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Structural Approach for Building Reconstruction
from a Single DSM

Florent Lafarge, Xavier Descombes, Josiane Zerubia, and Marc Pierrot-Deseilligny

Abstract—We present a new approach for building reconstruction from a single Digital Surface Model (DSM). It treats buildings as an
assemblage of simple urban structures extracted from a library of 3D parametric blocks (like a LEGO®set). First, the 2D-supports of
the urban structures are extracted either interactively or automatically. Then, 3D-blocks are placed on the 2D-supports using a Gibbs
model which controls both the block assemblage and the fitting to data. A Bayesian decision finds the optimal configuration of 3D-blocks
using a Markov Chain Monte Carlo sampler associated with original proposition kernels. This method has been validated on multiple
data set in a wide resolution interval such as 0.7 m satellite and 0.1 m aerial DSMs, and provides 3D representations on complex

buildings and dense urban areas with various levels of detail.

Index Terms—3D reconstruction, urban area, Digital Surface Model, Stochastic models, Monte Carlo simulations.

1 INTRODUCTION

Three dimensional models of urban areas are
very useful for many applications such as urban
planning, radiowave reachability tests for wireless
communications, disaster recovery or computer games.
A standard technique for creating 3D city models in an
automated or semi-automated way consists in applying
stereo vision techniques on aerial or satellite imagery.

Problem statement - Many methods have been pro-
posed. It is difficult to compare these methods efficiently
since they have been developed in different contexts
(kinds of data, types of reconstructed buildings, level
of user interactivity, etc) and use different evaluation
criteria [1][2].

There are two main families of approaches in 3D build-
ing reconstruction. Generic representations are theoreti-
cally able to reconstruct any shape of building through
connected planar facets, but they demand high resolu-
tion data and often require very high computing times.
Scholze et al. extract 3D-lines and group them into
faces which allow the building reconstruction through a
semantic interpretation [3]. Rooftop hypotheses are gen-
erated from 3D-lines and junction information by Kim
et al.[4]. Baillard et al. present a method based on planar
facet hypothesis which can be generated from single
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3D-lines [5]. Taillandier et al.[6] combine several kinds
of primitives such as 3D-lines, planes and facade hy-
pothesis. These methods provide accurate descriptions
of common buildings. However, they are not adapted to
model large urban scenes and complex buildings owning
many facets since they have combinatorial problems.
Parametric representations are known to be robust with
respect to data quality and adapted to large scenes [7],
but these reconstructions are limited - most parametric
representations consider a symmetric two-plane roof
reconstruction. Collins et al. propose a complete inter-
active system restricted to the representation of flat roof
buildings [8]. Brédif et al. present a method including
the parametric roof superstructure reconstruction using
a Minimum Description Length energy minimization
[9]. Several systems based on the Constructive Solid
Geometry (CSG) representation have also been proposed
[10][11]. They combine single primitives by Boolean
operations in order to obtain complete building models.
One of the most efficient methods uses a hierarchical
model which combines three different levels of detail
[12]. Laser scans are also popular inputs for acquiring 3D
city models thanks to the measurement accuracy [13][14].
Friich et al.[15] use laser scans to model buildings with a
detailed reconstruction of the facades. Other works con-
sist in constructing artificial urban scenes. For example,
Miiller et al. develop a procedural model based on a
shape grammar [16].

These methods provide convincing 3D-models using
aerial images, ground views or laser scans. Most of them
have been developed using a specific kind of data and
cannot easily be adapted if the image characteristics
change (resolution, Signal to Noise Ratio, efc). Here,
we propose a new method adapted to varying data
resolution by using a single data - a Digital Surface
Model (DSM) - as illustrated on Figure|1l DSMs describe
the altimetry of an urban scene through a regular grid of
points - a height is associated with each point of the grid.
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They are well adapted to global geometric descriptions
of urban scenes. DSMs are mostly generated by using
stereo vision techniques from multiview images. Then,
this kind of data is often very noisy as we can see on
Figure 1. Using DSMs as inputs of a 3D reconstruction
process is very interesting since we do not need to match
the multiview images during the process: it strongly
reduces the combinatorial problems.

Fig. 1. Digital Surface Model (DSM) of an urban area -
raster version (left), and shaded version (right).

Global strategy - We propose an approach based on
a structural concept, which is halfway between generic
and parametric representations. It consists in reconstruct-
ing buildings by assembling simple urban structures
extracted from a library of 3D parametric blocks, as
a LEGO®kit (see Figure 2). The block assemblage is
controlled by stochastic Gibbs models. This concept,
which uses a CSG representation, has been addressed
in a previous work [17]. However, it was limited and
suffered from many drawbacks: generation of many
artefacts, lack of 3D-modeling generality, tuning of many
parameters, long computation times and restriction to
satellite data.

