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Abstract

We state a combinatorial optimization problem whose
feasible solutions define both a decomposition and a node
labeling of a given graph. This problem offers a com-
mon mathematical abstraction of seemingly unrelated com-
puter vision tasks, including instance-separating semantic
segmentation, articulated human body pose estimation and
multiple object tracking. Conceptually, the problem we pro-
pose generalizes the unconstrained integer quadratic pro-
gram and the minimum cost lifted multicut problem, both of
which areNP-hard. In order to find feasible solutions effi-
ciently, we define a local search algorithm that converges
monotonously to a local optimum, offering a feasible solu-
tion at any time. To demonstrate the effectiveness of this al-
gorithm in solving computer vision tasks, we report running
times and competitive solutions for two above-mentioned
applications.

1. Introduction and Related Work

In this article, we state a combinatorial optimization
problem whose feasible solutions define both a decomposi-
tion and a node labeling of a given graph (Fig.1). This prob-
lem offers a common mathematical abstraction of seem-
ingly unrelated computer vision tasks:

Multiple object tracking[2, 3, 4, 7, 13, 17, 19, 29, 30]
can be seen as the task of deciding, for every point in an im-
age, whether this point depicts an object, and of deciding,
for every pair of points that depict objects, if the object is
the same. Tang et al. [26, 27] abstract this task as a graph de-
composition and node labeling problem w.r.t. a finite graph
whose nodes are parts of the image, and w.r.t. 01-labels in-
dicating that a part depicts an object. We generalize their
problem to more labels and more complex objective func-
tions.

Instance-separating semantic segmentation[5, 6, 15, 22,
23, 24, 31, 32] is the task of assigning, to every point in
an image, a label that identifies a class of objects (e.g., hu-
man, car, bicycle), and of deciding, for every pair of points,
whether they belong to the same object. Kroeger et al. [14]
state this problem as a graph decomposition and node la-

(a) Decomposition (b) Node Labeling

Figure 1: This article studies an optimization problem
whose feasible solutions define both a decomposition(a)
and a node labeling(b) of a given graphG = (V,E). A
decomposition ofG is a partitionΠ of the node setV such
that, for everyV ′ ∈ Π, the subgraph ofG induced byV ′ is
connected. A node labeling ofG is a mapf : V → L from
its node setV to a finite, non-empty setL of labels.

beling problem w.r.t. a (super)pixel adjacency graph of the
image. Feasible solutions of their problem have three prop-
erties: For each object, all its pixels have the same label.
Pixels with distinct labels belong to distinct objects. Pix-
els with the same label, including neighboring pixels, can
belong to distinct objects. We generalize their problem to
relaxations of these constraints and more complex objective
functions.

Articulated human body pose estimation[20, 9] is the
task of deciding, for every point in an image, whether this
point depicts a part of the human body, and of deciding, for
every pair of points that depict body parts, if they belong
to the same body. Pishchulin et al. [20] and Insafutdinov et
al. [9] abstract this problem as a graph decomposition and
node labeling problem w.r.t. a finite graph whose nodes are
putative detections of body parts and w.r.t. labels that iden-
fity body parts (head, wrist, etc.) and background. We gen-
eralize their problem to more complex objective functions.

Formally, the minimum cost node labeling lifted multicut
problem we propose and refer to as theNL-LMP generalizes
theNP-hard unconstrained integer quadratic program,UIQP,
that has been studied intensively in the context of graphical
models [10] and also generalizes theNP-hard minimum cost
lifted multicut problem [12], LMP. Unlike in pure node la-
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beling problems such as theUIQP, neighboring nodes with
the same label can be assigned to distinct components by
feasible solutions of theNL-LMP, and neighboring nodes
with distinct labels can be assigned to the same component.
Unlike in pure decomposition problems such as theLMP,
the cost of assigning nodes to the same component or dis-
tinct components can depend on node labels. Also unlike
in the LMP, constraining nodes with the same label to the
same component constrains the feasible decompositions to
bek-colorable, withk ∈ N the number of labels. Fork = 2
in particular, theNL-LMP specializes to theMAX -CUT prob-
lem.

