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Abstract—The fusion of visual and inertial cues has become
popular in robotics due to the complementary nature of the
two sensing modalities. While most fusion strategies to date
rely on filtering schemes, the visual robotics community has
recently turned to non-linear optimization approaches for
tasks such as visual Simultaneous Localization And Mapping
(SLAM), following the discovery that this comes with signifi-
cant advantages in quality of performance and computational
complexity. Following this trend, we present a novel approach
to tightly integrate visual measurements with readings from an
Inertial Measurement Unit (IMU) in SLAM. An IMU error
term is integrated with the landmark reprojection error in a
fully probabilistic manner, resulting to a joint non-linear cost
function to be optimized. Employing the powerful concept of
‘keyframes’ we partially marginalize old states to maintain a
bounded-sized optimization window, ensuring real-time opera-
tion. Comparing against both vision-only and loosely-coupled
visual-inertial algorithms, our experiments confirm the benefits
of tight fusion in terms of accuracy and robustness.

I. INTRODUCTION

Combining visual and inertial measurements has long
been a popular means for addressing common Robotics
tasks such as egomotion estimation, visual odometry and
SLAM. The rich representation of a scene captured in an
image, together with the accurate short-term estimates by
gyroscopes and accelerometers present in a typical IMU have
been acknowledged to complement each other, with great
uses in airborne [6, 20] and automotive [14] navigation.
Moreover, with the availability of these sensors in most
smart phones, there is great interest and research activity
in effective solutions to visual-inertial SLAM.

Historically, the visual-inertial pose estimation problem
has been addressed with filtering, where the IMU measure-
ments are propagated and keypoint measurements are used
to form updates. Mourikis and Roumeliotis [14] proposed an
EKF-based real-time fusion using monocular vision, while
Jones and Soatto [8] presented mono-visual-inertial filtering
results on a long outdoor trajectory including IMU to camera
calibration and loop closure. Both works perform impres-
sively with errors below 0.5% of the distance travelled.
Kelly and Sukhatme [9] provided calibration results and a

20 25 30
0

2

4

6

8

10

12

14

16

18

[m]

[m
]

Fig. 1. Synchronized stereo vision and IMU hardware prototype and indoor
results obtained walking up a staircase.

study of observability in the context of filtering-based vision-
IMU fusion. Global unobservability of yaw and position, as
well as growing uncertainty with respect to an initial pose
of reference are intrinsic to the visual-inertial estimation
problem; this poses a challenge to the filtering approaches
which typically rely on some form of linearization.

In [18] it was shown that in purely visual SLAM
optimization-based approaches provide better accuracy for
the same computational work when compared to filter-
ing approaches. Maintaining a relatively sparse graph of
keyframes and their associated landmarks subject to non-
linear optimization, has since been very popular.

The visual-inertial fusion approaches found in the lit-
erature can be categorized to follow two approaches. In
loosely-coupled systems, e.g. [10], the IMU measurements
are incorporated as independent inclinometer and relative
yaw measurements into the stereo vision optimization. Weiss
et al. [20] use vision-only pose estimates as updates to an
EKF with indirect IMU propagation. Also in [15, 7], relative
stereo pose estimates are integrated into a factor-graph con-
taining inertial terms and absolute GPS measurements. Such
methods limit the complexity, but disregard correlations
amongst internal states of different sensors. In contrast,



tightly-coupled approaches jointly estimate all sensor states.
In order to be tractable and as an alternative to filtering,
Dong-Si and Mourikis [2] propose a fixed-lag smoother,
where a window of successive robot poses and related states
is maintained, marginalizing out states (following [19]) that
go out of scope. A similar approach, but without inertial
terms and in the context of planetary landing is used in [16].

With the aim of robust and accurate visual-inertial SLAM,
we advocate tightly-coupled fusion for maximal exploitation
of sensing cues and nonlinear estimation wherever possible
rather than filtering in order to reduce suboptimality due
to linearization. Our method is inspired by [17], where it
was proposed to use IMU error terms in batch-optimized
SLAM (albeit only during initialization). Our approach is
closely related to the fixed-lag smoother proposed in [2], as
it combines inertial terms and reprojection error in a single
cost function, and old states get marginalized in order to
bound the complexity.