Fig. 2. Principle of the structural approach.

This approach is particularly interesting since it com-
bines the advantages of generic and parametric repre-
sentations:

1- the robustness of parametric approaches is pre-
served since the library objects are defined by
parameter sets,

2- an efficient library permits modeling a large
range of buildings. It is even possible to recon-
struct buildings such as curved roof structures
that some generic models cannot construct,

3- assembly of urban structures is particularly
adapted to various data resolutions and allows
us to obtain both basic roof shapes from 0.7 m
resolution satellite images or details including
superstructures (chimneys, dormer-windows,

etc) from 0.1 m resolution aerial images. Figure
[3 shows the difference, in terms of level of
detail, between 0.25 meter resolution aerial data
and 0.7 meter resolution satellite data.

Fig. 3.

Images of building (top) and associated DSM
(bottom) obtained from 0.25 meter resolution aerial views
(left examples) and 0.7 meter resolution satellite views
(right examples).

This approach is based on important prior knowledge
concerning urban structures and their assembly. It is
necessary to correctly define the interactions between
blocks to have a convincing modeling without artefacts.
A stochastic framework is especially well adapted to
introduce such knowledge.

This paper extends the work we presented in [18] by
detailing both the model and the optimization technique,
as well as presenting new results and comments on
various aerial/satellite scenes. First, the proposed system
extracts the 2D-supports of the urban structures either
automatically or interactively using previous works.
Then, 3D-blocks are positioned on the 2D-supports using
a Gibbs model described in Section [3| A Bayesian deci-
sion finds the optimal configuration of 3D-blocks using
a Monte Carlo sampler. Experimental results on complex
buildings and dense urban areas are shown using data
of various resolutions in Section (4.

2 BUILDING EXTRACTION

The first step extracts the 2D-supports of the urban
structures from a DSM. Each 2D-support is represented
by a quadrilateral (or triangle) and is associated with a
specific part of a building. The 2D-supports of a building
correspond to sets of connected quadrilaterals (i.e. non-
overlapping quadrilaterals with common edges). We
propose two different ways for the user to extract the
2D-supports: an automatic one and an interactive one.
¢ Automatic extraction - The automatic extraction of
building footprints from aerial and satellite data
is a difficult problem which has been addressed
by various techniques such as pixel based classi-
fication [19], contour vectorization [20], or active
contours [21]. The used method, which has been
developed in previous works [22][23], has an im-
portant advantage compared to other approaches:
it is independent of the initialization state. The
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method is performed in two steps. First, a rough
approximation of the 2D-supports is realized by
using an object approach based on marked point
processes [22]. This method generates a set of rectan-
gles representing the building footprints. Faced with
the complexity and the diversity of the building
forms, such an approach is well adapted since it
provides a modeling by simple geometric objects
(i.e rectangles) and allows the introduction of a prior
knowledge concerning the object layout and doesn’t
need any initialization. An energy is associated to
each configuration. The global minimum of this en-
ergy is then found by applying a simulated anneal-
ing [24]. Then, the rectangle layout is regularized
into 2D-supports adapted to a structural concept
[23]. The rectangle layout is transformed into sets of
connected quadrilaterals by fusing neighboring rect-
angles. Moreover, each quadrilateral is partitioned
by detecting the roof height discontinuities from the
DSM: each resulting element represents a specific
part of an urban structure. The 2D-supports ob-
tained by this automatic method are convincing (see
Figurel4). However, they are not as accurate as those
obtained by an interactive extraction controlled by
an operator. Some errors are generated, especially
on complex buildings as we can see on Figure 4.
That is why it is important to propose an alternative
way to the user which allows to correct interactively
these errors.

o Interactive extraction - An operator controls interac-
tive extraction: four clicks add a 2D-support (these
clicks are the four points of the quadrilateral). This
method allows accurate extraction as we can see on
Figure 4| but takes high operator time. It is espe-
cially interesting to choose the interactive extraction
on some complex buildings or urban areas for which
the automatic one gives bad results.

Fig. 4. Extraction of 2D-supports: DSMs (left), interactive
(center) and automatic extraction (right).

3 3D RECONSTRUCTION

Once the 2D-supports have been extracted, the build-
ings are automatically reconstructed through a density

formulation. The first step consists in specifying the 3D
objects.

3.1 Library of 3D-blocks

The content of the library is a key point: if it is too
limited (e.g. Lafarge et al[17] had only flat and gable
roof forms), the method loses generality. The proposed
library, denoted by M and presented in Figure |5, allows
the reconstruction of a large range of buildings through
an association of blocks. Each block possesses both a roof
form and a variant:

e The proposed roof forms (denoted by F and il-
lustrated in Figure [5+top) include monoplane (F1,),
multi-plane (F2,) and curved roofs (Fs,). Each roof
form has a specific set of parameters F' (the number
of parameters varies between 1 and 6).

e The variants (denoted by V and shown in Figure
5-bottom for a gable roof type) are specific to a
roof form. They correspond to types of structure
ends (hipped or straight ends) or structure junctions
(”-”,”L”,”T” or ”+” junctions). The variants also
specify the orientation of the roof with respect to
the quadrilateral 2D-support (see Figure 6). The set
of the variants, denoted by V, owns up to two
parameters.