In order to find feasible solutions of theNL-LMP effi-
ciently, we define and implement two local search algo-
rithms that converges monotonously to a local optimum,
offering a feasible solution at any time. These algorithms
does not compute lower bounds. Their feasible solutions
come without approximation certificates. Hence, they be-
long to the class of primal feasible heuristics for theNL-
LMP. The first algorithm we define as a baseline, alternat-
ing Kernighan-Lin search with joins and node relabeling,
KLj-r, is a straightforward generalization of the algorithm
KLj defined by Keuper et al. [12]. In fact, our implemen-
tation is an extension of theirC++ code. The second algo-
rithm we define as our main contribution, joint Kernighan-
Lin search with joins and node relabeling, KLj+r, is a non-
straightforward generalization of KLj that combines up-
dates of the decomposition with updates of the node label-
ing in a novel manner. Both algorithms build on seminal
work of Kernighan and Lin [11].

To demonstrate the effectiveness of the algorithms in
solving computer vision tasks, we analyze their absolute
running time and output for instances of theNL-LMP for
two above-mentioned applications.We will make the code
and data publicly available upon acceptance of the paper.

2. Problem

In this section, we define the minimum cost node label-
ing lifted multicut problem (NL-LMP). Sections2.1–2.3of-
fer an intuition for its parameters, feasible solutions andcost
function. Section2.4 offers a concise and rigorous defini-
tion. Section2.5discusses special cases.

2.1. Parameters

Any instance of theNL-LMP is defined with respect to
the following parameters:

• A connected graphG = (V,E) whose decompositions
we care about, e.g., the pixel grid graph of an image.

• A graphG′ = (V,E′) with E ⊆ E′. This graph can
contain as edges pairs of nodes that are not neighbors
in G. It defines the structure of the cost function.

v we

xv1
xv2
xv3

xw1
xw2
xw3yvw

Figure 2: Every feasible solution of theNL-LMP is a pair
(x, y) of 01-vectorsx ∈ {0, 1}V×L andy ∈ {0, 1}E

′

. More
specifically,x is constrained such that, for every nodev ∈
V , there is precisely one labell ∈ L such thatxvl = 1. y
is constrained so as to well-define a decomposition ofG by
the set{e ∈ E | ye = 1} of those edges that straddle distinct
components.

• A digraphH = (V,A) that fixes an arbitrary orienta-
tion of the edgesE′. That is, for every edge{v, w} of
G′, the graphH contains either the edge(v, w) or the
edge(w, v), Moreover,H does not contain additional
edges. Formally,H is such that for allv, w ∈ V :

{v, w} ∈ E′ ⇔ vw ∈ A ∨ (w, v) ∈ A (1)

(v, w) /∈ A ∨ (w, v) /∈ A (2)

• A finite, non-empty setL called the set of(node) labels

• The following functions whose values are calledcosts:

– c : V × L → R. For any nodev ∈ V and any
label l ∈ L, the costcvl is payed iffv is labeled
l.

– c∼ : A × L2 → R. For any edgevw ∈ A and
any labelsll′ ∈ L2, the costc∼vw,ll′ is payed iffv
is labeledl andw is labeledl′ andv andw are in
the same component.

– c 6∼ : A × L2 → R. For any edgevw ∈ A and
any labelsll′ ∈ L2, the costc 6∼vw,ll′ is payed iffv
is labeledl andw is labeledl′ andv andw are in
distinct components.

2.2. Feasible Set

Every feasible solution of theNL-LMP is a pair(x, y) of
01-vectorsx ∈ {0, 1}V×L andy ∈ {0, 1}E

′

; see Fig.2.
More specifically,x is constrained such that, for every node
v ∈ V , there is precisely one labell ∈ L such thatxvl = 1.
y is constrained so as to well-define a decomposition ofG
by the set{e ∈ E | ye = 1} of those edges that straddle
distinct components. Formally,(x, y) ∈ XV L × YGG′ with
XV L andYGG′ defined below.

• XV L ⊆ {0, 1}V×L, the set of all characteristic func-
tions of maps fromV to L, i.e., the set of allx ∈
{0, 1}V×L such that

∀v ∈ V :
∑

l∈L

xvl = 1 . (3)



For anyx ∈ X , anyv ∈ V and anyl ∈ L with xvl = 1,
we say that nodev is labeledl by x.