In relation to these works, we see a threefold contribution:
1) We employ the keyframe paradigm for drift-free es-

timation also when slow or no motion at all is
present: rather than using an optimization window
of time-successive poses, we keep keyframes that
may be spaced arbitrarily far in time, keeping visual
constraints—while still respecting an IMU term. Our
formulation of relative uncertainty of keyframes allows
for building a pose graph without expressing global
pose uncertainty, taking inspiration from RSLAM [13].

2) We provide a fully probabilistic derivation of IMU er-
ror terms, including the respective information matrix,
relating successive image frames without explicitly
introducing states at IMU-rate.

3) At the system level, we developed both the hardware
and the algorithms for accurate real-time SLAM, in-
cluding robust keypoint matching and outlier rejection
using inertial cues.

In the remainder of this article, we introduce the inertial
error term in batch visual SLAM in II-B, followed by
an overview our real-time stereo image processing and
keyframe selection in II-C, and the marginalization formal-
ism in II-D. Finally, we show results obtained with our
stereo-vision and IMU sensor indoor and outdoor in III.

II. TIGHTLY COUPLED VISUAL-INERTIAL FUSION

In visual SLAM, a nonlinear optimization is formulated to
find the camera poses and landmark positions by minimizing
the reprojection error of landmarks observed in camera
frames. Figure 2 shows the respective graph representation :
it displays measurements as edges with square boxes and
estimated quantities as round nodes. As soon as inertial
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Fig. 2. Graphs of the state variables and measurements involved in the
visual SLAM problem (left) versus visual-inertial SLAM (right)

measurements are introduced, they not only create temporal
constraints between successive poses, but also between suc-
cessive speed and IMU bias estimates of both accelerometers
and gyroscopes by which the robot state vector is augmented.
In this section, we present our approach of incorporating
inertial measurements into batch visual SLAM.

A. Notation and Definitions

1) Notation: We employ the following notation through-
out this work: F−→A denotes a reference frame A; vectors
expressed in it are written as pA or optionally as pBCA , with
B and C as start and end points, respectively. A transfor-
mation between frames is represented by a homogeneous
transformation matrix TAB that transforms the coordinate
representation of homogeneous points from F−→B to F−→A. Its
rotation matrix part is written as CAB ; the corresponding
quaternion is written as qAB = [εT , η]T ∈ S3, ε and η
representing the imaginary and real parts. We adopt the
notation introduced in Barfoot et al. [1]: concerning the
quaternion multiplication qAC = qAB⊗qBC , we introduce a
left-hand side compound operator (.)

+ and a right-hand side
operator (.)

⊕ such that qAC = qAB+qBC = qBC⊕qAB .
2) Frames: The performance of the proposed method is

evaluated using a stereo-camera/IMU setup schematically
depicted in Figure 3. Inside the tracked body that is rep-
resented relative to an inertial frame, F−→W , we distinguish
camera frames, F−→Ci , and the IMU-sensor frame, F−→S .

F−→C0

F−→C1

F−→S F−→W

Fig. 3. Coordinate frames involved in the hardware setup used: two cam-
eras are placed as a stereo setup with respective frames, F−→Ci , i ∈ {0, 1}.
IMU data is acquired in F−→S . F−→S is estimated with respect to F−→W .



3) States: The variables to be estimated comprise the
robot states at the image times (index k) xkR and landmarks
xcL. xR holds the robot position in the inertial frame pWS

W ,
the body orientation quaternion qWS , the velocity in inertial
frame vWS

W , as well as the biases of the gyroscopes bg and
the biases of the accelerometers ba. Thus, xR is written as:

xR :=
[
pWS
W

T
,qTWS , v

WS
W

T
,bTg ,b

T
a

]T
∈ R3×S3×R9. (1)

Furthermore, we use a partition into the pose states
xT := [pWS

W
T
,qTWS ]T and the speed/bias states xsb :=

[vWS
W

T
,bTg ,bTa ]T . Landmarks are represented in homoge-

neous coordinates as in [3], in order to allow seamless
integration of close and very far landmarks: xL := lWL

W =
[lx, ly, lz, lw]T ∈ R4.