To sum up, each block of the library M is defined by a
tuple (¥,V) and an associated parameter set 6 = (F, V).
Some blocks can topologically be degenerated in some
situations (e.g. a semi-elliptic roof on a triangular sup-
port): these cases are not allowed in the process in
practice. More details concerning the parameters of the
models are available in Tables|1/and 2|

Flat roof ¥11 Platfogrm roof F12

13 — BN
— {he I Ht
Hg Hg
F=(Hg Ht, £, &, &, &) F = (Hg, Ht)
Dissymetric gable 722

Shed roof 713

Gable roof F21

Saltbox roof ¥23

XY YS

F = (Hg, Ht) F = (Hg, Ht, ©) F = (Hg, Ht, ©)
Elliptic roof %31 Semi-elliptic roof %32

Ht | He i
" Hg Ho

Mansard roof 724

?a

F = (Hg, Ht, K) F = (Hg, Ht) F = (Hg, Ht)
I I I I I
| | | 1 1
| | | 1 1
| | | 1 |
variant - | variant H | variant 2H | variant L | variant T | variant +

Fig. 5. Library of 3D-blocks - the roof forms (3D and pro-
file views) (top) and the variants of a gable roof (bottom).
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TABLE 1
Parameter definition.
[ Parameter | Meaning [ Domain |
H, Gutter height [Hgmin, Hgmaz]
H, Rooftop height [Hitmin, Htmaz)
&1, &9, €3, &4 Platform positioning [0,1]%
¢ Rooftop positioning 0,1
K Pitch break positioning 0,1
b1 Symmetric roof orientation 1,2
b2 Dissymmetric roof orientation {1,2,3,4}
n Hipped end positioning [0,1]

$o=2

Pl ]
I
Fig. 6. Parameters ¢ and n: variants having one axis of
symmetry (left), and variants having two axes of symme-
try (right).

TABLE 2
Table of parameters for each model.
Roof Form parameters F' Variants
forms types V | parameters V
F11 Hy V_
F12 Hg, Hi, €1, &2, &3, &4 V_
J13 Hg, H V_ o2
Vi, P2
F21 Hy, Hy V_ 1
Vv P2, M
Vaov é1, 1M
Vi $2
Vr 2
Vi
Ja2 Hgy, Hy, ¢ V_ 1
Vv b2, M
Vaov 1, M
Vi P2
Fa3 Hgy, Hy, ¢ v_ @2
Vi P2
Foy Hy, Hy, K V_ b1
Vi P2
Vi b2
Vi
F31 Hgy, Hy V_ 1
Vi @2
Vr P2
Vi
Fa3o Hgy, Hy V_ b2
Vi $2

3.2 Bayesian formulation

Let us introduce the notation for the Bayesian
formulation:

o S, a set of sites and A = {A(s) : s € S}, a given DSM
where A(s) represents the elevation of the site, s.

e G, the quadrilateral configuration representing the
building 2D-supports associated with A. N is the
number of quadrilaterals (see Figure [4).

e S; = {s € int(i) : A(s) > H.}, the subset of S whose
sites are inside the quadrilateral, ¢ € €, and have

elevation higher than half a floor heightm H,. above
ground (in practice, H. = 1.5 meter).

e D = (D,);ce, the set of data where D; = {A(s) : s € S;}.
e z, an element of the configuration space, T, which
corresponds to a configuration of 3D-parametric blocks
knowing the 2D-supports C. z = (z;)icec = (mi,0;)ice
where each block, z;, is specified by both a model, m;
of the library M and an associated set of parameters, ;.
In the following, z; = (m;,0;) and m; will be referred
to as an object (or block) and a model, respectively.

¢ d,,, the number of continuous parameters describing
the model m.

e 8., the function from S; to R which associates the
roof altitude of the object, z;, to each site of S;.

Let us consider 1y, the characteristic function. The
measure associated with the set of 3D-blocks is given
by:

) = D Ly (0) @)

keMm

where u = (m, 0) is an object of the library, and v (.) is
the measure associated with the model k. Most models
own both continuous and discrete parameters. In this
case, vi(0) is the product of two measures 1/,(;)(9(6)) X
I/](Cd) (649) where z/,(f) (.) corresponds to the Lebesgue mea-
sure on R% associated with the continuous parameters
6, and 1\”(.) corresponds to the counting measure
on N associated with the discrete parameters 6(%. v;(.)
corresponds to the Lebesgue measure on R if the
model k£ does not own discrete parameter.