• YGG′ ⊆ {0, 1}E
′

, the set of all characteristic functions
of multicuts ofG′ lifted from G. For anyy ∈ YGG′

and anye = {v, w} ∈ E′, ye = 1 indicates thatv
andw are in distinct components of the decomposition
of G defined by the multicut{e′ ∈ E | ye′ = 1} of
G. Formally,YGG′ is the set of ally ∈ {0, 1}E

′

that
satisfy the following system of linear inequalities:

∀C ∈ cycles(G)∀e ∈ C : ye ≤
∑

e′∈C\{e}

ye′ (4)

∀{v, w} ∈ E′ \ E ∀P ∈ vw-paths(G) :

y{v,w} ≤
∑

e∈P

ye (5)

∀{v, w} ∈ E′ \ E ∀C ∈ vw-cuts(G) :

1− y{v,w} ≤
∑

e∈C

(1 − ye) . (6)

2.3. Cost Function

For everyx ∈ {0, 1}V×L and everyy ∈ {0, 1}A×L2

, a
costϕ(x, y) ∈ Z is defined by the form

ϕ(x, y) =
∑

v∈V

∑

l∈L

cvl xvl

+
∑

vw∈A

∑

ll′∈L2

c∼vw,ll′ xvl xwl′ (1− y{v,w})

+
∑

vw∈A

∑

ll′∈L2

c 6∼vw,ll′ xvl xwl′ y{v,w} . (7)

2.4. Definition

We define theNL-LMP rigorously and concisely in the
form of a linearly constrained binary qubic program.

Definition 1 For any connected graphG = (V,E), any
graphG′ = (V,E′) with E ⊆ E′, any orientationH =
(V,A) of G′, any finite, non-empty setL, any function
c : V ×L → Z and any functionsc∼, c 6∼ : A×L2 → Z, the
instance of theminimum cost node-labeling lifted multicut
problem(NL-LMP) with respect to(G,G′, H, L, c, c∼, c 6∼)
has the form

min
(x,y)∈XV L×Y

GG′

ϕ(x, y) . (8)

2.5. Special Cases

Below, we show that theNL-LMP generalizes theUIQP.
This connects theNL-LMP to work on graphical models
with second-order functions and finitely many states. In ad-
dition, we show thatNL-LMP generalizes theLMP, connect-
ing theNL-LMP to recent work on lifted multicuts. Finally,
we show that theNL-LMP is general enough for subgraph
selection, connectedness and disconnectedness constraints.

2.5.1 Unconstrained Integer Quadratic Program

Definition 2 For any graphG′ = (V,E′), any orientation
H = (V,A) of G′, any finite, non-empty setL, any c :
V × L → Z and anyc′ : A × L2 → Z, the instance of the
UIQP with respect to(G′, H, L, c, c′) has the form

min
x∈XV L

∑

v∈V

∑

l∈L

cvl xvl +
∑

vw∈A

∑

ll′∈L2

c′vw,ll′ xvl xwl′ .

(9)

Lemma 1 For any graphG′ = (V,E′), any instance
(G′, H, L, c, c′) of the UIQP and anyx ∈ XV L, x is a so-
lution of this instance of theUIQP iff (x, 1E′) is a solution
of the instance(G′, G′, H, L, c, c′, c′) of theNL-LMP.

PROOF Without loss of generality, we can assume thatG′ is
connected. (Otherwise, add edges between nodesv, w ∈ V
as necessary and setc′vw,ll′ = 0 for anyl, l′ ∈ L.)

For anyx ∈ XGL, the pair(x, 1E′) is a feasible solution
of the instance of theNL-LMP because the map1E′ : E′ →
{0, 1} : e 7→ 1 is such that1E′ ∈ YG′G′ .

Moreover,(x, 1E′) is a solution of the instance of theNL-
LMP iff x is a solution of the instance of theUIQP because,
for c 6∼ = c∼, the form (7) of the cost function of theNL-
LMP specializes to the form (9) of the cost function of the
UIQP.

2.5.2 Minimum Cost Lifted Multicut Problem

Definition 3 [1] For any connected graphG = (V,E), any
graphG′ = (V,E′) with E ⊆ E′ and anyc′ : E′ → Z, the
instance of the minimum cost lifted multicut problem (LMP)
with respect to(G,G′, c′) has the form

min
y∈YGG′

∑

e∈E′

c′eye . (10)

Lemma 2 Let (G,G′, c′) be any instance of theLMP. Let
(G,G′, H, L, c, c∼, c 6∼) be the instance of theNL-LMP with
the same graphs and such that

L = {1} c = 0 c∼ = 0 (11)

∀(v, w) ∈ A : c 6∼vw,11 = c′{v,w} . (12)

Then, for anyy ∈ {0, 1}E
′

, y is a solution of the instance
of theLMP iff (1V×L, y) is a solution of the instance of the
NL-LMP.

