢* : Ax L? — 7Z, the
instance of thaninimum cost node-labeling lifted multicut
problem(NL-LMP) with respect ta(G,G’, H, L, ¢, ™, ¢*)
has the form

min z,Y) . 8
e o(z,y) (8)

2.5. Special Cases

Below, we show that thelL-LMP generalizes th&iQP.
This connects thelL-LMP to work on graphical models

2.5.1 Unconstrained Integer Quadratic Program

Definition 2 For any graptG’ = (V, E’), any orientation
H = (V,A) of G', any finite, non-empty sek, anyc :
V x L = Zandany' : A x L?> — Z, the instance of the
uIQP with respect td G’, H, L, ¢, ¢') has the form

. /
min g g Cyl Tyl + g g Cow 1l Tol Taol? -
zeXvrL ’

veV IEL vweAIll'eL?
9)

Lemma 1l For any graphG’ = (V,E’), any instance
(G’ H,L,c, ) of theuiqp and anyx € Xy, x is a so-
lution of this instance of theiQr iff (z, 1x) is a solution
of the instancéG’,G', H, L, c,c, ¢') of theNL-LMP.

PrRoOOF Without loss of generality, we can assume thats
connected. (Otherwise, add edges between nodes V/
as necessary and sgt, ,,, = 0 foranyl,l" € L.)

Foranyz € X¢1, the pair(z, 15/) is a feasible solution
of the instance of thalL-LMP because the maly: : B/ —
{0,1} : e lissuchthatl g € Ygiir.

Moreover,(z, 1 g/) is a solution of the instance of the -
LMP iff z is a solution of the instance of theQp because,
for ¢* = ¢~, the form (7) of the cost function of theuL-
LMP specializes to the fornBj of the cost function of the
uIQP.

2.5.2 Minimum Cost Lifted Multicut Problem

Definition 3 [1] For any connected graghi = (V, E), any
graphG’ = (V, E') with E C E' and any¢’ : E' — Z, the
instance of the minimum cost lifted multicut probleowp)
with respect tq G, G’, ¢’) has the form

min CLye - (20)

€Y,
s ¥elell ecE’

Lemma 2 Let (G, G, ¢') be any instance of themp. Let
(G,G',H, L,c,c~,c”) be the instance of theL-LMP with
the same graphs and such that

L={1} ¢=0 ¢~ =0 (11)
Y,w) €A 1y =l - (12)
Then, for anyy € {0,1}¥, y is a solution of the instance

of theLmP iff (1v« 1, ) is a solution of the instance of the
NL-LMP.

with second-order functions and finitely many states. In ad-PrRooOF Trivially, y is a feasible solution of the instance of

dition, we show thatL-LMP generalizes themP, connect-
ing theNL-LMP to recent work on lifted multicuts. Finally,

theLmp iff (1«1, y) is a feasible solution of the instance
of theNL-LMP. More specificallyy is a solution of the in-

we show that thevL-LMP is general enough for subgraph stance of themp iff (1«1, ) is a solution of the instance
selection, connectedness and disconnectedness cotsstrain of theNL-LMP because, for any € Xy 1, the cost function



(7) of theNL-LMP assumes the special form below which is enoughc* € N and costs:* such that” ,, = c”

vw,ll vw,l’l =

identical with the form in {0). c*.
o(z,y) @49 Z cfw,lly{v_,w} @ Z cye . (13) 3. Algorithms
vweA ecE’

In this section, we define two local search algorithms that
) compute feasible solutions of tha -LmP efficiently. Both
2.5.3 Subgraph Selection algorithms attempt to improve a current feasible solut@n r
Applications such asd| 20, 26, 27, require us to not only ~ Cursively bytransformations One class of transformations
decompose a graph and label its nodes but to also selec@lters the node labeling of the graph by replacing a single
a subgraph. TheL-LMP is general enough to model sub- node Iak_ng. A second class of trqnsforr_natlons alters the de-
graph selection. To achieve this, one proceeds in two stepsSOmMposition of the graph by moving a single node from one
Firstly, one introduces a special laket I to indicate that ~ component to anot_h_er. A third class of _trgr_lsformatlons al-
a node is not an element of the subgraph. We call theseters the decomposition of the graph by joining two compo-
nodesinactive All other nodes are calledctive Secondly, ~ N€nts.