We use a perturbation in tangent space g of the state
manifold and employ the group operator �, the exponential
exp and logarithm log. Now, we can define the perturbation
δx := x � x−1 around the estimate x. We use a minimal
coordinate representation δχ ∈ Rdim g. A bijective mapping
Φ transforms from minimal coordinates to tangent space:

δx = exp(Φ(δχ)). (2)

Concretely, we use the minimal (3D) axis-angle perturbation
of orientation δα ∈ R3 which can be converted into its
quaternion equivalent δq via the exponential map:

δq := exp

([
1
2δα

0

])
=

[
sinc

∥∥ δα
2

∥∥ δα
2

cos
∥∥ δα

2

∥∥ ]
. (3)

Therefore, using the group operator ⊗, we write qWS =
δq⊗ qWS . We obtain the minimal robot error state vector

δχR =
[
δpT , δαT , δvT , δbTg , δbTa

]T
∈ R15. (4)

Analogously to the robot state decomposition xT and xsb,
we use the pose error state δχT := [δpT , δαT ]T and the
speed/bias error state δχsb := [δvT , δbTg , δbTa ]T .

We treat homogeneous landmarks as (non-unit) quater-
nions with the minimal perturbation δβ, thus δχL := δβ.

B. Batch Visual SLAM with Inertial Terms

We seek to formulate the visual-inertial localization and
mapping problem as one joint optimization of a cost function
J(x) containing both the (weighted) reprojection errors er
and the temporal error term from the IMU es:

J(x) :=

I∑
i=1

K∑
k=1

∑
j∈J (i,k)

ei,j,kr

T
Wi,j,k

r ei,j,kr +

K−1∑
k=1

eks
T

Wk
s eks ,

(5)
where i is the camera index of the assembly, k denotes the
camera frame index, and j denotes the landmark index. The

indices of landmarks visible in the kth frame and the ith

camera are written as the set J (i, k). Furthermore, Wi,j,k
r

represents the information matrix of the respective landmark
measurement, and Wk

s the information of the kth IMU error.
Inherently, the purely visual SLAM has 6 Degrees of Free-

dom (DoF) that need to be held fixed during optimization,
i.e. the absolute pose. The combined visual-inertial problem
has only 4 DoF, since gravity renders two rotational DoF
observable. This complicates fixation. We want to freeze
yawing around the gravity direction (world z-axis), as well
as the position, typically of the first pose (index k1). Thus,
apart from setting position changes to zero, δpWS

W
k1 = 03×1,

we also postulate δαk1 = [δαk11 , δα
k1
2 , 0]T .

In the following, we will present the (standard) repro-
jection error formulation. Afterwards, an overview on IMU
kinematics combined with bias term modeling is given, upon
which we base the IMU error term.

1) Reprojection Error Formulation: We use a rather
standard formulation of the reprojection error adapted with
minor modifications from Furgale [3]:

ei,j,kr = zi,j,k − hi
(
TCiST

k
SW l

WL,j
W

)
. (6)

Hereby hi(·) denotes the camera projection model and
zi,j,k stands for the measurement image coordinates. The
error Jacobians with respect to minimal disturbances follow
directly from Furgale [3].