PROOF Trivially, y is a feasible solution of the instance of
the LMP iff (1V ×L, y) is a feasible solution of the instance
of the NL-LMP. More specifically,y is a solution of the in-
stance of theLMP iff (1V×L, y) is a solution of the instance
of theNL-LMP because, for anyx ∈ XV L, the cost function



(7) of theNL-LMP assumes the special form below which is
identical with the form in (10).

ϕ(x, y)
(3),(11)
=

∑

vw∈A

c 6∼vw,11y{v,w}
(12)
=

∑

e∈E′

c′eye . (13)

2.5.3 Subgraph Selection

Applications such as [9, 20, 26, 27], require us to not only
decompose a graph and label its nodes but to also select
a subgraph. TheNL-LMP is general enough to model sub-
graph selection. To achieve this, one proceeds in two steps:
Firstly, one introduces a special labelǫ ∈ L to indicate that
a node is not an element of the subgraph. We call these
nodesinactive. All other nodes are calledactive. Secondly,
one chooses a large enoughc∗ ∈ N, a c† ∈ N0 andc∼, c 6∼

such that

∀vw ∈ A∀l ∈ L \ {ǫ} : c∼vw,lǫ = c∼vw,ǫl = c∗ (14)

c 6∼vw,lǫ = c 6∼vw,ǫl = 0 (15)

∀vw ∈ A : c∼vw,ǫǫ = c† . (16)

By (14), inactive nodes are not joined with active nodes
in the same component. By (15), cutting an inactive node
from an active node has zero cost. By (16), joining inactive
nodes has costc†, possibly zero. Choosingc† large enough
implements an additional constraint proposed in [26] that in-
active nodes are necessarily isolated. It is by this constraint
and by a two-elementary label set that [26] is a specializa-
tion of theNL-LMP.

2.5.4 (Dis-)Connectedness Constraints

Some applications require us to constrain certain nodes
to be in distinct components. One example is instance-
sepating semantic segmentation where nodes with distinct
labels necessarily belong to distinct segments. Other ap-
plications require us to constrain certain nodes to be in
the same component. One example is articulated human
body pose estimation for a single human in the optimiza-
tion framework of [20] where every pair of active nodes
necessarily belongs to the same human. Yet another exam-
ple is connected foreground segmentation [18, 21, 25, 28]
in which every pair of distinct foreground pixels necessarily
belongs to the same segment.

The NL-LMP is general enough to model a combina-
tion of connectedness constraints and disconnectedness con-
straints. In order to constrain distinct nodesv, w ∈ V with
labelsl, l′ ∈ L to be inthe same component, one introduces
an edge(v, w) ∈ A, a large enoughc∗ ∈ N and costsc∼

such thatc∼vw,ll′ = c∼vw,l′l = c∗. In order to constrain dis-
tinct nodesv, w ∈ V with labelsl, l′ ∈ L to be indistinct
components, one introduces an edge(v, w) ∈ A, a large

enoughc∗ ∈ N and costsc 6∼ such thatc 6∼vw,ll′ = c 6∼vw,l′l =
c∗.

3. Algorithms

In this section, we define two local search algorithms that
compute feasible solutions of theNL-LMP efficiently. Both
algorithms attempt to improve a current feasible solution re-
cursively bytransformations. One class of transformations
alters the node labeling of the graph by replacing a single
node label. A second class of transformations alters the de-
composition of the graph by moving a single node from one
component to another. A third class of transformations al-
ters the decomposition of the graph by joining two compo-
nents.

As proposed by Kernighan and Lin [11] and applied to
the LMP by Keuper et al. [12], a local search is carried our
not over the set of individual transformations of the current
feasible solution but over a set of sequences of transforma-
tions. Complementary to this idea, we define and imple-
ment two schemes of combining transformations of the de-
composition of the graph with transformations of the node
labeling of the graph. This leads us to define two local
search algorithms for theNL-LMP.