We then consider the measurable space (T, B(T), uV(.))
associated with the set of object configurations T, where
B(.) represent the Borel set. We denote by X, the random
variable distributed in T, which follows an unnormalized
density, h against uV. h is the posterior density of
a configuration, z, of objects, given D. In a Bayesian
framework, this density can be obtained from:

h(e) = h(/D) o hy(x)L(D/x) @

The next step consists in building both a prior density,
hp(z), and a likelihood, L(D/z).

3.2.1 Likelihood

The likelihood represents the probability of observing
the data, D, knowing the configuration, . By consider-
ing the hypothesis of conditional independence, it can be
expressed by the local likelihood of objects, L(D;/x;):

L(D/x) =[] &(Di/x:) ®)

i€C
The usual solution to define the local likelihood consists
in introducing a distance measuring the difference be-
tween the object and the DSM, such as the Tukey or

1. During the building extraction stage, some 2D supports are not
correctly positioned. It is necessary to remove from the supports the
pixels corresponding to the ground in order to preserve robustness.
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Cauchy distances [25]. Then, the local likelihood can be
expressed as follows:

(D ;) = ﬁexp—r(ﬂ(smmi) )
where Z(z;) is the normalization constant of the local
likelihood, and F(ig(., .) corresponds to a distance from
Rcard(Si) X Rcard(Si to R.

The used distance consists in measuring the Z-error of
the L, norm between the DSM and the object:

L) (8z,, Di) = (Z 18, (s) —A(8)|“> | @)

seS;

This distance is based on the comparison between pixels
of the DSM and the roof altitude of object ; denoted by
Sz, Even if this distance seems to be simple, it efficiently
models the data term of our problem. This choice is
motivated by two main reasons:

e Outliers are not taken into account in the compu-
tation of the likelihood (see the definition of the
data D - Section 3.2). Then, the use of complex
distances specially adapted to noisy data such as
Tukey distance can be avoided.

o This distance allows to make the normalization con-
stant, Z(x;), independent of the objec x;. It implies
that the computation of the normalization constant
is not necessary: we deal with unnormalized local
likelihood.

In practice, we choose o = % The L, norm is too sensible
to high variations: it is not adapted to our problem since
DSMs are strongly noisy. The L; norm is more robust
to noise. However, we have experimentally noticed that
the roof profiles in the DSM are generally more concave
than in reality: the L; norm does not ideally react to
this phenomenon by under-estimating the roof slope.
The L; 5 norm is finally selected with respect to realized
experiments on DSM fitting detailed in [26].

3.2.2 Prior

The prior introduces interactions between neighboring
objects: it is a key point in our structural concept. It
allows us to both assemble objects in order to propose a
realistic building and compensate for the lack of informa-
tion contained in the DSM. A neighborhood relationship
on C must be set up to define the interactions: two
distinct quadrilaterals, i and j € €, are said to be neigh-
bors if they have a common edge. The neighborhood
relationship is denoted by x (i > j represents the set
of neighboring pairs in €). In a previous work, too
many interactions were set up [17]. The number must
be minimal to preserve robustness and avoid problems
in parameter setting. We propose a simple and efficient
prior which is defined through a single interaction.

2. The proof consists in making the substitution of variables u(s) =
8z, (s) —A(s) when we integrate on the data space in the expression of
Z(x;): the resulting expression is then independent of =; by assuming
that the data space is not bounded.

To do so, we define an assembly law which tests whether
two objects can be assembled together. Two neighbor-
ing objects x; = (m;,6;) and z; = (m;,0;) are said
”joinable” (denoted by z; ~, x;), if:

1 - ::Ffi = .rffj and

2 - roof top orientations are compatible and

3 - the common edge of the quadrilateral 2D-supports,

i and j, is not a roof height discontinuit.

The first condition checks that the two blocks have
the same roof form. The second and third conditions
test whether the roof tops of the two objects can be
connected.

The prior favors “joinable” objects, i.e. homogeneous
structures. However, heterogeneous structures can also
be reconstructed. Moreover, in order to avoid artefacts,
the parameters of two ”“joinable” objects are encouraged
to have similar values. To do so, the unnormalized
density, h,, is expressed through a Gibbs energy, U, (i.e.
hp(z) = exp —Uy,(x)), defined by:

Ve e T, Uy(x) = ﬁZl{miNW}g(mi,m‘j) (6)

i)

where 1y, is the characteristic function. The parameter,
B € RT, weights the importance of the prior density
relatively to the likelihood. The function, g, taking values
in [—1, 0], measures the distance between the parameters
of two ”joinable” objects:

D((Ei, (Ej)

max

= kel — Ol
D’”’L(L.'L'

gi’(k) and gjy(k) are the k' element of the parameter sets
F; and Fj of the objects x; and z;, respectively. Dy, ., =
max D(x;,z;) is the maximum value of the distance. wy,

Ti,Tj

are’ weights which are introduced in this distance in
order to normalize the parameter values according to
the metric system. These weights are computed from
the X, Y and Z resolutions and the configuration of
quadrilaterals C.