one chooses a |arge enoughe N, acl e Ny andc’\“7 c* As proposed by Kernighan and Lin u and applled to
such that the LMP by Keuper et al. [7], a local search is carried our

not over the set of individual transformations of the cutren

Vow € AVI € L\{e}: e =Copa=c" (14 feasible solution but over a set of sequences of transforma-
‘e tions. Complementary to this idea, we define and imple-

Cow,te = Cow,et = 0 (15) ment two schemes of combining transformations of the de-
Vowe A: ¢, .. =cl. (16) composition of the graph with transformations of the node

VW, €€

labeling of the graph. This leads us to define two local
By (14), inactive nodes are not joined with active nodes search algorithms for theL-LMmP.
in the same component. By %), cutting an inactive node ) ) .
from an active node has zero cost. By, joining inactive  3-1. Encoding Feasible Solutions

nodes has cosf, possibly zero. Choosing large enough To encode feasible solutioris,y) € Xy x Ygqr of

implements an additional constraint proposedif] thatin-  the nL-LMP, we consider two maps: Aode labeling) :
active nodes are necessarily isolated. Itis by this comstra y/ _, 1, that defines the® € Xy, such that
and by a two-elementary label set thaf] is a specializa-

tion of theNL-LMP. YweVVlieL: zhy=1e \v)=1, 17)

and a so-calledomponent labeling : V' — N that defines
they” € {0,1}” such that

Some applications require us to constrain certain nodes

to be in distinct components. One example is instance- Y{v,w} € E': ¢}, , =0 < p() = p(w) . (18)
sepating semantic segmentation where nodes with distinct

labels necessarily belong to distinct segments. Other ap3-2. Transforming Feasible Solutions

plications require us to constrain cert_ain n_odes to be in 14 improve feasible solutions of the.-LMP recursively,

the same component. One example is articulated humany s consider three transformations of the encodingady:

body pose estimation for a single human in the optimiza- g, any noder € V and any label € L, the transfor-

tion framework of 20] where every pair of active nodes mationT,; : LV — LY : A\ = ) changes the label of the

necessarily belongs to the same human. Yet another exanyoqe, to lie.

ple is connected foreground segmentatiof, 21, 25,

in which every pair of distinct foreground pixels necedgari

belongs to the same segment. YweV: N(w):= {
The NL-LMP is general enough to model a combina-

tion of connectedness constraints and disconnectedness co

straints. In order to constrain distinct nodesw € V' with

labelsl, !’ € L to be inthe same componerne introduces

an edggv,w) € A, a large enough* € N and costs:™

such thate;, ;,, = ¢, ,; = ¢*. In order to constrain dis-

tinct nodesv, w € V with labelsl, !’ € L to be indistinct VweV: p(w):= {

componentsone introduces an eddge,w) € A, a large

2.5.4 (Dis-)Connectedness Constraints

l if w=
Tw=v " (19
A(w) otherwise
For any nodey € V and component inde € N, the
transformatiori’,,, : NV — NV : u — u’ changes the
component index of the nodeto m, i.e.

m ifw=v

: 20
u(w) otherwise (20)



For any component indices, m’ € N, the transforma- Function 1:(A, ') = update-labeling, A)
tionT” . : NV — NV : s 1/ puts all nodes currently in M=\ A:=0 t:=0
the component indexed by into the component indexed repeat

bym/, i.e. choose (9,1) € argmin (2ot A) yre) — (g e i)

, . (v,l)eV XL
VweV: pw) =" e =me ) § := p(aTo ) by — p(at, i)
u(w) otherwise if 6 <0
., . . At =Ty \e)

3.3. Repairing Infeasible Points A=A+6

Not every component labelingis such thay* € Yoo ti=t+1
In fact, y* is feasible if and only if, for everyn € u(V), else
the node set:~!(m) is connected irG. For efficiency, we return (A, Ar)

allow for transformations30) whose output:’ violates this
condition, as proposed i }]. This happens when aartic-
ulation nodeof a component is moved to a different com-
ponent. In order to repair any for which y* is infeasible,
we consider a ma : NV — NV : 4/ — u such that,
foranyy’ : V — N and any distincv,w € V, we have
u(v) = p(w) if and only if the exists aw-path inG along
which all nodes have the labgl(v). We implementR as
connected component labeling by breadth-first-search.