3.1. Encoding Feasible Solutions

To encode feasible solutions(x, y) ∈ XV L × YGG′ of
the NL-LMP, we consider two maps: Anode labelingλ :
V → L that defines thexλ ∈ XV L such that

∀v ∈ V ∀l ∈ L : xλ
vl = 1 ⇔ λ(v) = l , (17)

and a so-calledcomponent labelingµ : V → N that defines
theyµ ∈ {0, 1}E

′

such that

∀{v, w} ∈ E′ : yµ{v,w} = 0 ⇔ µ(v) = µ(w) . (18)

3.2. Transforming Feasible Solutions

To improve feasible solutions of theNL-LMP recursively,
we consider three transformations of the encodingsλ andµ:

For any nodev ∈ V and any labell ∈ L, the transfor-
mationTvl : L

V → LV : λ 7→ λ′ changes the label of the
nodev to l, i.e.

∀w ∈ V : λ′(w) :=

{

l if w = v

λ(w) otherwise
. (19)

For any nodev ∈ V and component indexm ∈ N, the
transformationT ′

vm : NV → N
V : µ 7→ µ′ changes the

component index of the nodev tom, i.e.

∀w ∈ V : µ′(w) :=

{

m if w = v

µ(w) otherwise
. (20)



For any component indicesm,m′ ∈ N, the transforma-
tionT ′

mm′ : NV → N
V : µ 7→ µ′ puts all nodes currently in

the component indexed bym into the component indexed
bym′, i.e.

∀w ∈ V : µ′(w) :=

{

m′ if µ(w) = m

µ(w) otherwise
. (21)

3.3. Repairing Infeasible Points

Not every component labelingµ is such thatyµ ∈ YGG′ .
In fact, yµ is feasible if and only if, for everym ∈ µ(V ),
the node setµ−1(m) is connected inG. For efficiency, we
allow for transformations (20) whose outputµ′ violates this
condition, as proposed in [12]. This happens when anartic-
ulation nodeof a component is moved to a different com-
ponent. In order to repair anyµ′ for whichyµ is infeasible,
we consider a mapR : NV → N

V : µ′ 7→ µ such that,
for anyµ′ : V → N and any distinctv, w ∈ V , we have
µ(v) = µ(w) if and only if the exists avw-path inG along
which all nodes have the labelµ′(v). We implementR as
connected component labeling by breadth-first-search.

3.4. Initializing Feasible Solutions

Initial feasible solutions are given, for instance, by the
finest decomposition of the graphG that puts every node in
a distinct component, or by the coarsest decomposition of
the graphG that puts every node in the same component,
each together with any node labeling. We find an initial fea-
sible solution for our local search algorithm by first fixing
an optimal label for every node independently and by then
solving the resultingLMP, (8) for the fixed labelsx ∈ XV L,
by means of greedy agglomerative edge contraction [12].

3.5. Searching Feasible Solutions

We now define two local search algorithms that attempt
to improve an initial feasible solution recursively, by apply-
ing the transformation defined above.

KLj-r Algorithm. The first local search algorithm, al-
ternating Kernighan-Lin search with joins and node relabel-
ing, KLj-r, is a straightforward generalization of the algo-
rithm KLj of [ 12]. KLj-r alternates between transforma-
tions of the labeling and transformations of the decomposi-
tion. For a fixed decomposition, the labeling is transformed
by Func.1 which greedily updates labels of nodes inde-
pendently. For a fixed labeling, the decomposition is trans-
formed by Func.2, without those parts of the function that
are written in green. This is precisely the algorithm KLj of
[12]. (All symbols that appear in the pseudo-code are de-
fined above, except the iteration countert, cost differences
δ,∆, and 01-vectorsα used for bookkeeping, to avoid re-
dundant operations.)

KLj+r Algorithm. The second local search algorithm,
joint Kernighan-Lin search with joins and node relabeling,

Function 1:(∆, λ′) = update-labeling(µ, λ)

λ0 := λ ∆ := 0 t := 0
repeat

choose (v̂, l̂) ∈ argmin
(v,l)∈V ×L

ϕ(xTvl(λt), yµt)− ϕ(xλt , yµt)

δ := ϕ(xT
v̂l̂
(λt), yµt)− ϕ(xλt , yµt)

if δ < 0
λt+1 := T

v̂l̂
(λt)

∆ := ∆ + δ
t := t+ 1

else
return (∆, λt)

KLj+r, is a non-straightforward generalization of KLj that
combines updates of the decomposition with updates of the
node labeling in a novel manner. It is given by Func.2, with
those parts of the function that are written in green.

Like the baseline algorithm KLj-r, the algorithm KLj+r
occasionally updates the labeling for a fixed decomposition
(calls of Func.1 from Func.2). Unlike the baseline algo-
rithm KLj-r, the algorithm KLj+r also updates the decompo-
sition and the labeling also jointly. This happens in Func.3
that is called from KLj+r,with the part that is written in
green.