Figure 7] illustrates this interaction. If the two blocks
belong to different roof types (for example a mansard
roof and a semi-elliptic roof on the top right) or if the two
objects do not have compatible roof orientations (bottom
right), they will not be “joinable” and the energy will be
null. On the contrary, if the two objects are ”joinable”,
the energy will be negative : these configurations are
favored. The nearer the parameters of the two objects,
the lower the energy. The left configuration is the best
one with respect to the prior. To sum up, the proposed
density h(.) is expressed as follows:

h(gj) = exXp — Zr(l) (ST77DZ) + ﬂz]l{rz’valj}g(xlv Ij)

i€e i<1j
(8)

3. The detection of the roof height discontinuities from the DSM is
detailed in previous works [23].



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

W

Fig. 7.
energies.

Energy U,

Prior energy - local configurations of various

This density only depends on the parameter 3 which
is computed using the Maximum Likelihood estimator
under regularization constraints detailed in [26]. It pro-
vides robustness to the process and avoids the parameter
setting problems. In the following, the Gibbs energy
associated with i will be denoted by U (U = —1Inh).

3.3 Optimization

We now find the object configuration maximizing the
posterior density, h(.), i.e. the Maximum A Posteriori
(MAP) estimator, zarap. This is a non convex optimiza-
tion problem in a high and variable dimension space,
T, since the blocks in the library, M, are defined by a
different number of parameters.

3.3.1 RJIMCMC sampler

The Reversible Jump Markov Chain Monte Carlo (RJM-
CMC) algorithm [27] is well adapted to our problem.
This technique is an extension of the formalism intro-
duced by Hastings [28], allowing to deal with variable
dimension state spaces. Several papers have shown the
efficiency of the RIMCMC sampler for the problem
of multiple parametric object recognition. For exam-
ple, Dick et al.[29] use such a sampler to reconstruct
architectural buildings from terrestrial images where
the parametric object set includes structures such as
columns, buttresses, entablatures or drainpipes. Brenner
et al.[30] extract facades through a grammar based ap-
proach driven by a RIMCMC sampler.

The RJMCMC sampler simulates a discrete Markov
Chain (X;):ey on the configuration space T, which
converges towards an invariant measure (specified by
the posterior density, i(.)). The transitions of this chain
correspond to local perturbation£ of the current config-
uration. The chain is built in order to be ergodic: it al-
lows, under certain conditions of probabilistic relaxation,
to ensure convergence towards the target measure for
any initial configuration. Each iteration of the sampler
is composed of two steps. The first one consists in
proposing a new state by perturbing the current one. The

4. Local perturbations mean that only one object of the configuration
is generally concerned by a perturbation.

second step decides whether the perturbation is accepted
to define the new state. We denote by:

e 7, the target measure defined on T and specified by
the posterior density h.

e Qi(.,.), the proposition kernels defined on T x B(7T).
They allow to propose different types of perturba-
tions specified in Section 3.3.2.

e Ry(x,y), the acceptation ratio of a proposition from
x — y given by:

_ m(dy)Qx(y, dz)
ﬂ-(dm)Qk (!L‘, dy)

The acceptance probability of a perturbation from z — y
is then expressed by min(1, Ry(x,y)).
In summary, the RIMCMC sampler is: at iteration ¢, if
Xt = I

1 - Choose the kernel Q(z,.) with probability g.

2 - According to (), propose a new state y.

3 - Take z("*1) = y with probability min(1, R (z,y)),

and take z(**1) = x otherwise.

Rk (JE, y) (9)

3.3.2 Proposition kernels

The kernel specification plays a crucial role in the ef-
ficiency of the sampler. Appropriate kernels allow to
accelerate the convergence of the process by proposing
object configurations of interest.