2) IMU Kinematics: Under the assumption that the mea-
sured effects of the Earth’s rotation is small compared to
the gyroscope accuracy, we can write the IMU kinematics
combined with simple dynamic bias models as:

ṗWS
W = vWS

W ,

q̇WS =
1

2
Ω
(
ω̃WS
S ,wg,bg

)
qWS ,

v̇WS
W = CWS

(
ãWS
S + wa − ba

)
+ gW ,

ḃg = wbg ,

ḃa = −1

τ
ba + wba ,

(7)

where the elements of w := [wTg ,wTa ,wTbg ,w
T
ba

]T are each
uncorrelated zero-mean Gaussian white noise processes.
ãWS
S are accelerometer measurements and gW the Earth’s

gravitational acceleration vector. In contrast to the gyro bias
modeled as random walk, we use the time constant τ > 0
to model the accelerometer bias as bounded random walk.
The matrix Ω is formed from the estimated angular rate
ωWS
S = ω̃WS

S + wg − bg, with gyro measurement ω̃WS
S :

Ω
(
ω̃WS
S ,wg,bg

)
:=

[
− 1

2ω
WS
S

0

]⊕
. (8)



The linearized error dynamics take the form

δχ̇R ≈ Fc(xR)δχR + G(xR)w, (9)

where G is straight-forward to derive and:

Fc =


03×3 03×3 13 03×3 03×3
03×3 03×3 03×3CWS 03×3
03×3

[
CWS

(
ãWS
S − ba

)]×03×3 03×3 −CWS

03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 − 1

τ 13


(10)

(.)× denoting the skew-symmetric cross-product matrix as-
sociated with a vector.

Notice that the equations (7) and (10) can be used the
same way as in classical EKF filtering for propagation of the
mean (x̂R) and covariance (PR, in minimal coordinates). For
the actual implementation, discrete-time versions of these
equations are needed, where the index p denotes the pth IMU
measurement. For considerations of computational complex-
ity, we choose to use the simple Euler-Forward method
for integration over a time difference ∆t. Analogously, we
obtain the discrete-time error state transition matrix as

Fd(xR,∆t) = 115 + Fc(xR)∆t. (11)

This results in the covariance propagation equation:

Pp+1
R = Fd(x̂pR,∆t)PpRFd(x̂pR,∆t)

T + G(x̂pR)QG(x̂pR)T∆t,
(12)

where Q := diag(σ2
g13, σ2

a13, σ2
bg

13, σ
2
ba

13) contains all the
noise densities σ2

m of the respective processes.
3) Formulation of the IMU Measurement Error Term:

Figure 4 illustrates the difference in measurement rates with
camera measurements taken at time steps k and k + 1, as
well as faster IMU-measurements that are not synchronized
with the camera measurements in general. We need the IMU

t

Camera measurementsk k + 1

IMU measurements zks
p p+ 1 pk+1pk

Fig. 4. Different rates of IMU and camera: one IMU term uses all
accelerometer and gyro readings between successive camera measurements.

error term eks (xkR, x
k+1
R , zks ) to be a function of robot states at

steps k and k+1 as well as of all the IMU measurements in-
between these time instances (comprising accelerometer and
gyro readings) summarized as zks . Hereby we have to assume
an approximate normal conditional probability density f for
given robot states at camera measurements k and k + 1:

f
(
eks |xkR, xk+1

R

)
≈ N

(
0,Rks

)
. (13)

For the state prediction x̂k+1
R

(
xkR, zks

)
with associated condi-

tional covariance P
(
δx̂k+1

R |xkR, zks
)
, the IMU prediction error

term can now be written as:

eks
(
xkR, x

k+1
R , zks

)
=

 p̂WSk+1

W − pWSk+1

W

2
[
q̂k+1
WS ⊗ qk+1

WS

−1]
1:3

x̂k+1
sb − xk+1

sb

 ∈ R15.

(14)
This is simply the difference between the prediction based
on the previous state and the actual state—except for orien-
tation, where we use a simple multiplicative minimal error.

Next, upon application of the error propagation law, the
associated information matrix Wk

s is found as:

Wk
s = Rks

−1
=

(
∂eks

∂δχ̂k+1
R

P
(
δχ̂k+1

R |xkR, zks
) ∂eks
∂δχ̂k+1

R

T
)−1

.

(15)
The Jacobian ∂eks

∂δχ̂k+1
R

is straightforward to obtain but non-
trivial, since the orientation error will be nonzero in general.