Func. 3 looks at two componentsV := µ−1(m) and
W := µ−1(′m) of the current decomposition. It attempts to
improve the decomposition as well as the labeling by mov-
ing a node fromV to W or fromW to V and by simulta-
neously changing its label. As proposed by Kernighan and
Lin [11], Func.3 does not make such transformations greed-
ily but first constructs a sequence of such transformations
greedily and then executes the firstk in order wherek is cho-
sen so as to decrease the objective value maximally. KLj-r
construct a sequence of moves analogously, but the node la-
beling remains fixed throughout every transformation of the
decomposition. More generally speaking, KLj+r is a local
search algorithm whose local neighborhood is strictly larger
than that of KLj-r.

Our C++ implementation computes cost differences in-
crementally, as proposed in [11], and solves the optimiza-
tion problem over transformations by means of a priority
queue, as proposed in [12]. The time and space complexi-
ties are identical to those of KLj and are established analo-
gously. Transformations take linear time in the number of
labels but constant time in the size of the graph.

4. Applications

We show applications of the proposed problem and al-
gorithms to two computer vision tasks: articulated human
body pose estimation and multiple object tracking. For each
task, we set up instances of theNL-LMP w.r.t. published data
that we transform only trivially.



4.1. Articulated Human Body Pose Estimation

We turn toward applications of theNL-LMP and the algo-
rithms KLj-r and KLj+r to the task of estimating the artic-
ulated poses of all humans visible in an image. Pishchulin
et al. [20] and Insafutdinov et al. [9] approach this problem
via a graph decomposition and node labeling problem that
we identify as a special case of theNL-LMP with c 6∼ = 0
and with subgraph selection (Section2.5.3). We relate their
notation to ours rigorously in the supplement of this paper.
Nodes in their graph are putative detections of body parts.
Labels define body part classes (head, wrist, etc.). In our
notation,xvl = 1 indicates that the putative detectionv is
a body part of classl, andyvw = 1 indicates that the body
partsv andw belong to distinct humans. The test set of [9]
consists of 1758 such instances of theNL-LMP.

To tackle these instances, Insafutdinov et al. define and
implement a branch-and-cut algorithm in the integer linear
programming software framework Gurobi. We refer to their
publishedC++ implementation asB& C.

Cost and time. In Fig. 3, we compare the convergence
of B& C (feasible solutions and lower bounds) with the con-
vergence of our algorithms, KLj-r and KLj+r (feasible so-
lutions only). Shown in this figure is the average objec-
tive value over the test set w.r.t. the absolute running time.
Thanks to the lower bounds obtained byB& C, it can be seen
from this figure that KLj-r and KL+r arrive at near optimal
feasible solutions after10−1 seconds, five orders of magni-
tude faster thanB& C. This result shows that primal feasible
heuristics for theNL-LMP, such as KLj-r and KLj+r, are
practically useful in the context of this application.

Function 2:(∆′, µ′, λ′) = update-lifted-multicut(µ, λ)

µ0 := µ
(δ, λ0) := update-labeling(µ0, λ)
let α0 : N → {0, 1} such thatα0(N) = {1}
t := 0
repeat

∆ := 0 µt+1 := µt λt+1 := λt

let αt+1 : N → {0, 1} such thatαt+1(N) = {0}

for each {m,m′} ∈
(

µ(V )
2

)

if αt(m) = 0 ∧ αt(m
′) = 0

continue
(δ, µt+1, λt+1) := update-2-cut(µt+1, λt+1,m,m′)
if δ < 0

αt+1(m) := 1 αt+1(m
′) := 1 ∆ := ∆ + δ

(δ, λt+1) := update-labeling(µt+1, λt+1)
∆ := ∆+ δ
if yµt+1 /∈ YGG′

µt+1 := R(µt+1) (repair heuristic)
∆ := ϕ(xλt+1 , yµt+1)− ϕ(xλ0 , yµ0)

t := t+ 1
while ∆ < 0

Function 3:(∆′, µ′, λ′) = update-2-cut(µ, λ,m,m′)