Let us consider two models M,,, and M,, and a perturbg—
tion from an object z; = (m,6;) to an object z; = (n,0;)
such that the current object configuration x = (z,)pce
is perturbed into the configuration y = (2,)pce—qiy U -
The idea of Green [27] is to create a bijection between the
parameter spaces of the models M,,, and M,,. ¢; is com-
pleted by auxiliary variables u,,,, simulated under a law
cp/,\nn() to provide (6;, umy), and 9: by Upm ~ @nm(.) into
(6;, van) such that the mapping ¥,,,,, between (6;, )
and (8, v,y) is a bijection :

(é\iv 'Umn) =V, (9i7 Umn)

The ratio of the kernels in the acceptation ratio is then
expressed by:

(10)

11

where J,,,, corresponds to the probability of choosing a
jump from M,, to M,,. Examples of the computation of
the bijection V,,,, are detailed in Appendix. We propose
three kernels, i.e. three sets of distributions (Jpn, ©mn)-
More details concerning the computation of these kernels
are given in [26].

e Kernel ();: uniform jumps This is the classic kernel
proposing a new state according to uniform dis-
tributions. It is enough to ensure that the Markov
chain can visit any configuration of the state space.
However, using only this kernel requires long com-
putation time [17]. Thus we propose two efficient
additional kernels Q) and Qs.
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o Kernel ();: data-driven jumps This kernel cleverly
explores the state space using a data-driven process
which is efficient for similar problems [31]. To do
so, the state, z, is proposed knowing the data, i.e.
according to a probability, p(z|D). More precisely,
it firstly estimates the gutter roof height H and
the roof top height H, of the object concerned by
the jump by using a median filtering on DSM areas
of interest. Secondly, it chooses its height values
according to the Gaussian distributions, N(H,, o)
and N(H,o), respectively (in practice, ¢ = 1 m).
Moreover, this kernel takes into account knowledge
about roof form occurrences in the urban scene by
using a counting process. The probabilities J,,,,, are
then focused on models of interest.

o Kernel @s: regularization jumps In our application,
the visual aspect of the result is very important:
we need a kernel which proposes well-regularized
objects, i.e. objects which are perfectly connected
with their neighbors. The new object, z;, must be
proposed knowing its neighboring objects {z;/j
i}, ie. according to p(x;|{z;/j < i}). The model
is uniformly selected according to the models of
the neighboring objects. The parameter values are
chosen according to Gaussian mixtures depending
on the parameter values of the neighboring objects.
Although this kernel is very useful to regularized
objects, it can block the current configuration in
a local optimum. That is why it must be mainly
used at the end of the process, i.e. when the current
configuration is close to the optimal one.

3.3.3 Simulated annealing

Simulated annealing [24] is used to ensure convergence:
the density, h(.), is substituted by h()%t, where T; is
a sequence of temperatures which tends to zero as ¢
tends to infinity. Simulated annealing theoretically en-
sures convergence to the global optimum for any initial
configuration, zo, using a logarithmic temperature de-
crease. In practice, we use a geometric decrease which
is faster and gives an approximate solution close to the
optimal one. Such a decrease, detailed in [32], is defined
as follows:

T, = T,.at (12)

where o and Ty are respectively the decrease coefficient
and the initial temperature. The decrease coefficient «
can vary and be adapted according to the variation of
the energy [33][34][35]. However, the time savings are
usually relatively minor in practice. That is why we
prefer using a constant decrease coefficient depending
on the number of objects (in practice, a = 0.9999~).

Ty is estimated through the variation of the energy U on
random configurations. More precisely, 1, is chosen as
twice the standard deviation of U at infinite temperature

[36] :

Ty = 2.0(Ur—oo) = 2./ (U3_) —

(Ur=x)*  (13)

where (U) is the means of the energy of the samples
(several thousands of samples are necessary to obtain
a good estimation - it is negligible w.r.t. the number of
iterations of the optimization process).

The process has two stages. At the beginning, i.e. when
the temperature is high (see Figure 8+(d) showing two
simple examples of simulations), the process explores the
density modes and favors configurations which have a
high density. In this exploration stage, the data-driven
kernel @); is mainly used (¢1 = ¢3 = 8‘12 = 0.1). At low
temperature{ the configuration is close to the optimal
solution and does not evolve very much : it involves a
detailed adjustment of the 3D-block parameters. In this
second stage, the regularization kernel @3 is mainly used
(1 = g2 = £q3 = 0.1). Figure 10 shows the efficiency of
the kernel triplet with respect to a single uniform kernel.
The obtained configuration is better in terms of energy
(U=971 vs U=986 for the single uniform kernel) by using
a temperature decrease which is three times faster.

" » ',ﬂﬁﬂﬂr‘

Fig. 8. Two simple examples of the optimization process
- evolution of the configuration as the temperature de-
creases (d), associated with the satellite images (a), the
ground truth (b) and the final results (c).
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Fig. 9. Energy decrease z = t, y = U with a single
uniform kernel (red) and with the combination of the three
kernels (black).

4 EXPERIMENTS
The results were obtained from satellite DSMs (0.7 m
resolution) and aerial DSMs (0.1 and 0.25 m resolution).

5. In practice, the second stage is detected when the accepted propo-
sition rate computed on 1000 iterations becomes lower than 0.05.
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Fig. 10. Optimization - evolution of the configuration as
the temperature decreases (left to right, and top to down).