Finally, the Jacobians with respect to δχkR and δχk+1
R will

be needed for efficient solution of the optimization problem.
While differentiating with respect to δχk+1

R is straightfor-
ward (but non-trivial), some attention is given to the other
Jacobian. Recall that the IMU error term (14) is calculated
by iteratively applying the prediction. Differentiation with
respect to the state δχkR thus leads to application of the
chain rule, yielding

∂eks
∂δχkR

=Fd(xkR, t(p
k)− t(k))

pk+1−1∏
p=pk

Fd(x̂pR,∆t)


Fd(x̂p

k+1−1
R , t(k + 1)− t(pk+1 − 1))

∂eks
∂δχ̂k+1

R

.

(16)

Hereby, t(.) denotes the timestamp of a specific discrete
step, and pk stands for the first IMU sample index after the
acquisition of camera frame k.

C. Keypoint Matching and Keyframe Selection

Our processing pipeline employs a customized multi-
scale SSE-optimized Harris corner detector combined with
BRISK descriptor extraction [12]. The detector enforces
uniform keypoint distribution in the image by gradually
suppressing corners with weaker score as they are detected
at a small distance to a stronger corner. Descriptors are
extracted oriented along the gravity direction (projected into
the image) which is observable thanks to tight IMU fusion.

Initially, keypoints are stereo-triangulated and inserted
into a local map. We perform brute-force matching against



all of the map landmarks; outlier rejection is simply per-
formed by applying a chi-square test in image coordinates
by using the (uncertain) pose predictions obtained by IMU-
integration. There is no costly RANSAC step involved—
another advantage of tight IMU involvement. For the sub-

KF1

KF 2

KF 3

Temporal/IMU window
KF 4

Fig. 5. Frames kept for matching and subsequent optimization.

sequent optimization, a bounded set of camera frames is
maintained, i.e. poses with associated images taken at that
time instant; all landmarks visible in these images are kept in
the local map. As illustrated in Figure 5, we distinguish two
kinds of frames: we introduce a temporal window of the S
most recent frames including the current frame; and we use a
number of N keyframes that may have been taken far in the
past. For keyframe selection, we use a simple heuristic: if
the ratio between the image area spanned by matched points
versus the area spanned by all detected points falls below
50 to 60%, the frame is labeled keyframe.

D. Partial Marginalization

It is not obvious how nonlinear temporal constraints
can reside in a bounded optimization window containing
keyframes that may be arbitrarily far spaced in time. In
the following, we first provide the mathematical foundations
for marginalization, i.e. elimination of states in nonlinear
optimization, and apply them to visual-inertial SLAM.

1) Mathematical Formulation of Marginalization in Non-
linear Optimization: The Gauss-Newton system of equations
is constructed from all the error terms, Jacobians and infor-
mation: it takes the form Hδχ = b. Let us consider a set of
states to be marginalized out, xµ, the set of all states related
to those by error terms, xλ, and the set of remaining states,
xρ. Due to conditional independence, we can simplify the
marginalization step and only apply it to a sub-problem:[

Hµµ Hµλ1

Hλ1µHλ1λ1

] [
δχµ
δχλ

]
=

[
bµ
bλ1

]
(17)

Application of the Schur-Complement operation yields:

H∗λ1λ1
:=Hλ1λ1

−Hλ1µH−1µµHµλ1
, (18a)

b∗λ1
:=bλ1

−Hλ1µH−1µµbµ, (18b)

where b∗λ1
and H∗λ1λ1

are nonlinear functions of xλ and xµ.