µ0 := µ λ0 := λ
if µ−1(m′) = ∅

V0 := µ−1(m)
else

V0 := {v ∈ µ−1(m) | ∃w ∈ µ−1(m′) : {v, w} ∈ E}
if µ−1(m) = ∅

W0 := µ−1(m′)
else

W0 := {w ∈ µ−1(m′) | ∃v ∈ µ−1(m) : {v, w} ∈ E}
let α : N → {0, 1} such thatα(N) = 1
t := 0
while Vt ∪Wt 6= ∅

δ := δ′ := ∞
if Vt 6= ∅

choose (v̂, l̂) ∈ argmin
(v,l)∈Vt×L

ϕ(xTvl(λt), yT
′

vm′(µt))−
ϕ(xλt , yµt)

δ := ϕ(xT
v̂l̂
(λt), yT

′

v̂m′(µt))− ϕ(xλt , yµt)
if Wt 6= ∅

choose (ŵ, l̂) ∈ argmin
(w,l)∈Wt×L

ϕ(xTwl(λt), yT
′

wm
(µt))−

ϕ(xλt , yµt)

δ′ := ϕ(xT
ŵl̂

(λt), yT
′

ŵm
(µt))− ϕ(xλt , yµt)

if δ ≤ δ′

µt+1 := T ′
v̂m′(µt) (move nodêv to componentm′)

λt+1 := T
v̂l̂
(λt) (label nodêv with labelλ̂)

α(v̂) := 0 (markv̂ as inactive)
else

µt+1 := T ′
ŵm(µt) (move nodeŵ to componentm)

λt+1 := T
ŵl̂
(λt) (label nodeŵ with labelλ̂)

α(ŵ) := 0 (markŵ as inactive)
Vt+1 := {v ∈ V |µt+1(v) = m ∧ α(v) = 1∧

∃{v, w} ∈ E : µt+1(w) = m′}
Wt+1 := {w ∈ V |µt+1(w) = m′ ∧ α(w) = 1∧

∃{v, w} ∈ E : µt+1(v) = m}
t := t+ 1

t̂ := min argmin
t′∈{0,...,t}

ϕ(xλ
t′ , yµt′ )− ϕ(xλ0 , yµ0)

∆1 := ϕ(xλ
t̂ , yµt̂)− ϕ(xλ0 , yµ0)

∆2 := ϕ(xλ0 , yT
′

mm′(µ))− ϕ(xλ0 , yµ0) (join m andm′)
if min{∆1,∆2} ≥ 0

return (0, µ, λ)
else if ∆1 < ∆2

return (∆1, µt̂, λt̂)
else

return (∆2, Tmm′(µ), λ)

Application-specific accuracy. In Tab. 1, we com-
pare feasible solutions output by KLj-r and KLj+r after
convergence with those obtained byB& C after at most
three hours. It can be seen from this table that the feasi-
ble solutions output by KLj-r and KLj+r have lower cost
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Figure 3: Convergence ofB& C, KLj-r and KLj+r in an ap-
plication to the task of articulated human body pose estima-
tion.

|V | Algorithm Acc [%] Mean obj. Meant [s] Mediant [s]

B& C [9] 56.53 -3013.30 9519.26 308.28

KLj-r 58.20 -3352.74 0.033 0.03115
0

KLj+r 57.55 -3419.07 0.119 0.100

KLj-r 60.85 -6184.36 0.098 0.053

42
0

KLj+r 60.58 -6608.53 0.534 0.254

Table 1: Comparison ofB& C, KLj-r and KLj+r in an ap-
plication to the task of articulated human body pose estima-
tion.

and higher application-specific accuracy (Acc) on average.
KLj+r yields a lower average cost than KLj-r with slightly
higher running time. The fact that lower cost does not
mean higher application-specific accuracy is explained by
the application-specific accuracy measure that does not pe-
nalize false positives.

The shorter absolute running time of KLj-r and KL+r
allows us to increase the number of nodes from 150, as
in [9], to 450. It can be seen from the last two rows of
Tab.1 that this increases the application-specific accuracy
by about 2.5%.

4.2. Multiple Object Tracking

We turn toward applications of theNL-LMP and the algo-
rithms KLj-r and KLj+r to the task of multiple object track-
ing. Tang et al. [26] approach this problem via a graph de-
composition and node labeling problem that we identify as
a special case of theNL-LMP with two labels and subgraph
selection (Sec.2.5.3). We relate their notation to ours rigor-
ously in the supplement of this paper. Nodes in their graph
are putative detections of persons. In our notation,xvl = 1
indicates that the putative detectionv is active, andyvw = 1
indicates that the putative detectionsv andw are interpreted
in the solution as detections of distinct persons. For the test
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Figure 4: Convergence of the algorithms KLj-r and KLj+r
in an application to the task of multiple object tracking.

set of the multiple object tracking benchmark [16], Tang et
al. construct seven such instances of theNL-LMP.