The results show the reconstruction of complex buildings
and dense urban areas whose level of detail depends on
both the choice of the extraction process (automatic or
interactive) and the kind of data. There is no comparison
with other approaches for the reasons underlined in
the introduction, except where the context is similar
[17]. DSMs have been generated from 3-view images by
an algorithm detailed in [37], and based on a multi-
resolution implementation of a Cox and Roy optimal
flow image matching algorithm [38]. The 3D ground
truth are raster images. Generic textures were applied
to the objects of Figures 11/and (12 for visualization.

4.1 With automatic extraction

The following results have been obtained by the au-
tomatic process from single DSMs, ie. without oper-
ator control or cadastral information. Figures and
12 present various examples of reconstruction (showing
different roof types, roof height discontinuities, closed
structures or complex roof junctions). These results are
convincing. The 3D-blocks are correctly assembled and
few artefacts are generated which means that the process
adapts to buildings with complex roof junctions.
Results shown in Figure 11/ were obtained from satellite
DSMs with automatic 2D extraction [22][23]. Even if
some details are omitted, the shapes of buildings com-
pare well to the ground truth and the generalization level
is satisfactory with respect to the context. The roof height
discontinuities were accurately located.

Globally speaking, the different roof types were correctly
identified as we can see on Figure [11l When the roof

Fig. 11. Reconstructed buildings with automatic 2D ex-
traction from satellite data (4*"* column), satellite images
(1% column), ground truth (2"¢ column) and DSMs with
2D-supports (3"¢ column).

Fig. 12. Urban areas reconstructed with automatic 2D ex-
traction from satellite data (37¢ column), satellite images
(1%* column), and DSMs with 2D-supports (2"¢ column).
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Fig. 13. Ground errors of results presented on Figure 12/
(dark gray: missed corresponding to low flat buildings of
inner courtyards, black: missed, white: over-detected).

Fig. 14. Altimetric errors of buildings shown in Figure11.

model selection is not well discriminated by the dis-
tance I' introduced in the likelihood formulation (see
Section 3.2.1), the prior provides helpful information
concerning the roof models of the neighboring blocks:
this point represents one of the main advantages of
the Bayesian decision for such a structural concept.
Nevertheless, some errors are generated between the
similar roof forms, especially with the mansard roof
form. When the parameter « of the mansard roof is close
to 0 (respectively close to 1), the discrimination with a
gable roof (respectively with a flat roof) become delicate.
Other confusions can appear between gable roofs with
low slope (i.e. H; close to 0) and flat roofs as we can see
on Figure [15/ (1*¢ and 2"¢ examples). Such confusions
are not important in terms of altimetric accuracy, but
can corrupt the visual rendering of the scene.

The ground errors for the automatic 2D extraction pro-
cess were satisfactory. The over-detection rate (in terms
of surface) was 9.7%. This rate can be improved by
adding a vegetation mask to prevent the detection of
trees. The rate of missed detection was quite high (15%).
However, it was mainly due to low flat buildings in
inner courtyards (one floor height structures) that the
2D extraction process cannot detect since these build-
ings have low DSM discontinuities. Without taking into
account these low flat buildings, this rate falls to 4.5%
(see Figure [13). The altimetric Root Mean Square Error
(RMSE) against ground truth in this context (satellite
data / fully-automatic process) is 2.3 m. This is better
than the 3.2 m error obtained earlier in the same
context, but still remains high. As we can see on Figure
14, it is mainly due to both a non optimal positioning of
2D-supports in the automatic extraction process (which
engenders important local altimetric errors at some lo-

cations) and inaccuracies in the DSMs (which mainly
correspond to matching problems of non Lambertian
surfaces such as glass roofs). The second example of
Figure 11| underlines the limits of the automatic 2D
extraction process: some footprints (especially curved
footprints) cannot be modeled accurately by sets of
quadrilaterals. The proposed kernels achieved acceptable
computation times. Less than one minute is necessary to
obtain the buildings of Figure[11 using a 3Ghz processor
(vs 5 minutes [17] with the same processor).

4.2 With interactive extraction

Although the results presented in Section 4.1 are con-
vincing, the automatic extraction of the 2D-supports gen-
erates some errors. The use of the interactive extraction
is then an interesting alternative to reduce these errors.
Figure [15 presents examples of buildings reconstructed
by the interactive 2D extraction process. In the two
first examples, the results are clearly better since the
2D-supports are accurately located. The reconstructed
buildings are more detailed and the altimetric RMSE
is 1.1 m from the satellite data. Table [3 summerizes
the different altimetric RMSEs with respect to both the
type of data (0.7 m resolution satellite DSMs or 0.25
m resolution aerial DSMs) and the level of automation
(with automatic or interactive extraction processes).