KLj+r, is a non-straightforward generalization of KLj that
combines updates of the decomposition with updates of the
node labeling in a novel manner. Itis given by Fubawith
those parts of the function that are written in green

Like the baseline algorithm KLj-r, the algorithm KLj+r
occasionally updates the labeling for a fixed decomposition
(calls of Func.1 from Func.2). Unlike the baseline algo-
rithm KLj-r, the algorithm KLj+r also updates the decompo-
3.4. Initializing Feasible Solutions sition and the labeling also jointly. This happens in Fuhc.
that is called from KLj+r,with the part that is written in
green

Func. 3 looks at two component® := p~!(m) and

Initial feasible solutions are given, for instance, by the
finest decomposition of the gragghthat puts every node in

a;]d|st|nc';]éonr']1ponent, or by th% cqarshest decomposition ofy, . _ pu~t("m) of the current decomposition. It attempts to
the rg];rap ht at F;]Uts everé/ r;obellm tV?/s?mde Co_mpolnfem’improve the decomposition as well as the labeling by mov-
each together with any node labeling. e find an initial fea- ing a node froml” to W or from W to V' and by simulta-

sible solution for our local search algorithm by first fixing neously changing its labels proposed by Kernighan and
an optimal label for every node independently and by then Lin [11], Func.3 does not make such transformations greed-

solving the resultingmP, (8) for the fixed labels & .XVL' ily but first constructs a sequence of such transformations
by means of greedy agglomerative edge contractiah [ greedily and then executes the fiksh order wherek is cho-
3.5. Searching Feasible Solutions sen so as to decrease the objective value maximally. KLj-r
) ) construct a sequence of moves analogously, but the node la-
We now define two local search algorithms that attempt p|ing remains fixed throughout every transformation of the
to improve an initial feasible solution recursively, by &pp decomposition. More generally speaking, KLj+r is a local

ing the transformation defined above. . search algorithm whose local neighborhood is strictlyéarg
KLj-r Algorithm.  The first local search algorithm, al- han that of KLj-r.

ternating Kernighan-Lin search with joins and node relabel  q c++ implementation computes cost differences in-
ing, KLj-r, is a straightforward generalization of the algo crementally, as proposed in ], and solves the optimiza-

rithm KLj of [17). KLj-r alternates between transforma- ion problem over transformations by means of a priority
tions of the labeling and transformations of the decomposrqueue’ as proposed ing]. The time and space complexi-

tion. For a fixed decomposition, the labeling is transformed jes are identical to those of KLj and are established analo-

by Func.1 which greedily updates labels of nodes inde- g4 sly. Transformations take linear time in the number of
pendently. For a fixed labeling, the decomposition is trans-|5pels but constant time in the size of the graph.
formed by Func?2, without those parts of the function that

are written in greenThis is precisely the algorithm KLj of

4. Applications
[17). (All symbols that appear in the pseudo-code are de- bp

fined above, except the iteration countecost differences We show applications of the proposed problem and al-
0, A, and 01-vectorsy used for bookkeeping, to avoid re- gorithms to two computer vision tasks: articulated human
dundant operations.) body pose estimation and multiple object tracking. For each

KLj+r Algorithm. The second local search algorithm, task, we set up instances of tke-LMP w.r.t. published data
joint Kernighan-Lin search with joins and node relabeling, that we transform only trivially.



Function 3:(A’, i/, \') = update-2-cuiu, A, m, m’)

We turn toward applications of the.-Lmp and the algo- ~ H0 “= # Ao = A
rithms KLj-r and KLj+r to the task of estimating the artic- it = (m') =0

4.1. Articulated Human Body Pose Estimation

ulated poses of all humans visible in an image. Pishchulin Vo = pt(m)

et al. [20] and Insafutdinov et al.9] approach this problem else

via a graph decomposition and node labeling problem that Vo := {vept(m)|Jwepn H(m'): {v,w} € E}
we identify as a special case of the-LMP with ¢* = 0 it u=t(m) =0

and with subgraph selection (Sectidrb.3. We relate their Wo = p~'(m)

notation to ours rigorously in the supplement of this paper.else

Nodes in their graph are putative detections of body parts. Wo == {w € p~'(m)|3veput(m): {v,w} € E}
Labels define body part classes (head, wrist, etc.). In our'® @ : N —{0,1} such thair(N) = 1

notation,z,; = 1 indicates that the putative detections t:=0

a body part of clasg andy,,, = 1 indicates that the body

while V; U T, # 0

partsv andw belong to distinct humans. The test setdf [ 5 i=0" =00
consists of 1758 such instances of theLMmp. itV #0 . ) ooy