To tackle these instances, Tang et al. solve the subgraph
suppression problem first and independently, by threshold-
ing, and then solve the minimum cost multicut problem
for the remaining subgraph by means of the algorithm
KLj of [ 12], without re-iterating. Here, we apply to the
joint NL-LMP the algorithms KLj-r and KLj+r and compare
their output to [26] and to other top-performing algorithms
[8, 13, 4, 27].

Cost and time. The convergence of the algorithms KLj-
r and KLj+r is shown in Fig.4. It can be seen from this
figure that KLj-r converges faster than KLj+r.

Application-specific accuracy. We compare the feasi-
ble solutions output by KLj-r and KLj+r to the state-of-
the-art for the benchmark [16]. To this end, we report in
Tab.2 the standard CLEAR MOT metric, including: multi-
ple object tracking accuracy (MOTA), multiple object track-
ing precision (MOTP), mostly tracked object (MT), mostly
lost (ML) and tracking fragmentation (FM). MOTA com-
bines identity switches (ID Sw), false positives (FP) and
false negatives (FN) and is most widely used. Our feasible
solutions are published also at the benchmark website unser
the names NLLMP (KLj-r) and NLLMPj (KLj+r). It is can
be seen from Tab.2 that the feasible solutions obtained by
KLj-r and KLj+r rank first in MOTA and MOTP. Compared
to [26], KLj-r and KLj+r reduce the number of false posi-
tives and false negatives. The average inverse running time
per frame of a video sequence (column “Hz” in the table) is
better for KLj-r by a margen than for any other algorithm.
Overall, these results show the practicality of theNL-LMP

in conjunction with the local search algorithms KLj-r and
KLj+r for applications in multiple object tracking.



Method MOTA↑ MOTP↑ FAF ↓ MT ↑ ML ↓ FP↓ FN ↓ ID Sw ↓ Frag↓ Hz ↑ Detector

[8] 40.1 74.8 1.3 11.6% 51.3% 7896 99224 430 963 1.1 Public
[13] 42.8 76.6 1.0 13.6% 46.9% 5668 97919 499 659 0.8 Public
[4] 46.4 76.6 1.6 18.3% 41.4% 9753 87565 359 504 2.6 Public

[27] 46.3 75.7 1.1 15.5% 39.7% 6449 90713 663 1115 0.8 Public
KLj-r 47.6 78.5 1.0 17.0% 40.4% 5844 89093 629 768 8.3 Public
KLj+r 47.6 78.5 0.98 17.0% 40.4% 5783 89160 627 761 0.7 Public

Table 2: Comparison of the algorithms KLj-r and KLj+r in an application to the task of multiple object tracking.

5. Conclusion

We have stated the minimum cost node labeling lifted
multicut problem,NL-LMP, an NP-hard combinatorial op-
timization problem whose feasible solutions define both a
decomposition and a node labeling of a given graph. We
have defined and implemented two local search algorithms,
KLj-r and KLj+r, that converge monotonously to a local op-
timum, offering a feasible solution at any time. We have
shown applications of these algorithms to the task of articu-
lated human body pose estimation and to the task of multi-
ple object tracking, obtaining competitive results. We con-
clude that theNL-LMP is a useful mathematical abstraction
in the field of computer vision and is practical, despite its
NP-hardness, in conjunction with local search algorithms.
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and B. Andres. Efficient decomposition of image and mesh
graphs by lifted multicuts. InICCV, 2015.1, 2, 4, 5, 7

[13] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple hypoth-
esis tracking revisited. InICCV, 2015.1, 7, 8

[14] T. Kroeger, J. H. Kappes, T. Beier, U. Koethe, and F. A. Ham-
precht. Asymmetric cuts: Joint image labeling and partition-
ing. In GCPR, 2014.1

[15] X. Liang, Y. Wei, X. Shen, J. Yang, L. Lin, and S. Yan.
Proposal-free network for instance-level object segmentation.
CoRR, abs/1509.02636, 2015.1

[16] A. Milan, L. Leal-Taixé, I. D. Reid, S. Roth, and
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