Fig. 15. Reconstructed buildings with interactive 2D
extraction from satellite data (top examples) and 0.25 m
resolution aerial data (bottom examples).
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Fig. 16. Urban area reconstruction without and with textures (3"¢ and 2"¢ columns respectively) from DSMs (1%
column). The three first examples correspond to 0.7 meter resolution satellite DSMs while the last one is a 0.25 meter
resolution aerial DSM.
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Fig. 17. Building superstructure reconstruction without and with textures (3¢ and 4*" columns respectively) from 0.1
m resolution aerial DSMs (1°* column) and interactive 2D-supports (2"¢ column).
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TABLE 3
Altimetric evaluation (RMSE) w.r.t. type of data / level of
automation.
with automatic | with interactive
extraction extraction
from satellite DSMs (0.7m) 2.3 m 1.1m
from aerial DSMs (0.25m) 1.3 m 0.8 m

Figure [16 shows results on four typical European

down town areas. The computation time for the fourth
example was 35 minutes (0.6km? - about 800 objects)
which is very good. However, the operator time is quite
high (about 3 hours to create the 800 2D-supports).
The proposed method also allows modeling roof details
such as chimneys or dormer-windows. In fact, the library
of 3D-blocks is general enough to reconstruct such roof
superstructures. Figure 17 presents accurate results of
building superstructure reconstruction from a 0.1 m res-
olution aerial DSM. The buildings and their superstruc-
tures are correctly represented. Most chimneys, dormer-
windows and glass roofs are modeled by flat roofs, gable
roofs and shed roofs respectively. However, frequent
errors often appear on the chimney reconstruction. The
system has difficulties to recognize the small structures,
and often selects an incorrect roof form. A solution could
be to introduce prior knowledge concerning the object
size. The altimetric RMSE for these images is 0.5 m which
is a very good result.

5 CONCLUSION

This new method is an interesting alternative to generic
and parametric approaches. This structural concept is
both generic (primitives are combined using Gibbs mod-
els) and parametric (primitives are extracted from a
library of parametric objects). It presents several impor-
tant characteristics. First, it provides very good results
from a single DSM. Moreover, this approach works effi-
ciently on various data resolutions: a global description
of the buildings from 0.7 m resolution satellite data or
a detailed building reconstruction including roof super-
structures from 0.1 m aerial data. The user can also
choose the level of automation of the process since the
2D-supports can be extracted either interactively or au-
tomatically. Finally, it is an adaptive method since other
3D-block types can be added to the library depending
on the context.

In future works, it would be interesting to improve the
optimization step to achieve both higher precision and
shorter computing time. Belief propagation techniques
for graphical models could be used or Jump-Diffusion
processes [39] which are efficient for similar optimiza-
tion problems [40]. Moreover, we should evaluate the
potential of this method on other kinds of cities such as
typical North American urban areas, and test the system
on other DSMs generated by methods such as [41].
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APPENDIX

The library M is composed of 26 models. Among these
models, there are 12 different parameter sets. Then,
122 — 12 = 132 bijections and associated completion pa-
rameters must be computed. The model parameters have
been defined in order to simplify the computation (most
parameters taking values in [0, 1]). In this appendix, we
present two different examples of bijection computation.
Let us consider two models M,,, and M,, and a pertur-
bation from an object x = (m,6) to an object T = (n,0).
In order to create a bijection ¥,,,, between the parameter
spaces of the models M,, and M, 0 is completed into
(0, umy) by simulating ., '\/’\Spmn(~)l and @ into (é\, VUmn)
by Unm ™~ Qonm(-) such that (97 Umn) = \ann(aa unLn)~
First example: Let us consider a jump from the model
(F11,V-) (denoted by M;) to the modeAl (F21,V_) (de-
noted by M5). We move from 6 = H, to 0 = (Hy, Hy, ¢1).
The parameter H, exists in both models: we need to
CompletAe the model My by wie = (Hy, ¢1). We then
obtain § = Uy4(0,u;2) where ¥y corresponds to the
identity function. The jacobian is equal to 1.

Second example: Let us consider a jump from the
platform model (F12,V_) (denoted by M;) to the dis-
symetric model with one hipped end (Fs2,Vy) (de-
noted by My). We have § = (Hg, Hy, 61,62,63,64) and
8 = (Hy, Ht, ¢, ¢2,m). The common parameters are H,
and H;. Moreover, it exists, for all kernels, a direct
relation between the parameters &;,£; from M; and
the parameters ¢,n from M,. But, it is not possible to
find a bijection between &3 et ¢o. Then, the completion
parameters are u;2 = ¢2 and ve1 = (£3,&4). We obtain
(@\, ve1) = Wi2(0,u12) where ¥4 corresponds to the
identity function. In the case of the uniform kernel for

example, we have <p§11)(v21) = Ujp,12(v21) = 1 and

o (ur2) = i
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