The equations in (18) describe a single step of marginal-
ization. In our keyframe-based approach, must apply the
marginalization step repeatedly and incorporate the resulting
information as a prior in our optimization as our state
estimate continues to change. Hence, we fix the linearization
point around x0, the value of x at the time of marginalization.
The finite deviation ∆χ := Φ−1(log(x � x−10 ))) represents
state updates that occur after marginalization, where x is our
current estimate for x. In other words, x is composed as

x = exp (Φ(δχ)) � exp (Φ(∆χ)) � x0︸ ︷︷ ︸
=x

. (19)

This generic formulation allows us to apply prior information
on minimal coordinates to any of our state variables—
including unit length quaternions. Introducing ∆χ allows
the right hand side to be approximated (to first order) as

b +
∂b
∂∆χ

∣∣∣∣
x0

∆χ = b−H∆χ. (20)

Now we can represent the Gauss-Newton system (17) as:[
bµ
bλ1

]
=

[
bµ,0
bλ1,0

]
−
[

Hµµ Hµλ1

Hλ1µHλ1λ1

] [
∆χµ
∆χλ

]
. (21)

In this form, the right-hand side (18) becomes

b∗λ1
= bλ1,0 −HT

λ1µH−1µµbµ,0︸ ︷︷ ︸
b∗
λ1,0

−H∗λ1λ1
∆χλ1

. (22)

In the case where marginalized nodes comprise landmarks
at infinity (or sufficiently close to infinity), or landmarks
visible only in one camera from a single pose, the Hessian
blocks associated with those landmarks will be (numerically)
rank-deficient. We thus employ the pseudo-inverse H+

µµ,
which provides a solution for δχµ given δχλ with a zero-
component into nullspace direction.

The formulation described above introduces a fixed lin-
earization point for both the states that are marginalized
xµ, as well as the remaining states xλ. This will also be
used as as point of reference for all future linearizations
of terms involving these states. After application of (18),
we can remove the nonlinear terms consumed and add the
marginalized H∗,Nλ1λ1

and b∗,Nλ1
as summands to construct the

overall Gauss-Newton system. The contribution to the chi-
square error may be written as χ2

λ1
= b∗Tλ1

H∗+λ1λ1
b∗λ1

.
2) Marginalization Applied to Keyframe-Based Visual-

Inertial SLAM: The initially marginalized error term is
constructed from the first N+1 frames xkT, k = 1, . . . , N+1
with respective speed and bias states as visualized graphi-
cally in Figure 6. The N first frames will all be interpreted
as keyframes and the marginalization step consists of elim-
inating the corresponding speed and bias states.
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Fig. 6. Graph showing the initial marginalization on the first N+1 frames.

When a new frame xcT (current frame, index c) is inserted
into the optimization window, we apply a marginalization
operation. In the case where the oldest frame in the temporal
window (xc−ST ) is not a keyframe, we will drop all its
landmark measurements and then marginalize it out together
with the oldest speed and bias states. Figure 7 illustrates this
process. Dropping landmark measurements is suboptimal;

Many landmarks

Temporal/IMU frames
t

Marginalization window

Keyframe pose
Non-keyframe

Speed/bias

Many keypoint

IMU terms
Term after previous
marginalization
Dropped term

Node(s) to bexk1T xk2T xk3T xc-3
T xc-2

T xcTxc-1
T

xc-3
sb xc-2

sb xcsbxc-1
sb

measurements

pose

marginalized

Fig. 7. Graph illustration with N = 3 keyframes and an IMU/temporal
node size S = 3. A regular frame is slipping out of the temporal window.

however, it keeps the problem sparse for fast solution. Visual
SLAM with keyframes successfully proceeds analogously,
dropping entire frames with their landmark measurements.

In the case of xc−ST being a keyframe, the information
loss of simply dropping all keypoint measurements would
be more significant: all relative pose information between
the oldest two keyframes encoded in the common land-
mark observations would be lost. Therefore, we additionally
marginalize out the landmarks that are visible in xk1T but not
in the most recent keyframe. Figure 8 depicts this procedure
graphically. The sparsity of the problem is again preserved.

III. RESULTS

We present experimental results using a custom-built sen-
sor prototype as shown in Figure 1, which provides WVGA
stereo images with 14 cm baseline synchronized to the IMU
(ADIS16488) measurements. The proposed method runs in
real-time for all experiments on a standard laptop (2.2 GHz
Quad-Core Intel Core i7, 8 Gb RAM). We use g2o [11] as
an optimization framework. A precise intrinsic and extrinsic
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measurements
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Fig. 8. Graph for marginalization of xc−S
T being a keyframe: the first

(oldest) keyframe (xk1
T ) will be marginalized out.

calibration of the camera with respect to the IMU using
[4] was available beforehand. The IMU characteristics used
(Table I) are slightly more conservative than specified.