To tackle these instances, Insafutdinov et al. define and choose (0,1) € argmin (a0, y ml(#;)) B
implement a branch-and-cut algorithm in the integer linear eVt pla,y)
programming software framework Gurobi. We refer to their 8 := (o1 gy Tom (1)) — p(ghe gyie)
publishedc++ implementation aB&C. if W0

Cost and time. In Fig. 3, we compare the convergence choose (i,1) € argmin (7w ) yTwm(ue)) —
of B& c (feasible solutions and lower bounds) with the con- (w,)€Wex L oz, yHt)
vergence of our algorithms, KLj-r and KLj+r (feasible so- § = p(aToiM) yT;Dm(m)) — p(a, yh)
lutions only). Shown in this figure is the average objec- ;¢ §<& . ’

tive value over the test set w.r.t. the absolute running time

Thanks to the lower bounds obtainedd c, it can be seen
from this figure that KLj-r and KL+r arrive at near optimal

feasible solutions aftef0~! seconds, five orders of magni-

tude faster thaB& c. This result shows that primal feasible
heuristics for theNL-LMP, such as KLj-r and KLj+r, are
practically useful in the context of this application.

Function 2:(A’, i/, ') = update-lifted-multicuiu, )
Ho = [
(6, M) := update-labelin@:o, \)
let ap : N — {0, 1} such thaty(N) = {1}
t:=0
repeat
A:=0 Hir1 1= fbg Aty = N
let ary1 : N — {0, 1} such thatw 1 (N) = {0}
for each {m,m'} € (")
if ax(m)=0Aa(m')=0
continue
(5, i1, /\t+'[) = update-Z-CL(tqu. /\f,+] ,m, m’)
if 5 <0
apri(m) =1 app(m’):=1 A=A+
(0, \i+1) := update-labelin@u; 11, Ai+1)
A:=A+)
if yltt+1 ¢ YGG’
pet1 = R(pg41)
A = sp(x)‘f+l7yl‘t+1) —
t:=t+1
while A < 0

. (repair heuristic)
cp(x 0 , yﬂo)

w1 =T, . (1e) (mMove noder to componentn’)

Aev1 = Tyi(Ne) (label nodei with label \)

a(d) =0 (mark? as inactive)
else

pe1 =15, (u) (move nodeb to componentn)

Aea1 = Tgi( M) (label nodei with label \)

a() =0 (markw as inactive)

Viei i ={veV|uwpi(v)=mAalv)=1A
Ho,w} € B pyy1(w) =m'}
Wit1 i={w € V| pr1(w) =m' Aa(w) = 1A
Ho,w} € B+ pyi1(v) = m}

t=t+1
{ := min argmin (e yhe ) — (a0, yHo)
t'€{0,...,t}

Ay = (i, yhi) — oz, yho)
Ag = gp(:v’\“,yT;m'(N)) — (0, yHo)
if min{Al,Ag} 2 0
return (0, 1, \)
dseif Ay < Ay
return (Aq, pz, A;)
else
return (Ag, Trpms (1), \)

(join m andm/)

Application-specific accuracy. In Tab. 1, we com-
pare feasible solutions output by KLj-r and KLj+r after
convergence with those obtained IBg Cc after at most
three hours.
ble solutions output by KLj-r and KLj+r have lower cost

It can be seen from this table that the feasi-
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Figure 3: Convergence @&& c, KLj-r and KLj+r in an ap- Figure 4: Convergence of the algorithms KLj-r and KLj+r
plication to the task of articulated human body pose estima-in an application to the task of multiple object tracking.
tion.

|V| Algorithm Acc [%] Mean obj. Mearn [s] Mediant [s]

B&C[9] 56.53 -3013.30 9519.26 308.28 set of the multiple object tracking benchmatis], Tang et
° .
B KLjr 5800 -3352.74 0033 0031 A&l construct seven such instances oftieLmp.
KLj+ 57.55 -3419.07 0.119 0.100 .
J. ' To tackle these instances, Tang et al. solve the subgraph
§ KLj-r 60.85 -6184.36 0.098 0.053  suppression problem first and independently, by threshold-
KLj+r 60.58 -6608.53 0.534 0.254 ing, and then solve the minimum cost multicut problem