TABLE I
IMU CHARACTERISTICS

Rate gyros Accelerometers
σg 4.0e-4 rad/(s

√
Hz) σa 2.0e-3 m/(s2

√
Hz)

σbg 3.0e-3 rad/(s2
√
Hz) σba 8.0e-5 m/(s3

√
Hz)

τ 3600 s

We adopt the evaluation scheme of [5]: for many start-
ing times, the ground truth and estimated trajectories are
aligned and the error is evaluated for increasing distances
travelled from there. Our tightly-coupled algorithm is evalu-
ated against ground truth, vision-only and a loosely-coupled
approach. To ensure that only the estimation algorithms
are being compared, we fix the feature correspondences for
all algorithms to the ones derived from the tightly-coupled
approach. The estimates of the vision-only approach are then
used as input to the loosely-coupled baseline algorithm of
[20] (with fixed scale and inter-sensor calibration).

A. Vicon: Walking in Circles

The vision-IMU sensor is hand-held while walking in
circular loops in a room equipped with a Vicon1 providing
accurate 6D poses at 200 Hz. No loop closures are enforced,
yielding exploratory motion of 90 m. Figure 9 illustrates the
position and orientation errors in this sequence. The loosely-
coupled approach mostly helps limiting the orientation error
with respect to gravity, which is extremely important for
control of aerial systems which the method was designed for.
The proposed tightly-coupled method produces the smallest
error of all, most significantly concerning position.

B. Car: Long Outdoor Trajectory

The sensor was mounted on a car rooftop, simultaneously
capturing 6D GPS-INS ground truth using an Applanix POS

1http://www.vicon.com/
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Fig. 9. Comparison with respect to Vicon ground truth. The same keypoint
measurements and associations were used in all cases. The 5th and 95th

percentiles as well as the means within 10 m bins are shown.

LV at 100 Hz on a trajectory of about 8 km. Figure 10
shows the top view comparison of estimated trajectories with
ground truth. Figure 11 provides a quantitative comparison
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Fig. 10. Car trajectory reconstructions versus Applanix ground truth.

of translation and orientation errors, revealing the clear
improvement when using tight fusion of visual and IMU
measurements. As expected, the loosely-coupled approach
exhibits roughly the same performance as the vision-only
method. This is due to the fact that the former has not been
designed to improve the pose estimates over such a long
time horizon other than aligning the gravity direction.

C. Building: Long Indoor Loop

As a final experiment, the sensor is hand-held while walk-
ing on a long indoor loop spanning 5 floors. As no ground
truth is available, we present a qualitative evaluation of the
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Fig. 11. Quantitative performance evaluation of the estimation approaches
with respect to 6D Applanix ground truth.

3D reconstruction of the interior of the building as computed
by our method, superimposing the vision-only trajectory
for comparison. This sequence exhibits challenging lighting
and texture conditions while walking through corridors and
staircases. The top view plot in Figure 12 demonstrates the
applicability of the proposed method in such scenarios with
a loop-closure error of 0.6 m, while the error of the vision-
only baseline reaches 2.2 m.

IV. CONCLUSION

This paper presents a method of tightly integrating iner-
tial measurements into keyframe-based visual SLAM. The
combination of error terms in the non-linear optimization
is motivated by error statistics available for both keypoint
detection and IMU readings—thus superseding the need for
any tuning parameters. Using the proposed approach, we
obtain global consistency of the gravity direction and robust
outlier rejection employing the IMU kinematics motion
model. At the same time, all the benefits of keyframe-
based nonlinear optimization are obtained, such as pose
keeping in stand-still. Results obtained using a stereo-camera
and IMU sensor demonstrate real-time operation of the
proposed framework while exhibiting increased accuracy and
robustness over vision-only or a loosely coupled approach.
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