) ) o for the remaining subgraph by means of the algorithm
Table 1: Comparison o8& c, KLj-r and KLj+rin an ap- gy of [ 17], without re-iterating. Here, we apply to the
pllcatlon to the task of articulated human body pose esnma-joim NL-LMP the algorithms KLj-r and KLj+r and compare
tion. their output to P€] and to other top-performing algorithms

[8, 13,4, 27

and higher application-specific accuracy (Acc) on average. cqst and time. The convergence of the algorithms KLj-

KLj+r yields a lower average cost than KLj-r with slightly . 5 KLj+r is shown in Fig4. It can be seen from this

higher running time. The fact that lower cost does not figure that KLj-r converges faster than KLj+r.

mean higher application-specific accuracy is explained by

the application-specific accuracy measure that does not pe- Application-specific accuracy. We compare the feasi-

nalize false positives. ble solutions output by KLj-r and KLj+r to the state-of-
The shorter absolute running time of KLj-r and KL+r  the-art for the benchmark ]. To this end, we report in

allows us to increase the number of nodes from 150, asTab.2 the standard CLEAR MOT metric, including: multi-

in [9], to 450. It can be seen from the last two rows of ple object tracking accuracy (MOTA), multiple object track

Tab. 1 that this increases the application-specific accuracying precision (MOTP), mostly tracked object (MT), mostly

by about 2.5%. lost (ML) and tracking fragmentation (FM). MOTA com-

. . . bines identity switches (ID Sw), false positives (FP) and

4.2. Multiple Object Tracking false negatives (FN) and is most widely used. Our feasible
We turn toward applications of the.-LMP and the algo-  solutions are published also at the benchmark website unser

rithms KLj-r and KLj+r to the task of multiple object track- the names NLLMP (KLj-r) and NLLMPj (KLj+r). It is can

ing. Tang et al. 6] approach this problem via a graph de- be seen from Tal® that the feasible solutions obtained by

composition and node labeling problem that we identify as KLj-r and KLj+r rank first in MOTA and MOTP. Compared

a special case of theL-LMP with two labels and subgraph to [2€], KLj-r and KLj+r reduce the number of false posi-

selection (Se2.5.3. We relate their notation to ours rigor- tives and false negatives. The average inverse running time

ously in the supplement of this paper. Nodes in their graph per frame of a video sequence (column “Hz” in the table) is

are putative detections of persons. In our notatigpn,= 1 better for KLj-r by a margen than for any other algorithm.

indicates that the putative detectiois active, and,,, = 1 Overall, these results show the practicality of the-LMP

indicates that the putative detectianandw are interpreted  in conjunction with the local search algorithms KLj-r and

in the solution as detections of distinct persons. For the te  KLj+r for applications in multiple object tracking.



Method MOTA+ MOTP+ FAF, MT+ ML) FPJ FNJ IDSwl) Frag Hzt Detector
(] 40.1 74.8 1.3 11.6% 51.3% 7896 99224 430 963 1.1  Public
[19] 42.8 76.6 1.0  13.6% 46.9% 5668 97919 499 659 0.8  Public
[4] 46.4 76.6 1.6  18.3% 41.4% 9753 87565 359 504 2.6  Public
[27] 46.3 75.7 1.1 155% 39.7% 6449 90713 663 1115 0.8  Public
KLj-r 47.6 785 1.0 17.0% 40.4% 5844 89093 629 768 8.3  Public
KLj+r 47.6 785 0.98 17.0% 40.4% 5783 89160 627 761 0.7  Public

Table 2: Comparison of the algorithms KLj-r and KLj+r in arpdipation to the task of multiple object tracking.

5. Conclusion [10]

We have stated the minimum cost node labeling lifted
multicut problem,NL-LMP, an NP-hard combinatorial op-
timization problem whose feasible solutions define both a
decomposition and a node labeling of a given graph. We
have defined and implemented two local search algorithms[11]
KLj-r and KLj+r, that converge monotonously to a local op-
timum, offering a feasible solution at any time. We have
shown applications of these algorithms to the task of articu [12]
lated human body pose estimation and to the task of multi-
ple object tracking, obtaining competitive results. We-con
clude that thevL-LMP is a useful mathematical abstraction [12!
in the field of computer vision and is practical, despite its
NP-hardness, in conjunction with local search algorithms. [14]
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